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Abstract. This is an attempt to simplify and justify the notions of deterministic and
randomized reductions, an attempt to derive these notions from (more or less) �rst
principles.

1. Introduction

Let us review the notion of a decision problem. First of all, one has a set { the
set of instances, the universe of the decision problem. For simplicity, we stick to the
Turing machine model and suppose that the universe is always a set of strings in some
�nite alphabet. Of course, objects of interest are not necessarily strings. They may
be graphs for example. But they should be coded as strings.

Second, the instances of a given decision problem split into positive and negative;
this can be formalized by means of a characteristic function from the universe to
f0; 1g. But this is not all. In order to discuss e.g. polynomial time algorithms, we
need that instances have sizes. Ordinarily, the size of a string is its length [GJ], but
this isn't always convenient. For example, if objects of interest are graphs then one
may prefer to de�ne the size of the encoding string as the number of vertices in the
graph rather than the length of the encoding string.

De�nition. A size function on a set U is a function from U to natural numbers.
A size function x 7! jxj is conventional if the set fx : jxj � ng is �nite for each n.

Typically, the size of an instance is polynomially related to the length, but uncon-
ventional size functions turn out to be useful as well. In some situations, it may be
convenient to allow non-integer sizes; for simplicity, we shall stick here to integer
sizes. The notation jxj will be used to denote the size of an element x.
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In the rest of this paper, a decision problem is a set of strings (not necessarily
the set of all strings) in some �nite alphabet together with a size function and a
characteristic function.

In the average case approach, pioneered by Leonid Levin, a decision (resp. search)
problem is considered together with a probability distribution on instances. Such a
pair is called a randomized, or distributional , decision (resp. search) problem. For
simplicity, we restrict attention to randomized decision problems. In order to obtain
completeness results, Levin de�ned reductions among randomized decision problems.
His notion of reduction seems ad hoc. In the �rst part of this paper (Sections 2{4),
we attempt to derive a simpler version of it from (more or less) �rst principles.

Even though that original notion of reduction, deterministic in nature, was su�-
cient to establish the completeness of a number of natural problems [Le, Gu1, Gu2],
it turned out to be too restrictive. Many randomized decision problems of interest
are at in the following technical sense: There exists " > 0 such that the probability
of any instance of su�ciently large size n is bounded from above by 2�n

"

. However,
no randomized decision problem with a at domain is complete unless deterministic
exponential time equals nondeterministic exponential time [Gu1]. To overcome this
di�culty, Levin suggested more general randomizing reduction. Versions of random-
izing reduction were de�ned and successfully used in [VL] and [BCGL]. A simple
version of randomizing reduction was de�ned in greater detail and proved transitive
in [Gu1]. That version was too simple however, and in the second part of the paper
(Section 5{6) we attempt to justify a more general version of randomizing reductions.

Remark. The randomizing reductions of Section 5 can be further generalized. Our
goal is not the most general notion of reduction, but rather a simpler notion of reduc-
tion su�cient for most applications.

2. The notion of a domain

De�nition [Gu2]. A domain D is a nonempty set UD (the universe of D) of
strings in some �nite alphabet with a size function jxj (or jxjD) and a probability
distribution PD such that there are only �nitely many elements of positive probability
of any given size.

Since the elements of a domain are strings, there is a well-de�ned notion of com-
putability for functions on domains. The requirement that there are only �nitely many
elements of positive probability of any given size will be relevant in Section 5 where
we deal with unconventional size functions.

Remark. One could work at a more abstract level, where the universes of domains
have some prescribed (or assumed) notions of computability and computation time
subject to suitable axioms. For example, the size of an output is bounded by the
computation time, composing two computable functions yields a computable function,
and the computation time is additive for composition. We shall stick here to the
simpler de�nition of domains given above which allows us to use the standard Turing
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machine model. The particular axioms mentioned above are assumed to be true in
that model.

It is natural to say that a function T from a set with a size function to nonnegative
reals is polynomially bounded if T (x) is bounded by a polynomial of jxj.

De�nition. A function T from a domain D to the set �R+ of nonnegative reals
augmented with 1 is AP (or polynomial on average or polynomially bounded on
average) with respect to D if, for some " > 0,

P
x(Tx)

"jxj�1PD(x) < 1. We will
say that T is linear on average if the witness " can be chosen to be 1.

Here x ranges over elements of positive size; to avoid the nuisance of dealing with
elements of size 0, we restrict attention to domains without elements of size 0 in
the rest of the paper. One can, without loss of generality, restrict x to range over
elements satisfying (Tx)" > x. This is because the omitted terms sum to at mostP

xPD(x) = 1. The probability PD(x) of an element x is of course the probability
PD[fxg] of the set (or event) fxg.

The notion of polynomiality on average is due to Levin [Le]; it is motivated and
discussed in [Jo, Gu1, BCGL, Gu2]. We have generalized this de�nition slightly by
allowing 1 as a possible value of the function T in question. In the case when T
is the computation time of some algorithm, the in�nite value allows us to consider
algorithms that may diverge at some inputs: If the algorithm diverges at a point x
then T (x) = 1. We suppose that 1 � 0 = 0. If the algorithm diverges at some set
of probability zero, the computation time still may be polynomial on average. Because
we required that there are only �nitely many elements of positive probability of any
given size n, we have that, for each n,

P
x;jxj=n(Tx)

"jxj�1PD(x) <1 provided that the
probability of the event T (x) = 1 is zero. This property is desirable and consistent
with the spirit of the asymptotic approach.

Many complexity experts prefer to deal with instances of a �xed size. Can the
de�nition of AP be reformulated in such terms? For a wide range of domains, the
answer is yes; see [Gu1] in this connection.

De�nition. A partial function on a domain D is AP-time (or AP-time computable)
if it is computable in time polynomial on average with respect to D.

The following lemma justi�es the use of more convenient size functions:

Lemma 2.1. Suppose that D1, D2 are two domains with the same universe U and
the same probability distribution. Let Si be the size function of Di and T be a function
from U to �R+.

1. Suppose that S1 is bounded by a polynomial of S2 and T is polynomial on average
with respect to D1. Then T is polynomial on average with respect to D2.

2. If S1, S2 are bounded each by a polynomial of the other then T is polynomial on
average with respect to D1 if and only if it is polynomial on average with respect
to D2.

Proof. It su�ces to prove (1). Fix some k � 1 such that S1(x) � (S2x)k. We
suppose that " witnesses that T is polynomial on average with respect to D1 and prove
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that "=k witnesses that T is polynomial on average with respect to D2. Ignoring points
x such that (Tx)"=k < S2(x), we have

X

x

(Tx)"=k � (S2x)
�1 �P(x) �

X

x

(Tx)" � (S2x)
�k �P(x) �

X

x

(Tx)" � (S1x)
�1 �P(x) <1: QED

The notion of uniform probability distribution plays an important role in the the-
ory of �nite probability spaces. On a set of nonzero �nite cardinality m, the uniform
probability distribution assigns the probability 1=m to each element. In order to gen-
eralize this notion to in�nite probability spaces, one needs to �x a default probability
distribution on positive integers; somewhat arbitrarily, we choose the default proba-
bility of n to be proportional to n�1 � (log n)�2 for n > 1. Some comments related to
this issue can be found in [Gu1] and [Gu2].

De�nition. A domain D is uniform if elements of the same size have the same
probability and PD[fx : jxj = ng] is proportional to n�1 � (log n)�2 for n > 1.

De�nition. The direct product A � B of domains A and B is the domain of
pairs (a; b), where a 2 A and b 2 B, such that j(a; b)j = jaj + jbj and P(a; b) =
PA(a)�PB(b).

Given a probability distribution � on some set U and a subset V � U of positive
probability, we de�ne the restriction �jV of � to V to be the conditional probability
�(x) = �(x j x 2 V ). In other words, �(x) = 0 for every x 2 U � V , and �(x) =
�(x)=�[V ] for every x 2 V .

De�nition. A domain B is a subdomain of a domain A if UB � UA, and the size
function of B is the restriction of the size function of A, and PB is the restriction
of PA to UB. Further, A+ is the subdomain of A comprising the elements of positive
probability.

3. Domain reductions

Consider a function f from a set A of strings in some �nite alphabet to a set B of
strings in some �nite alphabet, and let T range over functions from B to �R+. If f is
computable and T is bounded by a computable function then the composition T � f is
bounded by a computable function. Suppose that the sets A and B come equipped with
size functions. If f is polynomial time computable and T is polynomially bounded
then T �f is polynomially bounded. Further suppose that A and B are domains. Now
the situation is di�erent. Even if f is AP-time computable and T is AP with respect
to B, T � f is not necessarily AP with respect to A. The problem is that T may be
small on average but very large on the range of f . This problem should not arise if
f is to be used as a reduction between randomized decision problems. Thus, one may
want to say that a function f from A to B reduces A to B if

(R1) f is AP-time with respect to A, and
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(R2) For every AP function T on B, the composition T � f is AP with respect to A.

Before we proceed, let us make a slight generalization by allowing f to be partial
provided that it is de�ned at every element of positive probability in A. We stipulate
that T (fx) = 1 if f is unde�ned at x. The requirements (R1) and (R2) remain
meaningful. For brevity, we will say that such an f is an almost total function from
A to B.

Unfortunately, the requirement (R2) is di�cult to use and a convenient su�cient
condition for (R2) is needed. Since we allow 1 as a possible value of T , (R2) implies

(R0) If PA(x) > 0 then PB(fx) > 0.

For, suppose that PA(a) > 0 but PB(fa) = 0. Then the function T (y) = [ if y =
f(a) then 1 else 0] is AP whereas the function T � f has the in�nite value at a point
of positive probability and therefore is not AP.

The next two de�nitions lead to a more tractable formulation of (R2).

De�nition. Let A and B be two domains with the same universe U and the same
size function. Then B dominates A, symbolically A � B, if there exists an AP
function g on A such that PA(x) � g(x) �PB(x) for all x in U .

This concept was discussed in [Gu1] under the name \weak domination"; the term
\domination" was restricted in [Le, Gu1] to the case when g is polynomially bounded.
Notice that A � B if and only if the ratio PA(x)=PB(x) is AP with respect to A. It
is supposed that 0=0 = 0 which is consistent with our previous convention 0 � 1 = 0.

Example. Let BS1 be the uniform domain of nonempty binary strings where the size
of a string is its length. Order binary strings lexicographically (more exactly, �rst by
length and then lexicographically). Let BS2 be the domain of nonempty binary strings
where the size of a string is its length and the probability of a string x is proportional
to the default probability of the number of x in the lexicographical order. It is easy to
check that the two domains dominate each other. This would not be true if the default
probability of n were n�2 as in [Le].

Lemma 3.1 [Gu 1, Section 1]. Let A and B be two domains with the same
universe U such that A � B. For every function T from U to �R+, if T is AP with
respect to B then it is AP with respect to A.

De�nition. Suppose that A, B are domains and f is an almost total function from
A to B. B dominates A with respect to f , symbolically A �f B if the ratio

PA[f
�1(fx)]=PB(fx)

is AP with respect to A.

Corollary. If f is one-to-one then A �f B if and only if PA(x)=PB(fx) is AP
with respect to A.

Theorem 3.1. Suppose that A, B are domains and f is an almost total function
from A to B such that the function x 7! jfxjB is AP with respect to A. Then (R2)
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holds if and only if A �f B. Moreover, let �(x) = PA(x) and let � be the restriction
of PB to fy : �[f�1(y)] > 0g. Then the condition (R2) is equivalent to each of the
following conditions:

(D1) A �f B.

(D2) There exists a function g from B to �R+ such that

� For all y 2 B, �[f�1(y)] � g(y) � �(y), and

� g � f is AP with respect to A.

(D3) A is dominated by the domain A0 obtained from A by replacing � with the
probability distribution

�0(x) = [�(x)=�[f�1(fx)]] � �(fx):

(D4) There is a probability distribution �00(x) on the universe of A such that

X

x;f(x)=y

�00(x) = �(y)

for every element y of B and the domain A00, obtained from A by replacing �
with �00, dominates A.

Remark. (D4) is an older de�nition of domination with respect to a given function;
see [Gu1].

Proof. Without loss of generality, we may suppose that A coincides with its subdo-
main A+ comprising elements of A of positive probability. Then f is a total function.

To prove that (D1) implies (D2), set g(y) = �[f�1(y)]=�(y): To prove that (D2)
implies (D3), notice that if (D2) holds then g � f witnesses that A0 dominates A. It
is obvious that (D3) implies (D4). The implication (D4) ! (R2) is proved in [Gu1]
in the special case when all values of T are �nite. We reduce the general case to the
special case. Suppose (D4) and let �00 be an appropriate witness. Let T be an AP
function on B and S(x) = T (fx). Then �[fy : Ty = 1g] = 0, hence �00[fx : Sx =
1g] = 0, and therefore �[fx : Sx =1g] = 0. Let T 0y = [ if Ty <1 then Ty else 0].
Obviously, T 0 is AP with respect to B and all values of T 0 are �nite; hence the function
S0x = T 0(fx) is AP with respect to A. But Sx = S0x on every x of positive probability.
Hence S is AP with respect to A. Thus, (R2) holds.

Finally, we suppose (R2) and prove (D1). Let R = fy : �[f�1(y)] > 0g. By (R0),
�(y) > 0 whenever y 2 R. Choose T (y) = [ if y 2 R then �(f�1y)=�(y) else 0]. The
function T is linear on average with respect to B:

X

y

T (y)�(y)=jyj =
X

y2R

(�[f�1y]=�(y)) � �(y)=jyj �
X

y2R

�[f�1y] = 1:

By (R2), T (fx) is AP with respect to A. Hence (D1) holds. QED
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Remark. The proof of the implication (R2)! (D1) does not use the fact that jfxjB
is AP with respect to A. This hypothesis is used in the part of the proof of (D2) !
(R2) cited from [Gu1].

Now we are ready to de�ne the notion of (deterministic) domain reduction.

De�nition. An almost total function f from a domain A to a domain B determin-
istically reduces A to B if it has the following two properties:

E�ciency: f is AP-time with respect to A.

Domination: B dominates A with respect to f .

We say that a domain A deterministically reduces to a domain B if some almost
total function f deterministically reduces A to B.

Theorem 3.2. If f deterministically reduces a domain A to a domain B and g
deterministically reduces B to a domain C then g � f deterministically reduces A to
C. Thus the deterministic reducibility relation is transitive.

In essence, Theorem 3.2 is not new [Gu1], but Theorem 3.1 allows us to give a
simpler proof.

Proof. To prove that C dominates A with respect to g � f , use Theorem 3.1. It
remains to check that g � f is AP-time computable with respect to A. The time to
compute g(fx) splits into two parts: The time to compute f(x) from x, and the time
t(x) to compute g(y) from y = f(x). Since f is AP-time with respect to A, it su�ces
to prove that t(x) is AP. We know that the time T (y) needed to compute g(y) from
y is AP with respect to B. Obviously, t(x) = T (fx). By Theorem 3.1, t(x) is AP.
QED

4. Randomized decision problems

A randomized decision problem, in short an RDP, � may be de�ned as a domain
D together with a function �, the characteristic function of �, from D to f0; 1g.
Any element x of D is an instance of �, and the corresponding question is whether
�(x) = 1. The problem � is AP-time decidable if the characteristic function � is
AP-time computable.

De�nition. Let �1 and �2 be RDPs with domains D1, D2 and characteristic func-
tions �1, �2 respectively. An almost total function f from D1 to D2 deterministically
reduces �1 to �2 if f is a reduction of D1 to D2 and f satis�es the following additional
requirement:

Correctness: For every instance x of �1 of non-zero probability, �1(x) = �2(f(x)).

Theorem 4.1. If f deterministically reduces �1 to �2 and g deterministically
reduces �2 to �3 then the composition g � f deterministically reduces �1 to �3.
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Proof. Use Theorem 3.2. QED

Theorem 4.2. If f deterministically reduces �1 to �2 and �2 is AP-time decidable
then �1 is AP-time decidable.

Proof. By Theorem 3.1, f satis�es the property (R2). QED

Deterministic reductions were used to establish the completeness (for an appropri-
ate class of RDPs) of some natural randomized decision problems [Le, Gu1, BCGL,
Gu2].

5. Randomizing domain reductions

According to Section 3, a deterministic reduction of a domain A to a domain B is
an AP-time computable almost total function f from A to B such that B dominates A
with respect to f . The notion of deterministic reduction is generalized in this section
by allowing the algorithm that computes f to ip a coin. For simplicity, only fair
coins will be ipped.

De�ne a randomizing Turing machine, in short an RTM, to be a Turing machine
that can ip a fair coin. Formally, this may mean that the machine has an additional
read-only tape containing a random sequence of zeroes and ones. Thus, an RTM
can be seen as a deterministic Turing machine with two input tapes. Our RTMs are
transducers, i.e., they compute functions. We say that an RTM halts on an input x
and a sequence r of coin ips if it reaches a special halting state; if the machine is
stuck because the sequence r happened to be too short, it does not halt on (x; r).

Call a set X of binary strings pre�x-disjoint if no element of X is a pre�x of
another element of X. A pre�x-disjoint set is called a barrier if every in�nite sequence
b1b2 : : : of bits has a pre�x in X. By K�onig's lemma, every barrier is �nite.

Lemma 5.1. For every barrier X,
P

r2X 2�jrj = 1.

Proof. Associate the real interval [0:a1 : : : ak000 : : : ; 0:a1 : : : ak111 : : :) of length 2�k

with any binary string a1 : : : ak 2 X. These intervals partition the interval [0; 1).
QED

If M is an RTM, let BM(x) be the collection of �nite sequences r of coin ips such
that the computation of M on (x; r) halts using all bits of r. It is easy to see that
BM(x) is always pre�x-disjoint. We say that M halts on x if BM (x) is a barrier.

There is a good justi�cation for us to restrict attention to machines that halt on
every input: We deal with problems of bounded complexity, e.g., NP problems; given
su�cient time, the reducing algorithm can simply solve the problem that it is supposed
to reduce. For consistency with preceding sections, we will make a slightly more liberal
restriction on our randomized Turing machines. It will be supposed that inputs come
from a certain domain and the machine halts on every input of positive probability.
More formally, a domain A is an input domain for a randomized Turing machine M
if every x 2 A is a legal input for M and M halts on every x 2 A with PA(x) > 0.

De�nition. A dilator for a domain A is a function � that assigns a pre�x-disjoint
set �(x) of binary strings to each x 2 A in such a way that if PA(x) > 0 then �(x)
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is a barrier. Two dilators � and � for A are equivalent if �(x) = �(x) whenever
PA(x) > 0.

If M is an RTM with input domain A then BM(x) is a dilator for A.

De�nition. Let A be a domain with a universe U . If � is a dilator for A, then the
�-dilation of A is the domain A � � such that:

� The universe of A � � is the cartesian product of U and the set f0; 1g� of all
binary strings.

� j(x; r)j = jxj.

� If r 2 �(x) then PA��(x; r) = PA(x) � 2�jrj, and otherwise PA��(x; r) = 0.

The second clause here ensures that the notions like AP refer to the size of the
actual input x, not the random string r. Use Lemma 5.1 to check that PA�� is indeed
a probability distribution. Even though A � � may have in�nitely many elements of a
given size n, only �nitely many of them have positive probability. Thus, A�� is indeed
a domain though its size function is not conventional. Notice that equivalent dilators
give the same dilation. We will ignore the distinction between equivalent dilators.

De�nition. Let A be a domain with a universe U . A random function on A is a
partial function on U � f0; 1g� such that the function

�f(x) = fr : f is de�ned at (x; r)g

is a dilator. Two random functions f and g on A are equivalent if they have equivalent
dilators and they coincide on all elements of the dilated domain which have positive
probability.

In terms of Section 3, a random function f is an almost total function on A � �f .
Every RTM M with input domain A computes a random function on A which will be
called FM . The corresponding dilator is BM . We will ignore the distinction between
equivalent random functions.

One may object to the term \random function" on the grounds that a random
function on A should be a randomly chosen function on A. We fashioned the term \a
random function" after well accepted terms like \a real function". A real function on
a set A assigns real numbers to elements of A. A random function on a domain A
can be seen as a function that assigns random objects to (almost all) elements of A.

De�nition. A random function T from a domain A to �R+ is AP if the following
function from A � �T to �R+ is AP:

(x; r) 7! [ if T is de�ned at (x; r) then T (x; r) else 1]:

De�nition. A randomized Turing machine M with input domain A is AP-time if
the computation time of M is AP.
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A randomized Turing machine M with input domain A can be viewed as a deter-
ministic machine with input domain A � BM . It is easy to see that M is AP-time if
and only if the corresponding deterministic machine is AP-time.

De�nition. A random function f on a domain A is AP-time if there exists an
AP-time randomized Turing machine M that computes f , i.e., A is an input domain
for M and f = FM .

We proceed to de�ne a composition of random functions.

De�nition. Suppose that f is a random function from a domain A to a domain B
and g is a random function on B. The composition g � f of f and g is the random
function h on A such that, for every x 2 A,

� �h(x) = frs : r 2 �f (x) and s 2 �g(f(x; r)),

� if r 2 �f(x) and s 2 �g(f(x; r)) then h(x; rs) = g(f(x; r); s).

Lemma 5.2. The composition of random function is associative.

Proof. Suppose that f is a random function from a domain A to a domain B, g
is a random function from B to a domain C, and h is a random function from a C
to a domain D. It is easy to see that both h � (g � f) and (h � g) � f are equivalent
to a random function k on A such that if x 2 A+ then �k(x) comprises strings rst
with r 2 �f(x), s 2 �g(f(x; r)), t 2 �h(g(f(x; r); s)) and k(x; rst) = h(g(f(x; r); s); t).
QED

De�nition. Let f be a random function from a domain A to a domain B. Then
B dominates A with respect to f , symbolically A �f B, if B dominates A � �f with
respect to f .

Theorem 5.1. Let f be a random function from a domain A to a domain B such
that the random function x 7! jf(x; r)j is AP with respect to A. Then the following
statements are equivalent:

� A �f B,

� For every AP random function T from B to �R+, the composition T � f is AP.

Proof. Let � = �f so that f is an almost total function on A � �. Let � range over
dilators for B and  be the dilator for A such that

(x) = frs : r 2 �(x) and s 2 �(f(x; r))g:

Let x range over elements of A, r range over �(x) and s range over �(f(x; r)). De�ne
an almost total function g(x; rs) = (f(x; r); s) from A� to B ��; g(x; t) is unde�ned
unless t has the form rs. The function jg(x; t)j is AP on A � . For, let " witness
that jf(x; t)j is AP on A � �; then

X

x;r;s

jg(x; rs)j" �PA�(x; rs)=jxj =
X

x;r

jf(x; r)j" �PA��(x; r)=jxj <1:
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If �T = � then �T�f = . The composition T � f of the random function f from A
to B and a random function T on B is the composition T � g of the (deterministic)
almost total function g from A �  to B � � and the (deterministic) almost total
function T on B � �. It su�ces to prove that, for every �, the following statements
are equivalent:

1. A � � �f B,

2. A �  �g B � �,

3. For every almost total AP function T on B � �, T � g is an almost total AP
function on A � .

(2) and (3) are equivalent by Theorem 3.1. It remains to prove that (1) and (2)
are equivalent. It is easy to see that if a function � witnesses (1) in the sense of
Theorem 3.1(D2) then any function � from A �  to �R+ such that �(x; rs) = �(x; r)
witnesses (2) in the sense of Theorem 3.1(D2). To prove the other direction, �x a
function S that assigns an element of �(x; r) to each pair (x; r). If a function �
witnesses (2), then any function � from A � � to �R+ such that �(x; r) = �(x; rs),
where s = S(x; r), witnesses (1). QED.

The restriction on the size jf(x; r)j is not needed to deduce the �rst statement of
the Theorem 5.1 from the second one.

De�nition. A random function f from a domain A to a domain B reduces A to B
if it has the following two properties:

E�ciency: f is AP-time computable, and

Domination: B dominates A with respect to f .

We say that a domain A reduces to a domain B if some random function f reduces
A to B.

Theorem 5.2. The reducibility relation is transitive.

Proof. Suppose that a random function f reduces a domain A to a domain B, and
a random function g reduces B to a domain C. By Theorem 5.1, C dominates A
with respect to the composition h = g � f . It remains to check that h is AP-time
computable with respect to A. Let x range over A, r range over �f(x), y = f(x; r)
and s range over �g(y). The time to compute h(x; rs) splits into two parts: The time
to compute f(x; r) from (x; r), and the time t(x; rs) to compute g(y; s) from (y; s).
Since f is AP-time with respect to A, it su�ces to prove that t is AP with respect to
A. We know that the time T (y; s) needed to compute g(y; s) from (y; s) is AP with
respect to B. Obviously, t(x; rs) = T (y; s). Viewing t and T as random functions,
we have t = T � f . By Theorem 5.1, t(x) is AP. QED
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6. Randomizing reductions of problems

It turns out to be useful to weaken the correctness property of (randomizing) reduc-
tions of decision and search problems [VL, BCGL, IL]. Here is one possible de�nition
of reductions of RDPs.

De�nition. Let �1, �2 be randomized decision problems with domains A, B and
characteristic functions �1, �2 respectively. A random function f from A to B is
a reduction of �1 to �2 if f reduces A to B and satis�es the following additional
requirement:

Correctness There exists a number a > 1=2 such that, for every x 2 A+, the
probability of the event �1(x) = �2(f(x; r)) is at least a.

The notion of AP-time decidability does not �t well the notion of randomizing
reductions with a correctness guarantee a < 1. If we combine in the obvious way
a randomizing reduction of �1 to �2 and a decision algorithm for �2, the result
is a randomizing algorithm for �1 which is not guaranteed to be correct all the time.
Accordingly, we generalize the notion of AP-time decidability. Say that a randomizing
Turing machine M solves an RDP � with a correctness guarantee a if, for every
x 2 D+, the probability that M computes �(x) is at least a.

De�nition. A randomized decision problem � is RAP-time decidable if there exists
a, 1=2 < a � 1, such that some randomizing Turing machine solves � with correctness
guarantee a.

Lemma 6.1. Let 1=2 < a < b < 1 and let � be a randomized decision problem.
If there exists a randomizing AP-time Turing machine that solves � with correctness
guarantee a then there exists a randomizing AP-time Turing machine that solves �
with correctness guarantee b.

Proof. Consider Bernoulli trials with probability a for success in a single trial and
let k be the least number such that the probability of > k=2 successes in k trials is
� b. Given an instance x of �, repeat the a-correct procedure k times and output the
majority answer (in the case of a tie, output any answer). QED

Remark. The situation is even better for search problems, where one needs only
one successful attempt [VL, BCGL, IL]. The inequality a > 1=2 can be replaced by an
inequality a > 0 in the case of search problems.

Theorem 6.1. If f reduces an RDP �1 to an RDP �2 and �2 is RAP-time decidable
then �1 is RAP-time decidable.

Proof. Suppose that the correctness guarantee of f is a1 and the correctness guar-
antee of the given RAP-time decision procedure for �2 is a2. By Lemma 6.1, we may
assume that a2 is su�ciently large so that a1a2 > 1=2. Consider the randomizing al-
gorithm which, given an instance x of �1, �rst applies f to x, and then { if and when
some instance y = f(x) of �2 is obtained { applies the a2-correct decision algorithm
to y; of course, the two subcomputations use independent sequences of coin ips. This
composite algorithm solves �1 with correctness guarantee a1a2. QED
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Unfortunately, our partially correct reductions of RDP's do not compose in a
satisfactory way: If f reduces �1 to �2 with correctness guarantee a1 and g reduces
�2 to �3 with correctness guarantee a2 then the correctness guarantee of g � f is only
a1a2 which may be well below 1/2. (This di�culty does not arise for search problems.)
The repetition technique for boosting the probability of correctness, which we applied to
randomizing decision (and search) algorithms above, is not directly applicable to our
many-one randomizing reductions. Repeating a randomizing reduction k times results
in k outputs in the target domain, not one as in the de�nition of reduction. In other
words, such a repetition is a version of Turing (or truth-table) reduction, not a many-
one reduction. For simplicity, we spoke about constant correctness guarantees. This
restriction can and should be relaxed [VL, BCGL, IL]. We hope to address elsewhere
the issues arising from this.

Some randomized decision and search problems complete for RNP with respect to
partially correct reductions can be found in [VL, BCGL]. Partially correct reductions
play an important role in [IL].

Appendix. On deterministic domain reductions

Return to the motivation of deterministic domain reductions in the beginning of
Section 3. The fact that functions T were allowed to have the value 1 simpli�ed the
situation somewhat. It enabled us to derive (R0) from (R2). In this appendix, we give
a version of Theorem 3.1 covering the case when functions T have only �nite values.
We use the notation of Section 3.

Let A, B be domains and f be a function that assigns an element of B to every
element of A (including elements of zero probability). Consider the following version
of the requirement (R2):

(R3) For every AP function T on B that takes only �nite values, the composition
T � f AP on A.

Obviously, (R3) does not necessarily imply (R0). It turns out that (R3) does not
necessarily imply (D1) either. Here is counterexample. Pick any domain A and any
element a 2 A of positive probability. Let B be the domain such that (i) B has the
same universe and the same size function as A, and (ii) PB(a) = 0 is and PB(x) is
proportional to PA(x) for x 6= a. Finally, let f be the identity function. Obviously,
(R3) holds and (D1) fails.

Let �(x) = PA(x), �(y) = PB(y)jrange(f), R = fy : �(y) > 0g, E = fy : �(y) =
0 but �[f�1(y)] > 0g, and consider the following version of deterministic domain
domination:

(D0) E is �nite and there exists a function g from B to �R+ such that

� For all y 2 R, �[f�1(y)] � g(y) � �(y), and

� g � f is AP with respect to A.

13



Theorem. If jf(x)j is AP on A then the condition (D0) is necessary and su�cient
for (R3).

Proof. First suppose (R3). Then E is �nite: Otherwise, choose T such that T is
zero outside E and T (fx) is not AP, and get a contradiction. The desired g(y) =
[ if y 2 R then �[f�1y]=�(y) else 0]. To check that g � f is AP with respect to A,
notice that g is AP with respect to B and use (R3).

Next suppose (D0) and let T be an AP function on B taking only �nite values.
Let m be the maximal value of the function S(x) = T (fx) on E. For any ",

X

x2E

(Sx)"�(x)=jxj �
X

x

m"�(x) <1:

Therefore, we have to prove only that, the restriction of S to f�1(R) is AP with
respect to A. Without loss of generality, we can suppose that E is empty. Then (D0)
implies (D2). By Theorem 3.1, (D2) implies (R2). By (R2), S is AP with respect to
A. QED
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