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Abstract

We generalize algebraic operational semantics from sequential languages to distributed, concur-

rent languages using Occam as an example. Elsewhere, we will discuss applications to the study

of veri�cation and transformation of programs.

1 Introduction

Computational processes involve change. Although this sounds like an empty slogan, semantical
studies often downplay the dynamic aspects of computing; a sequential process is often modeled
by a function which is merely a point in a large space. This approach is related to the study of
continuously varying physical structures, where adding a dimension for time often doesn't make
the mathematics that much more di�cult. However, this trick doesn't always work as well in
computer science. More importantly, stressing the static aspects of computation may lead one to
mathematical side-issues removed from the main semantic issues.

The idea of algebraic operational semantics is that the dynamic and resource-bounded
aspects of computation should be studied on their own terms. We seek a basic vocabulary to
describe structures that change over time and are �nite in the same way as real computers are
�nite. We are interested in questions such as: What structures are appropriate to model di�erent
programming languages? Which are appropriate to model operating systems? And so on. Once we
have our dynamic (or evolving) structures (or algebras), we are interested in logics for reasoning
about them and in complexity analysis of our computational models.

At the present time, we are still at the stage of modeling di�erent programming languages.
How can we represent best the resource-boundedness of real computation? What models do we
need to adequately and e�ciently re
ect real programming languages? Answers to questions such
as these give rise to a semantical approach which takes the dynamic and resource-bounded aspects
of computation as central.

There have been three studies of programming languages in this framework, of Modula-2 [4],
Smalltalk [1], and Prolog (including all of the non-logical operations that change the program)
[2]. This paper extends the approach of dynamic structures to the case of distributed, concurrent
computation. There are several new questions to be considered: What does it mean to have several
parts of a computation active at the same time? How does one model the communicative aspects of
distributed computation, without assuming the existence of a global clock, and without modeling
the hardware of communication?
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For concreteness, we focus on the language Occam [8], and the reader need not have familiar-
ity with the language to understand what we are doing. We propose a generalization of evolving
structures to distributed evolving structures, and our main claim is that distributed evolving struc-
tures are a good vehicle for understanding the operational behavior of distributed and concurrent
programs. In a di�erent direction, we believe that distributed evolving structures work well as a
pedagogical tool, too.

Our approach is somewhat di�erent from the existing in
uential approaches, such as CCS [7],
CSP [5], denotational semantics and algebraic semantics. We don't use transition systems taking
one program to another; usually only our models evolve, not our programs. And we do not exploit
uninterpreted atomic actions. In reality, atomic actions come in di�erent forms and with di�erent
parameters. Much is gained by abstracting away those parameters, but much is lost, too.

In no way do we wish to imply that other approaches are misguided. On the contrary, we feel
that it is useful to study semantics from several points of view.

1.1 Acknowledgments

We are grateful to Egon B�orger, and to his students Davide Sangiorgi and Giovanni Resta, for their
detailed and constructive comments on a previous draft of this paper. We also thank Padmanabhan
Krishnan and Dalia Malki for many discussions concerning Occam and distributed computing.

2 Background on Evolving Structures

Sequential evolving structures were introduced in [3] and used in [1], [2], and [4] to give operational
semantics for Modula-2, Smalltalk, and Prolog, respectively. They are abstract machines working
in discrete linear time. Sequentiality means only that the time is discrete and linear; the machine
may be parallel and even distributed. Later in this paper we introduce a class of nonsequential
evolving structures. In this section, we de�ne in an independent manner a very narrow class of
sequential evolving structures S su�cient for our purposes in this paper.

States of S are many-sorted �rst-order structures of the same �nite signature, with the same
�nite universes (sorts) and with �xed interpretations of some basic functions. (Such basic functions
will be called static; the other basic functions will be called dynamic.) It is supposed that one of
the universes is BOOL = ftrue; falseg and therefore we will not take relations as basic objects. The
boolean functions corresponding to the standard propositional connectives are static functions. For
every universe U of S, the equality function on U (of type U �U ! BOOL) is a static function of
S. Some states of S are designated to be the initial states. S has a �nite number of transition
rules, and each transition rule has the form

(1) If b then U1 and U2 and � � � and Un

where each Um is an update of the form

(2) f(e1; : : : ; ej) := e0.

Here b is a boolean expression (the guard), f is a dynamic basic function, and each ei is an
expression of an appropriate type in the signature of S. It is supposed that di�erent updates of
the same rule update di�erent basic functions, and the guards of di�erent rules are incompatible.

A run of S is a �nite or in�nite sequence s0; s1; : : : ; of states of S such that s0 is an initial
state of S, and each sk+1 is obtained from sk by means of some (unique) transition rule of the
form (1). This means that b evaluates to true in sk, and sk+1 is obtained from sk by means of
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updates Um: If Um is f(e1; : : : ; ej) := e0 and e0; : : : ; ej evaluate in sk to a0; : : : ; aj, respectively,
then f(a1; : : : ; aj) = a0 in sk+1, that is, the value of f at a1; : : : ; aj is updated to a0. We do this
for each Um; otherwise sk+1 is identical to sk. Notice that S is unable to exchange information with
the outside world. More general evolving structures can be found in [1, 2, 3, and 4].

3 An Example from Occam

Consider the following example of a program P of Occam:

PAR

c! max(i,j)

d! max(x,y)

SEQ

c? a

d? b

e! min(a,b)

Here is the intended meaning of this program: P consists of three processes running in parallel:
c! max(i,j), d! max(x,y) and the SEQ process. The �rst of these has two given numbers i and
j. It computes the maximum and sends it over channel c to the SEQ process. The second computes
the maximum of x and y and sends it over d to the SEQ process. The SEQ process receives these
maxima, in order, and sends the minimum over channel e to the outside world. There are a
few important remarks on the timing that we should make. First the processes c! max(u,v)and
d! max(x,y) work in parallel, and they are not �nished until their output is received on the other
end of the appropriate channel. The SEQ process is written to always accept input on c before d.
That means that the process d! max(x,y) might well be ready to output before c! max(u,v), but
communication over channel d cannot take place until communication over channel c has �nished.

We also should make a remark on the variables used in P . The SEQ process calls its inputs a
and b, but it might as well have called them anything else, including i and j, or x and y. There is a
syntactic restriction in Occam which insures that no two children of a PAR process change the same
variable. In principle, the programmer may always use di�erent identi�ers for di�erent variables.

Lest the reader think this example too simple, we mention a few ways in which it could be made
more interesting. One way would be to replace the processes c! max(i,j)and d! max(x,y) by
more complicated processes, each of which accepts two inputs from the outside world. In addition,
one could encase the entire process in a large WHILE loop. In this way we obtain a process which
accepts four in�nite input streams, and computes a new stream. The code here would be as follows:

PAR

WHILE TRUE

SEQ

in1? i

in2? j

c! max(i,j)

WHILE TRUE

SEQ

in3? x

1n4? y

d! max(x,y)
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WHILE TRUE

SEQ

c? a

d? b

e! min(a,b)

More interestingly, we could take the original program and change the way the third process
works. As it stands, it accepts the inputs in a �xed order. A better use of parallel resources is
obtained if the third process is able to accept the inputs as they become ready. This is available in
Occam, by using the ALT construction. We shall consider a process which uses ALT in Section 7.

3.1 A Distributed Evolving Structure for P

We interpret this program P by a distributed evolving structure M . The de�nition of such
a structure is exactly the same as that of a sequential evolving structure. (But the de�nition of a
run will be di�erent.) So M has several universes, and it comes with a set of transition rules. We
should mention that the transition rules of this structure M are specially tailored to P . Later we
show how to give one overall set of rules, which applies to any program of the language. In this
way, all distributed evolving structures for Occam have the same transition rules.

One novelty is the interpretation of the transition rules, as embodied in the de�nition of a run.
We expand on this point below.

Two of the universes of M are standard: BOOL and INT . These two come with all of the
standard operations. Another universe of M is T REE , the program considered as a syntactic tree.
It is a labeled digraph, pictured in Figure 1.
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Figure 1: The Universe T REE of M

Each node corresponds to a line of P . For example, p corresponds to the PAR, and v corresponds
to the line e! min(a,b). (In Section 6, we relax this condition to allow nodes to correspond to
smaller syntactic units, such as expressions.) On the universe T REE we have the natural interpret-
ations of the function symbols parent, �rst-child, last-child, and next-sibling. These interpretations
are partial functions.

In addition, there is a universe MODE of modes. As an informal explanation of our modes,
here is the description of what happens to a \typical" process p0. Before p0 starts, it is in dormant

mode; i.e., mode(p0) = dormant. When it becomes active for whatever reason, p0 assumes the
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starting mode. It remains in this mode for exactly one moment, and then it proceeds to working

mode. It is in this mode while processes which depend on it are computing. When and if the work
is completed, p0 enters reporting mode. Typically, p0 reports to its parent or to the next sibling
process. After reporting, a process becomes dormant until the next time it is needed.

Further, there is a dynamic function val which takes a node and a relevant variable and returns
an integer value. For example, the variables relevant to q are i and j. The section valq of val is
never updated on any variable except i and j. We assume that at the beginning of a run, valq(i)
and valq(j) are unde�ned. In this case, we write, e.g., valq(i) = undef. (We assume that there is
an extra element undef in INT .) This assumption concerning unde�ned values at the beginning
of a run holds for all of the nodes except the root. So when a node gets started by its parent, the
child's section val is updated to match part of the parent's.

We introduce a new command, outputv(e) where e is an expression. (See rule (7) below.) The
point is that in contrast to output to a di�erent part of the program, there is no \assignee" to
receive the output value. The command above has the same status for us as an update. That is, it
may appear in transition rules. However, it does not result in any updates of dynamic functions.
We might mention also that if this program P were put into into a larger program containing a
recipient of the minimum on channel e, then the transition rule corresponding to the output line
of the program would not mention this new command at all. Instead, it would be similar to the
rules for internal communication in Section 4 below.

Remark on notation We suppress the mode function in the following way. Instead of writing,
for example, mode(p) = working, we write p is working. Instead of mode(p) := dormant, we write p
changes to dormant. The purpose of these conventions is to make the rules easier to read and also
to clarify the di�erence between changes of mode and changes of value.

4 Transition Rules

In this section, we present transition rules for the dynamic structure M .

Remark Our transition rules re
ect a complete prohibition of shared variables: Di�erent children
of the SEQ process may as well live on di�erent computers and maintain there the relevant variables.
This is an extreme point of view and, viewed as an interpreter, our model is ine�cient in handling
variables: All transition rules apply \locally" on T REE. For example, there is no rules which
immediately transfers the value of a from from t to v; this value must �rst be passed to u. But
this point of view is consistent with Occam. One can take a position of extreme distributivity and
argue that sharing of variables belongs to optimization. We do not take a strong ideological stand.
Our rules re
ect one possible intuition about Occam. It is not di�cult to change the rules and
allow sharing of variables between processes.

(1) If p is starting and q, r, and s are dormant,
then p changes to working,

q changes to starting, valq(i) := valp(i), valq(j) := valp(j)
r changes to starting,valr(x) := valp(x), valr(y) := valp(y)
and s changes to starting.

(2) If s is starting, and t is dormant,
then s changes to working, and t changes to starting.
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(3) If q is starting and t is starting,
then valt(a) := max(valq(i); valq(j)),

q changes to reporting, and t changes to reporting.

(4) If t is reporting, and u is dormant,
then u changes to starting, and valu(a) := valt(a),

t changes to dormant, and valt(a) := undef.

(5) If r is starting, and u is starting,
then valu(b) := max(valr(x); valr(y)),

r changes to reporting, and u changes to reporting.

(6) If u is reporting, and v is dormant,
then v changes to starting, valv(a) : valu(a), valv(b) := valu(b),

u changes to dormant, valu(a) := undef, valu(b) := undef.

(7) If v is starting,
then outputv(min(valv(x); valv(y))), and v changes to reporting.

(8) If v is reporting, and s is working,
then s changes to reporting,

v changes to dormant, valv(a) := undef, valv(b) := undef.

(9) If p is working, and q, r, and s are reporting,
then p changes to reporting,

q changes to dormant, valq(i) := undef, valq(j) := undef

r changes to dormant, valr(x) := undef, valr(y) := undef

s changes to dormant, vals(a) := undef, and vals(b) := undef.

Note that whenever a process assumes the dormant mode, all of its variables become unde�ned.
In the interests of readability and brevity, we henceforth adopt the convention that \p changes to

dormant" is an abbreviation for \p changes to dormant and for all x 2 var(p), x := undef."

5 Runs Of Distributed Evolving Structures

We mentioned above that the de�nition of a run of a distributed evolving structure is going to be
di�erent than that of a sequential evolving structure. In the sequential case, each state s contains
all the information about the entire process at an instant of time. In our case, we don't have
global states. So each of the processes in the tree will have an evolution of its own. As a result of
this local approach, another di�erence arises. In the sequential case, every state s other than the
initial state has an immediate predecessor, say t. This predecessor state t is fully responsible for
the transition of the process to state s. In the distributed case, an transition may require more
than one cause. The clear example of this is PAR. A PAR process is able to relinquish control only
when all of its children have �nished. In order to represent this, our graph structures for runs will
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Figure 2: A Transition Via Rule (1)

be more complicated than simple chains. They will be labeled digraphs which are composed of
transitions.

A transition via rule (1) is a complete bipartite directed graph whose sources and targets are
as in Figure 2. The function � is an arbitrary function from the variables i, j, x, and y to INT .
Similarly, �, 
, and � are arbitrary functions from fi; jg, fx; yg, and fa; bg to INT . We require
that �0 be the restriction of � to fi; jg, and similarly for 
0. These conditions are immediate from
rule (1) itself. Note that because the functions on the left are arbitrary, there are many possible
transitions via rule (1).

The picture is a graphic representation of a transition that involves four processes. The idea
is that the nodes on the left give a cause of this transition. We do not intend that the transition
takes a �xed amount of time. Moreover, we don't suppose that di�erent processes \live" in the
same time.

Here is a second example: A transition via rule (7) is a graph

hv; starting; �i hv; reporting; �i
t t-

Note that there is no change on the third component of the labels. This is because no clause of rule
(7), not even the command outputv(min(valv(x); valv(y))) results in any update of any variable.

There are similar de�nitions of transitions via all of the other rules.
We call the possible labels involving a node p the states of p. More precisely, a state of p is a

triple consisting of p, some mode m, and some section � of the function val. The variables in the
domain of the section are determined by a static analysis of the particular process p Note that Nat
hand; we shall say more about this in the next section.

De�nition Let M be a distributed evolving structure. A run of M is a directed graph G = hV;Ei
whose vertices are labeled by states of processes, and such that

(1) For every node p of T REE , the vertices of G labeled hp;m; �i (for some m and �) form a chain
under E. We refer to those states as p0; p1; : : : ; and we call this sequence the stages of p.
This sequence may be either �nite or in�nite.
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Figure 3: A Run of M . The labels are not shown. The horizontal chains are the evolutions of the
nodes.

(2) There exists a partition of the set E of edges of G such that each piece of the partition is a
transition via one of the transition rules.

(3) root0 = hroot; starting; �i for some �. For all p 6= root, the mode represented in p0 is dormant,
and the section � represented is such that for all variables x 2 var(p), �(x) = undef.

Usually, we are interested in maximal runs, those runs which cannot be extended further.

A complete run of M is shown in Figure 3. The labels on the nodes have been left o�. The
reader can easily supply labels and then check that the resulting labeled digraph is is indeed a run
according to our de�nitions. The main point of the veri�cation is a partition of the edges into sets
corresponding to the transition rules.
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6 A Single Set of Transition Rules for Arbitrary Programs

The set of transition rules for P given above obviously works only for the program P itself. In this
section, we show how to get one set which su�ces for all programs. Then every program Q of the
language can be associated with a distributed evolving structure MQ. The main di�erence between
di�erent MQ would be in their process trees. The transition rules would be entirely the same.

In this section, we present a set of transition rules for Occam. The rules we have chosen embody
our intuitions about how the language works. However, we know that there are other possible sets
of transition rules, so we also discuss the choices that we have made. Our central commitment in
this paper is not to any particular set of transition rules, but rather to a particular style of doing
semantics.

6.1 Our Treatment of Variable Updates

Every semantics of distributed computing must face the issue that sometimes variables are main-
tained locally, and sometimes they are shared by processes. Our semantics for Occam models the
intuition that there are no shared variables. (But see also our reservations on this at the beginning
of Section 4.) Furthermore, we treat process nodes of type SEQ or PAR as autonomous sequential
processes. Note that each such node changes no variables whatsoever. However, a node must ex-
change information with processes that it depends on or which depend on it. So for each node p
of a process tree, we shall have a function var(p) which speci�es all of the variables needed by p

or any process which depends on p. We skip the de�nition of which processes depend on a given
process p. The nontrivial point is that if p is a child of a SEQ process then the younger siblings of
p depend on p.

If the type of p is EXPR or BOOL EXPR, then in addition to (explicit) variables, var(p) contains a
dynamic distinguished element (an impicit variable), expr. It is intended to name the value of the
expression in the right-hand side.

6.2 Transition Rules, Transitions, and Runs

We make an important change from our previous example in Section 3. The statements of our
transition rules will involve parameters (such as p, q, and r) ranging over the nodes of the T REE
universe of a structure for Occam. We understand such rules as being universally quanti�ed with
respect to nodes. In this way, we obtain a �nite set of transition rules for Occam. Together with
the de�nition of a run, this is the basis of our proposal to generalize evolving algebras. The next
subsections present transition rules, grouped according to construct, along with some discussion.

A run will once again be a certain labeled digraph. The possible labels are again triples hp;m; �i
consisting of a node p of the T REE, a mode m , and a state � of the section valp, the function val.
(Here valp is a �nite function de�ned on var(p).) A transition (according to one of our rules) is a
complete bipartite digraph. The node information on the labels of the sources and the targets is
the same. (Note though, that for some of our rules, e.g., the rules for PAR below, it is not the case
that all of the nodes involved are named explicitly. Instead, there is a quanti�cation. Of course,
a transition corresponding to such a transition rule must contain information about some node p
of type PAR and all of its children.) We shall not write down a formal de�nition of a transition
according to a rule; it is a labeled digraph whose labels come from the rule in the natural way.

Now the de�nition of a run is exactly as before.
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6.3 SEQ

(10) If (type(p) = SEQ or type(p) = IF or type(p) = WHILE or type(p) = OUTPUT),
q = �rst-child(p), and p is starting,

then p changes to working, q changes to starting,
and for all x 2 var(q), valq(x) := valp(x).

(11) If type(p) = SEQ, p = parent(q), r = next-sibling(q),
p is working, q is reporting, and r is dormant,

then r changes to starting, and for all x 2 var(r), valr(x) := valq(x),
and q changes to dormant.

(Recall our convention that \q changes to dormant" means \q changes to dormant and for all x 2
var(q), x := undef.")

(12) If type(p) = SEQ, p = parent(q), q = last-child(p) and q is reporting,
then for all x 2 var(q), valp(x) := valq(x),

p changes to reporting, and q changes to dormant.

Concerning the last rule, we adopt the convention that when a process becomes dormant, all
of its variables become unde�ned. The reader may wonder whether this is necessary. Surely,
something like this is needed, since in illegal in Occam to refer to variables after the process has
become dormant.

This is not strictly necessary, of course, but we adopt it anyway. Certainly it would be a
mistake to assume that values of variable persist inde�nitely, and we lose no expressive power by
our assumption that the values are lost immediately.

It should be noted that none of the above rules tell when the parent SEQ becomes dormant. This
is a matter between the SEQ process and its parent; if it has no parent, the rule of Section 6.10
applies.

6.4 PAR

(13) If type(p) = PAR and p is starting, and for all children q of p, q is dormant,
then p changes to working, and for all children q of p, q changes to starting,

and for all x 2 var(q), valq(x) := valp(x).

(14) If type(p) = PAR, p is working, and for all children q of p, q is reporting,
then p changes to reporting,

for all children q of p, q changes to dormant,
and for all x 2 var(q), valp(x) := valq(x).

Notice here that the children of a PAR process work at their own rates, so they may assume the
reporting mode independently. After each of the children assumes this mode, the parent assumes
the reporting mode.

We should mention that it certainly is possible to insist that the children report and become
dormant in some pre-arranged order, or that the parent keeps track of the progress of all the
children in an explicit way. The formalism of evolving structures does not forbid this interpretation
of PAR, but it doesn't suggest it either.
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6.5 SKIP and STOP.

SKIP has exactly one rule:

(15) If type(p) = SKIP and p is starting,
then p changes to reporting.

In contrast, STOP has no transition rules whatsoever. If it should happen to get started by a parent
or older sibling, it never evolves.

6.6 EXPR and BOOL EXPR

Our treatment of these syntactic types is brief, since we are much more interested in this paper in
the treatment of control in distributed computing.

We stipulate that the sequential structures corresponding to nodes of types EXPR and BOOL EXPR

contain a dynamic distinguished element expr. As its name suggests, expr is either an integer or
a boolean, depending on p. We also assume that the domain of the function var de�ned on these
nodes contains expr.

Let p be a node of type EXPR or BOOL EXPR. The transition rules insure that when p evolves
to starting, it acquires values of variables from its parent. Next, p assumes working mode, and
its children (if any) change to starting; those children correspond to subexpressions. Eventually, p
evolves to reporting mode. In reporting mode, valp(expr) is the value of the expression corresponding
to p, with the given values of the variables.

It is straightforward to write transition rules which accomplish this, and we omit the details.

6.7 ASSIGNMENT

We next turn to the rules for assignment statements. Syntactically, we assume that a node p

corresponding to an assignment statement has exactly two children, one of type ASSIGNEE, and
the other is of type EXPR or BOOL EXPR. Only the second evolves, and the var set of the �rst
is a singleton. We should mention that when type(p) = ASSIGNMENT, var(p) might contain more
variables than those used in the corresponding expression; this happens when p is the child of a
SEQ process.

(16) If type(p) = ASSIGNMENT, q = last-child(p), p is starting, and q is dormant,
then p changes to working, q changes to starting,

and for all x 2 var(q), valq(x) := valp(x).

(17) If type(p) = ASSIGNMENT, q = �rst-child(p), r = last-child(p),
p is working, and r is reporting,

then p changes to reporting, for all x 2 var(q), valp(x) := valr(expr),
and r changes to dormant.

6.8 IF and WHILE

The rules for these two constructions are self-explanatory. A node corresponding to a WHILE

process has two children, the �rst of which corresponds to a BOOL EXPR, and the second to an
arbitrary process. IF may have many children. The children of a node of type IF alternate between
BOOL EXPRs and processes. The expressions are evaluated, in order, until one of them evaluates to
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true. Then the immediately following process is executed. If none of the children evalates to true,
then the overall conditional becomes reporting.

Before stating these rules, we remind the reader that rule (10) describes what nodes of type IF
and WHILE do when they start.

(18) If (type(p) = IF or type(p) = WHILE), p = parent(q), type(q) = BOOL EXPR,
r = next-sibling(q), p is working, q is reporting,
r is dormant, and valq(expr) = true,

then q changes to dormant, r changes to starting,
and for all x 2 var(r), valr(x) := valp(x).

(19) If type(p) = IF, p = parent(q), type(q) = BOOL EXPR,
r = next-sibling(next-sibling(q)), p is working,
q is reporting, and valq(expr) = false,

then q changes to dormant, r changes to starting,
and for all x 2 var(r), valr(x) := valp(x).

(20) If type(p) = IF, p = parent(q), type(q) = BOOL EXPR,
next-sibling(q) = last-child(p), p is working, q is reporting,
and valq(expr) = false,

then q changes to dormant, and p changes to reporting.

(21) If type(p) = IF, p = parent(r), type(r) 6= BOOL EXPR,
p is working, and r is reporting,

then r changes to dormant, p changes to reporting,
and for all x 2 var(r), valp(x) := valr(x).

(22) If type(p) = WHILE, q = �rst-child(p), r = last-child(p),
p is working, q is dormant, and r is reporting,

then p changes to starting, for all x 2 var(r), valp(x) := valr(x),
and r changes to dormant.

(23) If type(p) = WHILE, q = �rst-child(p), p is working,
q is reporting, and valq(expr) = false,

then p changes to reporting, and q changes to dormant.

6.9 INPUT and OUTPUT

A node p of type OUTPUT has a unique child of type EXPR or BOOL EXPR. A node p of type INPUT has
a unique child. The type of the child is of type ASSIGNEE, and its var set is a singleton. Furthermore,
the T REE universe has a primitive relation channel(p; q) with the property that if channel(p; q),
then type(p) = OUTPUT, type(q) = INPUT, and the same channel is associated with p and q.
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(24) If type(p) = INPUT and p is starting,
then p changes to ready.

(It turns out that it is not necessary for INPUT processes to assume a working mode.)

(25) If type(p) = OUTPUT, q = �rst-child(p), and p is starting,
then p changes to working, q changes to starting,

and for all x 2 var(q), valq(x) := valp(x).

(26) If type(p) = INPUT, q = �rst-child(p), :(9r)channel(r; p) and p is ready,
then for all x 2 var(q), inputp(x), and p changes to reporting.

In Setion 4 we discussed the command outputp(e), where e is an expression. The command inputp(x)
is a dual command, but unlike output, it does involve an update. It means that the value of the
variable x is updated to any element of the appropriated domain. Note that type(q) = ASSIGNEE,
so var(q) is a singleton. In contrast, p might be a child of a SEQ, and therefore var(p) might contain
many other variables. This is why we must mention q in this rule.

(27) If type(p) = OUTPUT and :(9q)channel(p; q), and p is ready,
then outputp(valp(expr)), and p changes to reporting.

Finally, we come to the rule that actually takes care of internal communication :

(28) If type(p) = OUTPUT, type(q) = INPUT, r = �rst-child(q),
channel(p; q), and p and q areready,

then for all x 2 var(r), valp(x) := valq(expr),
p changes to reporting, and q changes to reporting.

6.10 How the Root Becomes dma

(29) If p = root and p is reporting,
then p changes to dormant.

13
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Figure 5: The Syntax of ALT.

7 ALT and PRI ALT

The following example illustrates the ALT construction of Occam:

WHILE TRUE

ALT

c? a

e! b

d? a

e! b

ALT allows the input to be received from whichever channel is ready �rst. So this process accepts
inputs on channels c and d in whatever order they come, and sends them out on channel e. It is not
assumed in Occam that ALT behaves fairly. The question arises as to what happens when inputs
arrive simultaneously. There are two mechanisms to do this in Occam.

The �rst takes takes inputs in a non-deterministic fashion, and the second takes the input
corresponding to the channel that was mentioned �rst. ALT and its variation PRI ALT are essential
in order to make full use of the capabilities a�orded by parallel computing. It turns out that the
implementation of ALT is rather tricky; we do not base the semantics on the details of the standard
implementation of Occam on transputers.

We interleave the rules of ALT with explanations. The Occam Tutorial [8] holds that \Because
of this power, and because it is unlike anything in conventional programming languages, ALT is
far-and-away the most di�cult of the occam constructions to explain and to understand." We feel
that an algebraic operational treatment might help people to grasp the ALT construction.

The children of an ALT or PRI ALT node are of type GUARDED ALT. A node of type GUARDED ALT

has three children, the �rst of type BOOL EXPR, the second of type INPUT, and the third an arbitrary
node of type SEQ or PAR, or one of the other types. It is customary to delete the BOOL EXPR node
when the expression is true. (Sometimes there is no need for the INPUT node. In that case, a special
SKIP node is used instead. For simplicity, we ignore this possibility.)
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(30) If (type(p) = ALT or type(p) = PRI ALT) and p is starting,
then p changes to administrating, and for all children q of p, q changes to starting,

and for all children q of p, �rst-child(q)changes to starting,
and for all x 2 var(�rst-child(q)), val�rst-child(q)(x) := valp(x).

A node p of type ALT or PRI ALT starts and then goes immediately to administrating mode. At some
later time, p may assume the working mode. Our discussion of rule (34) contains an explanation
of why the new mode administrating is needed. In the starting mode, a GUARDED ALT node starts
its �rst child, which is of type BOOL EXPR. When the BOOL EXPR node reports, there are two cases,
depending on whether the INPUT has a corresponding OUTPUT in the T REE , or whether it is an
INPUT from the outside.

(31) If type(q) = GUARDED ALT, r = �rst-child(q), s = second-child(q), channel(t; s),
q is starting, t is ready, r is reporting, and valr(expr) = true,

then q changes to ready, and r changes to dormant.

(32) If type(q) = GUARDED ALT, r = �rst-child(q), s = second-child(q),
:(9t)channel(t; s), q is starting, r is reporting, and valr(expr) = true,

then q changes to ready, and r changes to dormant.

Compare (31) and (32). In (31), we made sure that a source is ready. In (32), we can't do the
same. This re
ects the intuition that the source of information, the outside world, is supposed be
ready.

Eventually, one or more of the GUARDED ALT children may become ready. (It is of course possible
that none of the inputs become ready, and then the overall ALT is stuck. This is as it should be. One
can use timing commands to avoid this possibility. For brevity, we do not treat real-time aspects
of Occam in this paper, but they are de�nitely amenable to treatment by algebraic operational
semantics.) It is up to the parent to select one child to proceed. The method of selection depends
on whether the parent is of type ALT or PRI ALT. In the case of PRI ALT, the older child is chosen.
To account for this we assume that T REE has a relation older than. This relation holds if the two
nodes have the same parent and the �rst is an older sibling of the second.

(33) If type(p) = PRI ALT and p is administrating, p = parent(q), q is ready,
and :(9q0)(q0 is older than q and q0 is ready),

then p and q change to working.

(34) If type(p) = ALT and p is administrating, p = parent(q), and q is ready,
then p and q change to working.

Rule (34) is unusual for us; it is non-deterministic. Our de�nition of a run demands a partition into

transitions. Since rule (34) changes the mode of p to working, it insures that when p is administrating

and more than one child is ready, then only one ready child evolves to working.

Before going on, we remark that if a GUARDED ALT never becomes ready, or if it becomes ready

but is not chosen, then at some point it must become dormant again. This issue will be addressed
below. (See rule (37) below.)
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(35) If type(q) = GUARDED ALT, s = second-child(p), t = last-child(p),
q is working, and s and t are dormant,

then s changes to starting.

The reason that (35) demands that t be dormant is that the next rule sets s to dormant and keeps
q working. So if we didn't mention t in (35), s would start again after it received input.

(36) If type(q) = GUARDED ALT, s = second-child(q), t = last-child(p),
u = �rst-child(s), q is working, and s is reporting,

then for all x 2 var(u), valt(x) := valu(x),
for all x 2 var(t)� var(u), valt(x) := valq(x),
t changes to starting, and s changes to dormant.

This rule describes how a GUARDED ALT starts its process child. Note that type(u) = ASSIGNEE, so
var(u) is a singleton, say fxg. This rule insures that the value of x which was just input is passed
to the process child t, In addition, t receives values of all other variables from q.

We come to the rule which tells when an ALT or PRI ALT process p evolves to reporting mode.
Of course, it is necessary for the process child t of the chosen GUARDED ALT child q to have assumed
reporting mode. But it is also necessary that all of the BOOL EXPR grandchildren of p be reporting.
(These were started when the children of p were starting.) Since Occam has no interrupt mechanism,
we permit the evaluation of the boolean expressions to run their courses.

(37) If (type(p) = ALT or type(p) = PRI ALT), p = parent(q), t = last-child(q),
p is working, t is reporting,
and for all children q0 of p, �rst-child(q0) is reporting,

then p changes to reporting, for all x 2 var(q), valp(x) := valt(x),
and for all children q0 of p, q0 and �rst-child(q0) change to dormant.

8 Conclusion

The main goal of this paper has been to generalize algebraic operational semantics to distributed
programming languages, using Occam as an example. Although we did work out the semantics of a
large fragment of Occam, we are not wed to all the details of our formalization; what we believe in
is the strength of the method. This work led us to formalization of several key ideas for distributed
computing: Individual small sequential parts of a distributed structure working independently, the
existence of a modest collection of transition rules, of a relatively simple character, su�cient for all
programs, etc. This supports our intuition that abstract machines are useful mathematical models
of programming languages like Occam. Elsewhere we will discuss applications of this study.
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