
Matrix Decomposition Problem is Complete for the Average Case ∗

Yuri Gurevich†, University of Michigan.

Abstract

The first algebraic average-case complete problem
is presented. It is arguably the simplest natural
average-case complete problem to date.

1. Introduction

The theory of average-case completeness, pio-
neered by Leonid Levin [Le], aroused much en-
thusiasm, but only a few average-case complete
problems have been found until now [Le, Gu1,
VL, BCGL]. Will that theory remain a curiosity
or will it be eventually used to prove average-case
intractability of problems arising in applications?
We believe in the latter alternative. It used to
be very difficult to prove undecidability results,
but by now the feel of undecidability is sharpen
to such a degree and such a rich assortment of
simple undecidable problems is accumulated that
proving undecidability is often a routine exercise.
You sense that the problem Π in question is un-
decidable, find an appropriate known undecidable
problem Π0 and reduce Π0 to Π. A similar devel-
opment took place in the theory of NP complete-
ness. What we (this is a communal “we”) need is
to accumulate a wealth of diverse simple average-
case complete problems and to develop a feel for
average-case intractability.

In this paper, the first algebraic average-case
complete problem is presented. In the center of
our attention is the modular group, i.e., the multi-
plicative group SL2(Z) of two-by-two integer ma-

∗31st Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Washington, 1990

†Partially supported by NSF grants DCR 85-03275 and
CCR 89-04728. Address: Electrical Engineering and Com-
puter Science Department, University of Michigan, Ann Ar-
bor, MI 48109-2122.

trices of determinant 1. By default, in this paper,
matrices are elements of the modular group. De-
fine the size |A| of a matrix A in some natural way.
It may be defined as the number of bits necessary
to write the matrix down (using the binary nota-
tion for the entries). It may be defined as the log of
the maximal absolute value of its entries. (Notice
that |A| is the size rather than the determinant of
a matrix A.) What is the most natural (sort of a
priori) probability distribution on matrices? One
may require that matrices of the same size have
the same probability and that the probability of
a random matrix to be of size n equals the de-
fault probability of n (which is chosen, somewhat
arbitrarily, to be proportional to n−1 · (log n)−2

in this paper). This will be our default probabil-
ity distribution on matrices. Fortunately, average-
case completeness proofs are robust with respect
to the exact definitions of the size functions and
the probability distributions; see Section 2 in this
connection.

A matrix pair (B,C) gives rise to an opera-
tor TB,C(X) = BXC over SL2(Z) which is lin-
ear (even though SL2(Z) is not closed under ad-
dition) in the following sense: If X =

∑
Yi

then TB,C(X) =
∑

TB,C(Yi). Andreas Blass [Bl]
showed that an operator T on SL2(Z) is linear in
that sense if and only if there are matrices B and
C such that either T (X) = BXC for all X or else
T (X) is the transpose of BXC for all X. More-
over, any linear operator T on SL2(Z) uniquely
extends to a linear operator on all two-by-two in-
teger (or even complex) matrices; this gives rise
to the standard representation of T by a four-by-
four integer matrix. The two presentations are
polynomial-time computable each from the other.
Thus, an appropriate matrix pair (B,C) with one
additional bit, indicating whether the transpose is
applied, is a natural representation of the corre-

1

sponding linear operator T on SL2(Z). Respec-
tively, define the size |T | of T as |B|+ |C| and the
default probability of T as P[B] ×P[C].

Let σ be a positive integer. In the following
definition, MD stands for Matrix Decomposition
and 1 is the unit two-by-two matrix.

Definition. MD(σ) is the following randomized
decision problem:

Instance: A matrix A, a sequence S =
(T1, . . . , Tσ of σ linear operators and a nat-
ural number n.

Size: |(A,S, n)| = |A| + (
∑i=σ

i=1 |Ti|) + n.

Question: Is there a product P = T1 × . . . × Tm

of m ≤ n linear operators Ti ∈ S such that
A = P (1)?

Probability: Choose A, the members of S and
n independently with respect to the corre-
sponding default probability distributions.

We prove that if σ is not too small then MD(σ)
is average-case complete. It remains complete
if the size of every matrix in S is bounded by
c · log |A| where c is a not too small positive
number. Upper bounds on the minimal appro-
priate values of σ and c come from the proof
of the average-case completeness of Randomized
Post Correspondence Problem in [Gu1]. In partic-
ular, the bound on σ is something like 3 times the
number of instructions of a universal Turing ma-
chine. The bounds were irrelevant in [Gu1], and
one should be able to improve them if necessary.

One can get rid of n as a separate constituent
and assume, for example, that n = |A|. And of
course one can make σ variable. An appropriate
probability distribution may be given by the fol-
lowing experiment: Choose A and σ (and n if it
is a separate constituent) independently with re-
spect to the default distributions and then choose
σ linear operators independently with respect to
the default distribution.

A simpler version of MD(σ) is obtained by mak-
ing S a sequence of matrices rather than linear op-
erators. The question becomes whether A can be
represented as a product of at most n S-matrices.

We doubt that this bounded word problem for
SL2(Z) with the natural probability distribution
(so that the constituents of a random instance are
chosen independently with respect to the corre-
sponding default probability distributions) is com-
plete for the average case.

2. Basics of the average-case com-
pleteness theory

In the theory of NP completeness, it is common
to encode problem instances by strings [GJ]. The
length of the encoding string becomes the size of
the encoded instance. We find it more convenient
to define the size of a problem instance directly.
In this connection, we introduce size functions.

Definition. A function F from a set U to natural
numbers is a size function on U if each subset
{x : F (x) ≤ n} of U is finite.

Speaking about a set with a size function, we
will always presuppose a fixed representation for-
mat for the elements which is appropriate for read-
ing by algorithms. The intention is that the size
function reflects roughly the number of bits in a
standard representation. The notation |x| will be
used to denote the size of an element x.

Remark. It may be convenient to allow non-
integer sizes, but the generalization is unnecessary
in this paper. Notice also that if the size is exactly
the number of binary bits in the fixed representa-
tion format then the number of elements of size n
is bounded by 2n.

A function T from a set with a size function to
nonnegative reals is polynomially bounded if T (x)
is bounded by a polynomial of |x|.
Definition. A domain is a set (the universe of
the domain) with a size function and a probability
distribution. A function T from a domain to non-
negative reals is polynomial on average (or poly-
nomially bounded on average) if, for some ε > 0,
∑
(Tx)ε|x|−1P[x] < ∞.

Here the sum is over elements x of positive size
and P[x] abbreviates P[{x}]. (Recall that a prob-
ability distribution is defined on subsets.) The no-

2

tion of polynomiality on average is due to Levin
[Le]; it is motivated and discussed in [Jo, Gu1,
BCGL, Gu2].

Definition. A domain D is regular if there ex-
ists a polynomial p(n) such that, for every n, the
probability of the event {x : |x| = n} is either
zero or bounded by 1/p(n) from below.

All specific domains in this paper will be regu-
lar. The following lemma allows the convenience
of dealing with instances of one size.

Lemma 2.1 [Gu1]. Let D be a regular do-
main and Pn[x] be the conditional probability
P[x | |x| = n]; if P{x : |x| = n} = 0, let
Pn[x] = 0. A function T from D to nonnega-
tive reals is polynomial on average if and only if
there exists ε > 0 such that

∑
|x|=n(Tx)εPn[x] is

bounded by a polynomial of n.

The following lemma justifies the use of more
convenient size functions:

Lemma 2.2. Suppose that D1, D2 are two do-
mains with the same universe U and the same
probability distribution. Let Si be the size func-
tion of Di and T be a function from U to nonneg-
ative reals.

1. Suppose that S1 is bounded by a polynomial
of S2 and T is polynomial on average with re-
spect to D1. Then T is polynomial on average
with respect to D2.

2. If S1, S2 are bounded each by a polynomial
of the other then T is polynomial on average
with respect to D1 if and only if it is polyno-
mial on average with respect to D2.

Definition. Let µ and ν be two probability
distributions on the same set with a size func-
tion. Then ν dominates µ if there exists a func-
tion g, polynomial on µ-average, such that µ(x) ≤
g(x) · ν(x).
Lemma 2.3. If ν dominates µ and T is poly-
nomial on ν-average then it is polynomial on µ-
average.

A proof of Lemma 2.3 may be found in [Gu1,
Section 1]. The term used there is “weak domina-
tion”; the term “domination” is restricted in [Le,
Gu1] to the case when g is polynomially bounded.

Definition. Let f be a function from a domain
A to a domain B such that p = PB(range(f)) > 0.
We define the notion of domination with respect
to f . First suppose that f is injective, i.e., one-to-
one. Then PB dominates PA with respect to f if
the probability function ν(x) = PB(fx)/p on A
dominates PA. In the general case, PB dominates
PA with respect to f if there exists a probability
function ν on A such that PB(y)/p =

∑
fx=y ν(x)

for all y ∈ range(f) and ν dominates PA.

Definition. A function defined on a domain D
is AP-time or AP-time computable (AP stands for
“Average-case Polynomial”) if it is computable in
time polynomial on average with respect to D.

Definition. A function f from a domain A to
a domain B is a reduction of A to B if it has the
following two properties:

Efficiency: f is AP-time.

Domination: PB dominates PA with respect to
f .

A decision problem can be seen as a set with a
size function and a distinguished subset (of pos-
itive instances). A randomized decision problem
(shortly r.d.p.) is a domain with a distinguished
subset. An r.d.p. is AP if it is decidable in time
polynomial on average.

Definition. A randomized decision problem Π1
reduces to a randomized decision problem Π2 if
there exists a reduction f from the domain of Π1
to the domain of Π2 with the following additional
property:

Correctness: For every instance x of Π1 of posi-
tive probability, x is a positive instance of Π1
if and only if f(x) is a positive instance of Π2.

The reducibility relation is transitive, and an
r.d.p. Π1 is AP if it reduces to an r.d.p. Π2 which
is AP [Gu1]. It may be desirable to liberalize the

3

notion of reduction by allowing the reducing ma-
chine to flip coins [VL, Gu1, BCGL]. We defer
the use of such randomizing reductions to the last
section.

Definition. RNP (for “Randomized NP”) is
the class of randomized NP problems Π such
that the probability distribution of Π is domi-
nated by a polynomial time computable distribu-
tion [Le,Gu1]. An RNP problem Π is RNP com-
plete if every RNP problem reduces to Π.

Remark. As a rule, the restriction on prob-
ability distributions is satisfied in natural cases,
but it may conceivably be violated if instances
of Π are generated by an adversary. Ben-David,
Chor, Goldreich and Luby studied more general
samplable distributions [BCGL]. Impagliazzo and
Levin showed that, for appropriately generalized
reductions, problems complete for RNP remain
complete for the more general class [IL]. For sim-
plicity, we stick here to the original restriction.

On a set of nonzero finite cardinality m, the
uniform probability distribution assigns the prob-
ability 1/m to each element. We define a default
probability distribution on natural numbers and
generalize the notion of uniform distribution to
an infinite set with a size function.

Definition. ω is a domain of natural numbers
such that |n| = n and the probability of a posi-
tive n is proportional to n−1 · (log n)−2. A domain
D (or, rather, its probability distribution) is uni-
form if elements of the same size have the same
probabilities and PD[{x : |x| = n}] = Pω[n].

Definition. BS (or BS1) is the uniform domain
of binary strings where the size of a string is its
length.

BS will be our main domain of binary strings.
We will view BS not only as a domain but also as
a monoid (i.e. a semigroup with a unit) of binary
strings. For technical reasons, we introduce an
alternative domain of binary strings.

Definition. Let R be an order on a set U which
gives rise to an order isomorphism ι from (U,R)
to the naturally ordered set of natural numbers.

The probability distribution Pω[ι(x)] on U will be
said to be imposed by R.

Definition. Order binary strings lexicographi-
cally (more exactly, first by length and then lexico-
graphically). BS2 is the domain of binary strings
where the size of a string is its length and the
probability distribution is imposed by the lexico-
graphical order.

Lemma 2.4. The probability distributions of
BS1 and BS2 dominate each other.

Definition. The direct product A×B of domains
A and B is the domain of pairs (a, b), where a ∈
A and b ∈ B, such that |(a, b)| = |a| + |b| and
P(a, b) = PA(a) ×PB(b).

Definition. Let C be a set of instances of an
r.d.p. Π such that P[C] > 0. The restriction Π|C
of Π to C is obtained from Π by the following mod-
ification of the probability distribution: PΠ|C [x] is
the conditional probability PΠ[x | x ∈ C].

3. Positive matrices

Call an arbitrary matrix (i.e. an element of
SL2(Z)) positive if it has no negative entries. Pos-
itive matrices form a monoid PM = SL2(N). In
this section, a column is a column of two rela-
tively prime nonnegative integers; for notational
simplicity, we view a positive matrix as the pair
of its columns. If u is a column, let u1 be the upper
and u2 the lower components of u. Partially order
columns componentwise: u ≤ v if u1 ≤ v1 and
u2 ≤ v2, and u < v if u ≤ v and either u1 < v1 or
u2 < v2. Define max(X) to be the maximal entry
of a positive matrix X.

Lemma 3.1. Let A and B be the matrices
1 0
1 1

and
1 1
0 1

.

1. (u, v) × A = (u + v, v), and (u, v) × B =
(u, u + v).

2. If A is a right divisor of a positive matrix
(u, v) in PM then u > v, and if B is a right
divisor of (u, v) in PM then u < v.

4

3. If m = max(u, v) appears in two or more
places of a positive matrix (u, v) then m = 1.

Proof. (1) is obvious, and (2) follows from (1).

(3) If m occurs twice in the same row or the same
column, then it divides the determinant 1 and
therefore m = 1. If v1 = u2 = m then the de-
terminant cannot be positive. If u1 = v2 = m
then 1 = u1v2 − v1u2 ≥ m2 − (m − 1)2 = 2m − 1
and therefore m = 1. QED

The second statement of Lemma 3.1 implies
that the monoid generated by the matrices A and
B is free. This fact is noticed in [Ei, Chapter
VI, Section 12]. The following theorem should be
known too, but we don’t have an appropriate ref-
erence.

Theorem 3.1. The monoid PM is isomorphic to
the monoid BC of binary strings. The two inde-
composable nonunit elements are the matrices A
and B of Lemma 3.1.

Proof. Define weight(u) = u1 + u2 and
weight(u, v) = weight(u) + weight(v). It suffices
to prove that every nonunit positive matrix (u, v)
is a product of matrices A and B. The proof is an
induction on s = weight(u, v). Since the entries of
the main diagonal are not zero, s ≥ 2.

The case s ≤ 3 is easy: A and B are the only
nonunit matrices of weight ≤ 3. Suppose that
s > 3. Then m = max(u, v) > 1. Exploiting the
symmetry, we may suppose that m appears in u.
If u1 = m then 1/m = (u1v2 − v1u2)/m > v2 − u2
and therefore u2 ≥ v2. Similarly, if u2 = m then
u1 ≥ v1. Thus, the column u − v has nonnegative
entries. The determinant of (u−v, v) equals 1 and
therefore (u − v, v) is an element of SL2(N). By
the induction hypothesis, (u − v, v) is a product
of matrices A and B. By Lemma 3.1(1), (u, v) =
(u − v, v) × A. QED

Corollary. If a positive matrix (u, v) is not the
unit matrix then one of the two columns is greater
than the other.

Proof. The fact has been established in the proof
of Theorem 3.1. QED

Call the greater column of a nonunit positive
matrix major; in the case of the unit matrix, call
either column major. The other column of the
matrix will be called minor.

Lemma 3.2. The major column and one bit indi-
cating whether it is the first or the second column
uniquely define the minor column.

Proof. Without loss of generality, the given ma-
trix (u, v) is not the unit matrix. It follows that
both components of the major column are pos-
itive. By virtue of symmetry, suppose that u
is the major column. We show that the minor
column v is the least column such that v < u
and u1v2 − u2v1 = 1. Let w be any column
such that w < u and u1w2 − u2w1 = 1. Then
u1(w2 − v2) = u2(w1 − v1) = u1u2k for some k;
hence w1 = v1 + ku1 and w2 = v2 + ku2. If k < 0
then either w1 or w2 is negative. Hence k ≥ 0 and
therefore w1 ≥ v1, w2 ≥ v2. QED

Let lh(n) be the length of the binary notation
for n.

Definition. We define a domain structure on
the monoid PM. It is the uniform domain with the
size function |X| = lh(max(X)). Thus, PM (and
also PM1) is the monoid and domain of positive
matrices.

Lemma 3.3. The relative probability
PPM[X | |X| = l] = Θ(2−2l).

Proof. Let g(l) ≈ f(l) mean that g(l) = Θ(f(l)),
i.e., that there exist positive constants c, c′ and l0
such that cf(l) ≤ g(l) ≤ c′f(l) for all l ≥ l0 [Kn2].
It suffices to prove that the number N(l) of posi-
tive matrices of size l is Θ(22l). Recall that φ(m)
is the number of positive integers n ≤ m that are
prime to m, and that Φ(m) = φ(1)+ . . .+φ(m) =
3m2/π2+O(m · logm) [HW, Theorem 330]. Thus,
N(l) =

∑
lh(m)=l φ(m) ≈ Φ(2l − 1) − Φ(2l−1) ≈

Θ(2l). QED

For technical reasons, we introduce an alterna-
tive domain of positive matrices. Fix some linear
ordering of the four positions of a two-by-two ma-
trix.

Definition. Order positive matrices first by the
maximal entry, then by the (highest) position of

5

the maximal entry and then by the other entry of
the major column. PM2 is the domain of positive
matrices with the size function |X| = lh(max(X))
and the probability distribution imposed by the
described lexicographical order.

Lemma 3.5. The probability distributions of
PM1 and PM2 dominate each other.

By Theorem 3.1, PM is isomorphic to BC.
There are exactly two isomorphisms of PM onto
BC. One of them takes A to 0 and B to 1 while
the other one takes A to 1 and B to 0. Let I be
the isomorphism that takes A to 0, and let J be
the corresponding isomorphism I−1 from BC to
PM. Notice that the size of a matrix X may be
quite different from the length of the correspond-
ing string I(X). It is easy to see that the isomor-
phism I is not computable in polynomial time: A

matrix An =
1 0
n 1

is of size lh(n) whereas the

string 0n = I(An) is of length n. We will see in
the next section that I is AP. The isomorphism J
is P-time computable but PPM does not dominate
PBS with respect to J and thus J fails to reduce
BS to PM.

Theorem 3.2 [Bl]. PPM does not dominate PBS
with respect to J .

4. Matrix Correspondence Prob-
lem

The direct product PM × PM is a domain and
monoid of positive matrix pairs. If S is a set or
sequence of positive matrix pairs, let Sn comprise
products P1 × . . . × Pm where m ≤ n and each
Pi is a member of S. Let σ be a positive integer.
In the following definition, MC stands for Matrix
Correspondence and 1 is the unit matrix.

Definition. MC(σ) is the r.d.p. with domain
PM× [PM×PM]σ ×ω where an instance (A,S, n)
is positive if and only if there exists a pair (X,Y)
in Sn such that AX = Y . An instance (A,S, n)
of MC(σ) is robust if either AX = Y for some
pair (X,Y) in Sn or else the whole submonoid of
PM×PM generated by S has no pair (X,Y) with
AX = Y . RMC(σ, c) is the restriction of MC(σ)

to robust instances (A,S, n) such that the size of
every pair in S is bounded by c · log |A|.
Theorem 4.1. Some RMC(σ, c) is RNP-
complete.

Remark. Replacing PM with BS in the def-
inition of RMC(σ, c) gives a variant RPCP(σ, c)
of the Post Correspondence Problem which is
RNP-complete for not too small σ and c [Gu1].
If we ignore probabilities and deal with decision
problems only then the isomorphism J of Sec-
tion 3 gives rise to a polynomial time reduction
of RPCP(σ, c) to MC(σ, c). Unfortunately, this re-
duction fails to have the domination property (see
Theorem 3.2) and it is difficult to be altered in any
way: The correctness property of the reduction is
too closely related to fact that J is an isomor-
phism. Theorem 4.1 is not proved by a reduction
from RPCP(σ, c), but the proof of completeness
of RPCP(σ, c) is used in an essential way.

Proof. The rest of this section is devoted to prov-
ing Theorem 4.1. We start with recalling the no-
tion of a (simple) continued fraction [HW]. Every
rational number r can be uniquely represented by
a continued fraction [al, . . . , a0]; the numbers ai

are called partial quotients. If r is an integer then
l = 0 and a0 = r; otherwise l > 0, al = r� and
[al−1, . . . , a0] is the continued fraction for the ra-
tional number s such that r = al + 1/s. Notice
that the denominator in the irreducible fraction
for s is smaller than the denominator in the irre-
ducible fraction for r, so the process terminates.

Lemma 4.1. Suppose that x is a nonempty bi-
nary string and let m ≤ n be the two entries of
the major row of J(x). Then |x| equals the sum
s(n,m) of the partial quotients in the continued
fraction for n/m.

Proof. If |x| = 1 then m = n = 1 and
s(n,m) = 1 = |x|. Suppose that |x| > 1. By
virtue of symmetry, we may suppose that x = y0;
the other case is similar. Let (i, j) be the major
row of J(y). By Lemma 3.1(1), the major row
(n,m) of J(x) is (i+ j, j). It suffices to prove that
if i ≤ j then s(n,m) = s(j, i) + 1, and if i ≥ j
then s(n,m) = s(i, j) + 1. Since J(y) is not the
unit matrix, neither i nor j is zero.

6

Case i = j. s(i, j) = i/j = 1 and s(n,m) =
n/m = 2.

Case i < j. n/m = (i + j)/i = 1 + 1/(j/i), hence
s(n,m) = s(i, j) + 1.

Case i > j. Let [al, . . . , a0] be the continued frac-
tion for i/j. Then n/m = (i + j)/j = [al +
1, . . . , a0], so that s(n,m) = s(j, i) + 1. QED

Lemma 4.2. |I(X)| is polynomial on average
with respect to PM.

Proof. Let s(n,m) be as in Lemma 4.1.
We use the following strong result of Yao and
Knuth [YK]:

∑m=n
m=1 s(n,m) = (6n/π2)(lnn)2 +

O(n(log n)(log logn)2) = Θ(n(log n)2). By
Lemma 2.1, we may restrict attention to ma-
trices of a given size l > 0. Let a(X) <
b(X) form the major row of a matrix X. Then
∑

b(X)=n s(b(X), a(X)) = Θ(n(log n)2). By
Lemma 4.1,

∑
b(X)=n |I(X)| = Θ(n(log n)2) and

therefore
∑

|X|=l |I(X)|Ω(2l · l22l). Now use
Lemma 3.3 to check that the expectation of
|I(X)| with respect to the conditional probabil-
ity PPM[X | |X| = l] is bounded by a polynomial
of l. QED

Definition. Let T be a nondeterministic Turing
machine with binary input alphabet. The bounded
halting problem BH(T) is the randomized decision
problem with domain BS×ω such that an instance
(x, n) is positive if and only if T has a halting
computation of length ≤ n on x. Call an instance
(x, n) of BH(T) robust if either T has a halting
computation of length ≤ n on x or else T has no
halting computation on x at all. RBH(T) is the
restriction of BH(T) to robust instances.

Definition. WBS is the domain of binary strings
where the size of a binary string x is its length
and the probability of x equals PPM (Jx). Let
T be a nondeterministic Turing machine with bi-
nary input alphabet. The weird halting problem
WH(T) and its robust version RWH(T) are sim-
ilar to BH(T) and RBH(T) except the domain is
WBS rather than BS.

Lemma 4.3. For a certain U , RWH(U) is RNP-
complete.

Proof. Some RBH(T) is RNP-complete, by
Corollary 1 of Theorem 4.1 in [Gu1]. (Actually, a
slightly different version of bounded halting prob-
lems was considered in [Gu1]. It was supposed
there that n > |x| and P[(x, n)] ∝ n−32|x|. How-
ever the same proof works. Also, the identity func-
tion reduces that older version of every RBH(T)
to the new one.) Thus, it suffices to reduce a given
RBH(T) to an appropriate RWH(U) .

One may be tempted to take U = T and to
use the identity mapping as a reduction. By The-
orem 3.2, the identity function fails to do the
job. For each binary string x, let f(x) be the
the positive matrix X whose lexicographic num-
ber equals the lexicographical number of string x.
Given a binary string y, the desired U computes
x = f−1(Jy), turns itself into T and then runs on
input x. Let g(x) be the time that U needs to
recover x from y = I(fx) and to turn itself into
T . The desired reduction is

h(x, n) = (I(f(x)), g(x) + n).

Clearly, h has the correctness property. Both
functions f and g are P-time computable. Sec-
tion 3 provides the following recursive algorithm
for computing I(X). Suppose that X differs from
the unit matrix and X = (u, v). If u is the ma-
jor column, w = u − v and Y = (w, v) then
I(X) = I(Y)0, and if v is the major column,
w = v − u and Y = (u, v) then I(X) = I(Y)1.
The computation time of that algorithm is propor-
tional to |I(X)|. By Lemma 4.2, I(X) is AP-time.
The composition of a P-time function X = f(x)
and an AP-time function I(X) is an AP-time func-
tion I(fx) [Gu1, Lemma 1.2]. Thus, h is AP-time.

It remains to check that h has the domination
property, namely, that PBS(x) × Pω(n) is domi-
nated by PPM(f(x))×Pω(gx+n). Since gx+n is
bounded by a polynomial of |x|+n, there exists a
polynomial p1 such that p1(|x|+n) ·Pω(gx+n) ≥
1. Hence it suffices to prove that PBS is domi-
nated by PPM with respect to f . By Lemma 2.4,
PBS is dominated by PBS2. In the obvious way,
the latter is dominated by PPM2 with respect to
f . By Lemma 3.4, PPM2 is dominated by PPM.
QED

7

Fix a Turing machine U witnessing Lemma 4.3.
We will reduce RWH(U) to RMC(σ, c) for appro-
priate σ and c. The variant RPCP(σ, c) of the
Post Correspondence Problem was defined in a
remark above. According [Gu1, Section 5], there
exists a P-time reduction

F (x, n) = (xx′,K(x), p(n))

of RBH(U) to some RPCP(σ, c) where |x′| ≤ c ·
log |A|. Extend the isomorphism J to sequences
of pairs of binary strings. The function

G(x, n) = (J(xx′), J(K(x)), p(n))

is the desired reduction of RWH(U) to RMC(σ, c).
Clearly, G has the correctness and the efficiency
properties. Ignoring factors bounded by a poly-
nomial of |x| + n from above and by an inverse
polynomial of |x| + n from below, we have:

PRMC(σ,c)[G(x, n)] = PPM[J(x)] = PRWH(x, n).

Theorem 4.1 is proved.

5. The modular group

In this section, a column is a column of two rel-
atively prime (not necessarily positive) integers,
and a matrix (i.e. an element of SL2(Z)) is seen
as the pair of its columns. Call a matrix or a col-
umn positive (resp. negative) if all its entries are
non-negative (resp. non-positive). If u is a column
then u1, u2 are the upper and the lower entries
of u, and |u| is the positive column v such that
vi = |ui|. Positive columns are ordered compo-
nentwise, like in Section 3. If u is a column then
max(u) = max(|u1|, |u2|). Any component of a
column u with the absolute value max(u) is major ,
and the other component is minor . If X is a ma-
trix (u, v) then max(X) = max(max(u),max(v)).
Any entry of a matrix X with the absolute value
max(X) is the major entry. If u, v are the two
columns of a matrix X and |u| > |v| then u is
the major column and v is the minor ; in the case
of the unit matrix, both columns are major and
both are minor .

Lemma 5.1. For every matrix X = (u, v),

1. It is impossible that one of the numbers u1v2,
u2v1 is positive and the other is negative. If
they are both positive then |u1v2|−|u2v1| = 1,
and if they are both negative then |u2v1| −
|u1v2| = 1.

2. If X is not the unit matrix then either (|u|) >
(|v|) or (|u|) < (|v|).

Lemma 5.2. If max(u, v) > 1 then (u, v) has
only one major entry.

Lemma 5.3. For every two matrices (u, v) and
(u, v′), there exists an integer k, such that v′ =
v + ku.

Lemma 5.4. Let X = (u, v) be any matrix with
max(X) > 1. If u (resp. v) is the major column of
X then there exists exactly one additional matrix
of the form (u, v′) (resp. (u′, v)) where the column
v′ (resp. u′) is minor. Moreover, v′ = v ± u (resp.
u′ = u±v). If the major column is positive or neg-
ative then one of the two possible minor columns
is positive and the other one is negative.

Proof. It suffices to consider the case when u
is the major column because if (u, v) is a coun-
terexample with a major column on the right then
(−v, u) is a counterexample with the major col-
umn on the left. Further, it suffices to consider
the case when the major entry is positive because
if (u, v) is a counterexample with a negative ma-
jor entry then (−u,−v) is a counterexample with
a positive major entry. Let ui be the major entry
of u and (u, v′) be another matrix with major col-
umn u. By Lemma 5.3, v′ = v + ku for some k.
Since ui > 1, vi �= 0. If vi > 0 then k = −1, and if
vi < 0 then k = 1. Notice also that if vi0 > resp.
vi < 0) then indeed u is the major column of the
matrix (u, v − u) (resp. (u, v + u)). Now suppose
that u is positive. Obviously, u1 > 0 and u2 > 0.
By Lemma 5.1(1), v is either negative or positive.
If v is positive (resp. negative) then v′ is negative
(resp. positive). QED

Definition. MG is the modular group and
the uniform domain with the size of X equal to
lh(max(X)).

Lemma 5.5. Let X be a random matrix in MG
with max(X) > 1. The probability that X is pos-

8

itive is 1/8, and the probability that X is the in-
verse of a positive matrix is 1/8 as well.

Proof. It suffices to prove the lemma for a fixed
value of max(X). Fix m > 1 and let S0 be the col-
lection of matrices X with max(X) = m. The in-

verse of a matrix
a c
b d

is the matrix
d −c

−b a
;

thus max(X−1) = max(X) and S0 is closed under
inversion. It follows, that the number of positive
matrices in S0 equals the number of the inverses of
positive matrices. Hence it suffices to prove only
the first statement of the lemma.

Let S1 be the collection of S0 matrices X such
that the major entry of X is positive. For every
(u, v) in S0, exactly one of the two matrices (u, v),
(−u,−v) belongs to S1. It remains to prove that
the probability of a random S1 matrix to be pos-
itive is 1/4.

Since the major entry of an S1 matrix exceeds 1,
the minor component of the major column is not
zero. Let S2 be the collection of S1 matrices such
that the minor component of the major column
is positive. For every S1 matrix X, let X ′ is the
result of multiplying the diagonal of X, which con-
tains the minor component of the major row, by
-1. Exactly one of the two matrices X, X ′ belongs
to S2. It follows that S2 contains exactly one half
of the elements of S1. It remains to prove that the
probability of a random S2 matrix to be positive
is 1/2. Now use the previous lemma. QED

Let σ and c witness Theorem 4.1 and let LO be
the domain MG×MG×Bool where Bool is domain
with universe {0, 1}. We view elements (B,C, 0)
and (B,C, 1) of LO as linear operators X ❀ BXC
and X ❀ (BXC)t respectively; (BXC)t is the
transpose of BXC. Thus LO is not only a do-
main but also a monoid. Recall that, as it was
explained in the Introduction, every linear opera-
tor over the modular group belongs to LO. If S is
a sequence of linear operators, let Sn be the set of
products Tm . . . T1 where m ≤ n and each Ti ∈ S.
We restate the definition of Matrix Decomposition
Problem. Let σ be a positive integer.

Definition. MD(σ) is the r.d.p. with domain
MG × (LO)s × ω such that an instance (A,S, n)
is positive if and only if there exists P ∈ S with

A = P (1). Here 1 is the unit matrix. Let MD(σ, c)
be the restriction of MD(σ) to instances (A,S, n)
where the size of every matrix in S is bounded by
c · log |A|.
Theorem 5.1. Some MD(σ, c) is RNP complete.

Proof. We reduce MC(σ, c) to MD(σ, c). If S
is a sequence of positive matrix pairs, let S′ be
the result of replacing each pair (B,C) in S with
the triple (C,B−1, 0). The desired reduction is
f(A,S, n) = (A,S′, n). To check the correctness
property, note that A · B1 · . . . · Bm = C1 · . . . · Cm

if and only if A = C1 · . . . · CmB−1
m · . . . · B−1

1 .
Obviously, f is P-time computable. By

Lemma 5.5, f has the domination property. QED

6. Randomizing reductions

Let σ and c witness Theorem 5.1 and let MD′(σ, c)
be the alteration of MD(σ, c) with the domain
MG × (LO)σ such that an instance (A,S) of
MD′(σ, c) is positive if and only if (A,S, |A|) is
a positive instance of MD(σ, c). MD′(σ, c) is flat
in the sense of [Gu1] where it is proved that no
flat r.d.p. can be RNP-complete with respect to
deterministic reductions of Section 2 unless deter-
ministic exponential space equals nondeterminis-
tic exponential space. To prove the completeness
of MD′(σ, c), we use randomizing reductions [VL].
A simple way to introduce them was indicated in
[Gu1].

Definition. Let Π be a randomized decision
problem with a domain D, and let p be a P-time
computable function from D to natural numbers.
The p-dilation Πp of Π is the following randomized
decision problem E:

Instance: A pair (x, y) where x ∈ D and y is a
binary string of length p(|x|).

Size: |(x, y)| = |x| + |y|.
Question: Is x a positive instance of Π ?

Probability: PE(x, y) = PD(x) · 2−|y|.

Dilation allows to generalize deterministic re-
ductions of Section 2.

9

Definition. A randomizing reduction of r.d.p.
Π1 to an r.d.p. Π2 is a deterministic reduction of
some dilation of Π1 to Π2.

Theorem 6.1. MD′(σ) and MD′(σ, c) are RNP-
complete with respect to randomizing reductions.

Remark. Instead of setting n = |A|, one can set
n = π(|A|) where π is any P-time computable non-
decreasing function such that the inverse function
π−1(j) = mini[π(i) ≥ j] is polynomially bounded;
see [Gu1, Section 9] in this connection.

Acknowledgement. We are grateful to George
Bergman for his comments on Theorem 3.1 and to
Kevin Compton for number-theoretic references.
We are especially grateful to Andreas Blass for
being so generous with his time and to Leonid
Levin for urging us to find an algebraic problem
complete for the average case.

References

[BCGL] Shai Ben-David, Benny Chor, Oded Gol-
dreich and Michael Luby, “On the Theory
of Average Case Complexity”, 21st Annual
ACM Symposium on Theory of Comput-
ing, ACM, 1989, 204–216.

[Bl] Andreas Blass, Private communication.

[Ei] Samuel Eilenberg, “Automata, Languages,
and Machines”, Vols. A and B, Academic
Press, NY & London, 1974 and 1976,
xvi+451pp. and xiii+387 pp.

[Gu1] Yuri Gurevich, “Average Case Complex-
ity”, J. Computer and System Sciences (a
special issue on FOCS’87,) to appear.

[Gu2] Yuri Gurevich, “The Challenger-Solver
Game”, Bulletin of Europ. Assoc. for
Theor. Comp. Sci, Oct. 1989.

[GJ] Michael R. Garey and David S. Johnson,
“Computers and Intractability: A Guide
to the Theory of NP-Completeness”, Free-
man, New York, 1979.

[HW] G. H. Hardy and E. M. Wright, “An intro-
duction to the theory of numbers”, Oxford

University Press, 5th edition, 1988 print-
ing.

[IL] Russel Impagliazzo and Leonid A. Levin,
“No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Ran-
dom”, 31st Annual Symposium on Foun-
dations of Computer Science, IEEE Com-
puter Society Press, 1990.

[Jo] David S. Johnson, “The NP-Completeness
Column”, Journal of Algorithms 5 (1984),
284-299.

[Kn] Donald E. Knuth, “The Art of Com-
puter Programming”, Vol. 2, 2nd edition,
Addison-Wesley, Reading, Massachusetts,
1973.

[Kn2] Donald E. Knuth, “Big Omicron and Big
Omega and Big Theta”, SIGACT News,
Apr.–June, 1976, 18–24.

[Le] Leonid A. Levin, “Average Case Complete
Problems”, SIAM Journal of Computing,
1986.

[VL] Ramarathnam Venkatesan and Leonid
Levin, “ Random Instances of a Graph Col-
oring Problem are Hard”, 20th Symp. on
Theory of Computing, ACM, 1988.

[YK] Andrew C. Yao and Donald E. Knuth,
“Analysis of the subtractive algorithm for
greatest common divisors”, Proc. Nat.
Acad. Sci USA 72:12 (1975), 4720–4722.

10

