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Abstract

B�uchi's approach to the determinacy of in�nite games was original and not without

a controversy. He resented determinacy proofs that did not live up to his standards of

constructivity. We describe the in�nite games in question, discuss the constructivity

of determinacy proofs and comment on B�uchi's contributions to determinacy.

1 Games and Strategies

The in�nite games of interest to us here were introduced by Gale and Stewart [8]. In this
section we recall the de�nition of the games. To simplify the exposition, we restrict attention
to a special case when the set of possible moves in any position is a �xed �nite set A.

We view A as an alphabet. As usual, A� is the set of strings over A. Borrowing the
terminology of Muchnik [12] we call functions from the set ! of natural numbers to A

superstrings. Call a set U of superstrings open if every superstring X 2 U has a pre�x
x 2 A� such that the cone

[x] = fY : Y is a superstring with a pre�x x g

is included into U ; this gives the well-known Cantor topology on the set of superstrings.
Each set W of superstrings gives rise to a game G(W ) between Player 0 and Player 1.

In a course of the game, the two players build a superstring. Player 0 starts by choosing a
letter a0, then Player 1 chooses a letter a1, then Player 0 chooses a letters a2, and so on ad

in�nitum. If the resulting superstring (the play) a0a1a2 : : : belongs to W then Player 0 wins;
otherwise Player 1 wins. The winning set W" of a Player " is the collection of plays where
he is victorious. If " = 0 then W" = W , and if " = 1 then W" is the complement of W .
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the author was with Stanford University and IBM Almaden Research Center (on a sabbatical leave from the
University of Michigan).

yMeantime published in \Collected Works of J. Richard B�uchi", ed. Saunders Mac Lane and Dirk Siefkes,
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A game G(W ) is called determined if one of the players has a winning strategy. To
formalize the notion of a strategy, let us notice that every string x 2 A� can be viewed as
a position in the game G(W ); if the length jxj of x is even then Player 0 makes a move
in position x, and if jxj is odd then Player 1 does. For technical reasons, it is convenient
to allow nondeterministic strategies. Formally, a strategy for a Player " is any function
F that assigns a nonempty subset F (x) of A (the set of recommended moves) to each
position x in the game where Player " makes a move. A strategy F is deterministic if
every F (x) comprises a single letter (the recommended move). Consider the case when both
players follow some strategies; if both strategies are deterministic then the play is uniquely
determined, otherwise the number of plays consistent with the two strategies is in the range
from one to the power of continuum. It should be clear what a winning strategy is; following
a winning strategy, the player wins regardless of what the other player does. A winning
strategy may be nondeterministic.

Each position x determines a remainder of a game G(W ) called the x-remainder and
denoted Gx(W ). The remainder is a game in its own right; if jxj is even then Player 0 starts
Gx(W ), otherwise Player 1 does. However, the initial position of Gx(W ) is x rather than
the empty string; the plays of Gx(W ) form the cone [x]. Player " wins a play X of Gx(W ) if
X 2 W". The de�nitions of strategies and winning strategies for Player " in the remainder
game Gx(W ) should be clear.

2 Open Games

A game G(W ) is called open, F�, Borel, etc. if W is so (in the Cantor topology). If U is
an open set of superstrings, then a support for U is any string set S such that U =

S
x2S[x].

The collection of all strings x with [x] � U is the largest support for U .

Theorem 1 (Gale and Stewart) Every open or closed game G(W ) is determined.

We give two proofs of the theorem. One is a proof by contradiction (essentially, the
original proof); the other proof | also well known | is more constructive.

Proof 1. Suppose that a Player ", whose winning set W" is open, does not have a winning
strategy (in the initial position). A winning strategy F of his opponent Player Æ is designed
to ensure that Player " has no winning strategy in any position in the course of the game. If
Player " does not have a winning strategy in Gx(W ) (and Player Æ makes a move in x) then
F (x) comprises letters a such that Player " has no winning strategy in Gxa(W ); otherwise
we don't care what F (x) is.

Any play X consistent with F belongs to WÆ. For, if it belongs to W" then it has a pre�x
x such that W" contains the whole cone [x]. But then Player " has a winning strategy in
Gx(W ) which is impossible. End of Proof 1.

To give a more constructive proof of Theorem 1, we de�ne the rank function of a Player "
corresponding to a given string set S. It is the unique partial function � from A� to ! such
that for every string x:

� �(x) = 0 if and only if x has a pre�x in S.

2



� �(x) � n+1 if and only if either Player " makes a move in position x and �(xa) < n+1
for some letter a or else his opponent makes a move in position x and �(xa) < n + 1
for every letter a.

Proof 2. Again, we suppose that W" is open and Æ = 1� ". Let S be any support for W".
Player " wins a play X if and only if X meets S, i.e., X has a pre�x that belongs to S. Let
� be the rank function of Player " corresponding to S.

If the rank of the initial position is de�ned then Player " has a winning strategy F that
can be called \Decrease the rank": If �(x) is de�ned and nonzero (and Player " makes a
move in x) then F (x) comprises all letters a such that �(xa) < �(x); otherwise we don't care
what F (x) is.

If the rank of the initial position is unde�ned then Player Æ has a winning strategy F 0

that can be called \Keep o� the ranked positions": If �(x) is unde�ned (and Player Æ makes
a move in x) then F 0(x) comprises all letter a such that �(xa) is unde�ned; otherwise we
don't care what F 0(x) is. End of Proof 2

The second proof actually presents winning strategies. (These winning strategies will
be used in the next section.) If the rank function � is computable then the second proof
provides algorithms to decide who of the two players has a winning strategy and to execute
the winning strategy.

3 F� games

Recall that an F� set is the intersection of a countable collection of open sets, and a GÆ set
is the complement of an F� set.

Theorem 2 (Wolfe) Every F� or GÆ game G(W ) is determined.

Again we give two proofs. The �rst one is a proof by contradiction along the lines of the
original proof. The second one, close to the proof of Wolfe's theorem in Moschovakis' book
[11], is more constructive.

Proof 1. Fix open sets Un such that the winning set of a Player " is the intersection of
the sets Un; without loss of generality, each Un includes Un+1. Choose supports Sn for Un in
such a way that:

� Each Sn is an antichain. In other words, if x and y belong to the same Sn then the
cones [x] and [y] are disjoint.

� Each Sn is below Sn+1 (if A
� is viewed as a tree that grows upward). More exactly, if

x 2 Sn, y 2 Sn+1 and the cones [x] and [y] are not disjoint then x is a proper pre�x of
y.

Let T be the union of the antichains Sn. An arbitrary superstring X belongs to W" if
and only if it meets T in�nitely many times, i.e., it has in�nite many pre�xes in T . For
every string x, let Tx be set of nonempty strings xy such that xy 2 T . Let D be the set
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of positions x such that Player Æ, the opponent of Player ", has a winning strategy in the
x-remainder of the game.

For every position x 62 D, Player " has a strategy Fx in the x-remainder Gx(W ) of the
game G(W ) that allows him to reach a position in Tx �D. For, suppose that such Fx does
not exist. By Theorem 1, Player Æ has a strategy to avoid Tx�D in Gx(W ). Following such
a strategy, Player Æ either avoids Tx and this way wins Gx(W ) or hits D at some position y
where he can start playing a strategy winning Gy(W ). Thus, he has a winning strategy in
Gx(W ) which is impossible.

We describe a winning strategy for Player " in any Gx0(W ) such that x0 62 D: Use Fx0
to reach a position x1 in Tx0 �D, then use Fx1 to reach a position x2 in Tx1 �D, then use
Fx2 to reach a position x3 in Tx2 �D, and so on. End of Proof 1.

Proof 2. Suppose again that W" is the intersection of open sets Un and Æ = 1� ". Let Sn
be the largest support for Un. The goal of Player " is to hit every Sn. All rank functions in
this proof are of Player ".

If a position x is unranked with respect to some Sn then Player Æ has an obvious winning
strategy of keeping o� Sn-ranked positions. Let P1 be the collection of positions x ranked
with respect to all Sn. From a position in P1, Player " can reach some position in any Sn,
but that position may be unranked with respect to some other Sm. Let P2 be the set of
positions x that are ranked with respect to all P1 \ Sn. From a position in P2, Player "
can hit any P1 \ Sn from where he can hit any Sm; this is again insuÆcient for a winning
strategy.

By induction on k, de�ne Pk+1 to be the set of positions ranked with respect to all Pk\Sn.
The index k may be seen as a measure of "potential" to hit sets Sn. Starting in a position
of potential k and given any sequence (n1; : : : ; nk) of natural numbers, Player " can hit Sn1
in a position of potential k � 1, from where he can hit Sn2 in a position of potential k � 2,
and so on. A winning strategy seems to require an in�nite potential.

De�ne P! =
T
kRk. The potential of ! gurantees that Player " can hit any �nite sequence

of sets Sn, but it does not guarantee hitting an in�nite sequence of sets Sn. This motivates
the following de�nition by induction on a (countable) ordinal �.

� P0 = A�.

� P�+1 is the set of positions ranked with respect to P� \ Sn for all n.

� If � is a limit ordinal then P� =
T
�<� P�:

� P is any P� equal to P�+1.

It is easy to see that the sequence of P� decreases; hence indeed some P� = P�+1.
Notice that if x 2 P then it is ranked with respect to every P \ Sn. This allows us to
construct a strategy F for Player " winning every x-remainder game such that x 2 P . If
m = minfn : n 62 Sng (we don't care what F (x) is in the case that x belongs to all Sn), � is
the rank function corresponding to P \ Sm and Player " makes a move in x then

F (x) = fa : �(xa) < �(x)g:
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Next we construct a strategy F 0 for Player Æ winning every x-remainder game such that
x 62 P . We don't care what F 0(x) is when x 2 P . If x 62 P , let �(x) be the least ordinal
� such that x 2 P� � P�+1 and n(x) be the least number n such that x is not ranked with
respect to P� \ Sn. If Player Æ makes a move in a position x 62 P , then

F 0(x) = fa : xa is not ranked with respect to P�(x) \ Sn(x)g:

Say that a position x 62 P is Æ-preferable to a position y 62 P if either �(x) < �(y) or
else �(x) = �(y) and n(x) < n(y). Now suppose that x 62 P and consider a play of Gx(W )
consistent with F 0. Player Æ steers clear of P�(x) \Sn(x)-ranked positions until a Æ-preferable
position y is reached. Then Player Æ steers clear of P�(y) \ Sn(y)-ranked positions until a
Æ-preferable position z is reached. And so on. From some moment on, Player Æ sticks to
steering clear of positions ranked with respect to a �xed P� \ Sn. From that moment, all
positions in the play belong to P� and are not P� \ Sn-ranked. This means that the play
never hits Sn. End of Proof 2.

4 Constructive Determinacy

In a pioneering paper [2], B�uchi and Landweber proved a constructive determinacy theo-
rem for games G(W ), where the winning set W is a set of superstrings accepted by some
�nite automaton A. (The phenomenon of �nite automata on superstrings is explained in
McNaughton's article [10] in this volume.) Their proof yields an algorithm that, given an
automaton A, decides which player has a winning strategy and constructs a �nite automaton
that executes a winning strategy. Later, B�uchi tried to extend this result. In the case of
more complicated winning sets, it was impossible to obtain strategies executable by �nite
automata, and B�uchi sought strategies that can be played by �nite automata which have the
game conditions given by an oracle. This seems to be the essence of B�uchi's constructivism
in the �eld of game determinace.

By the way, the term \constructive" is used very informally here. B�uchi was not an ad-
herent of the school of constructive mathematics as far as I know. Problems of decidability
of monadic second-order theories and some related issues led him to game determinacy. His
intention was to give sharpened determinacy results. He was interested in winning strategies
that can be de�ned or executed by certain restricted means; he was especially interested in
winning strategies executable by �nite automata. The constructivity we are talking about
is more related to de�nability and complexity than to the philosophy of constructive math-
ematics. (Today, computational complexity folks improve B�uchi's algorithms and complain
that his papers are diÆcult to read).

In [4], B�uchi and Klein proved a constructive determinacy theorem for F� games. The
paper was never published. \The referee said it was not worth the trouble", complained
B�uchi in [7]. It was an exciting time for the \determinacy community" [11]. People tried to
extend determinacy to larger and larger collections of sets and studied set-theoretic worlds
where every Gale-Stewart game is determined. The complexity of winning strategies was
very much in the center of attention. People have computed exactly the complexity (in the
sense of descriptive set theory) of the simplest winning strategies for various classes of games,
and constructive, substantially shorter proofs of the F� determinacy were well known to the
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community; one such proof is reproduced in the previous section. So, the referee's decision
can be justi�ed. Still, the special kind of constructivity of B�uchi-Klein's proof is not found
in other known proofs as far as I know.

An important application of determinacy is discussed in [6]. Let B be the collection of
boolean combinations of F� sets. B�uchi stated in [6] (for the proof the reader is referred to [5])
his result on constructive B determinacy and then sketched how this result implies Rabin's
complementation lemma which is by far the hardest part in the famous proof by Rabin of the
decidability of the monadic second-order theory of standard binary tree. This application
is further discussed in paper [7] whose declared goal is to prove a constructive F�Æ \ GÆ�
determinacy. Unfortunately, the papers [6] and [7] are indeed very hard to understand. (B
games are analyzed in [9]; simpler proofs of Rabin's complementation lemma can be found
in [9] and [12].)

The writing of B�uchi cannot be called boring. He held strong views and was not shy to
express them. In particular, B�uchi spoke sharply against \fancy model-theoretical proofs".
In this connection, let me notice that a \fancy" and nonconstructive proof may be a shortcut
to a constructive result. Examples of such phenomenon can be found in papers like [13] or
[9] that seemed to irritate B�uchi. It is most important however that | even though B�uchi's
papers are diÆcult to reconstruct or verify | their ideas are worth exploring.
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