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In�nite games are widely used in mathematical logic [2, 8, 12]. In particular, in�nite
games proved to be a useful tool in dealing with the monadic second-order theories of in�nite
strings and in�nite trees [3, 4, 7]. Recently [1, 15, 13], in�nite games were used in connection
to concurrent computational processes that do not necessarily terminate. For example, an
operating system may be seen as playing a game \against" the disruptive forces of users.
The classical question of the existence of winning strategies turns out to be of importance
to practice. Here we attempt to explain basics of in�nite game theory.

� Quisani: What is an in�nite game?

� Author: In the simplest form, there are two players, Player 1 and Player 2. Player 1
starts by choosing a binary bit a1, then Player 2 chooses a binary bit a2, then Player 1
chooses a binary bit a3, then Player 2 chooses a binary bit a4, and so on ad in�nitum.
If the resulting in�nite string X (i.e. the function X(i) = ai on positive integers, the
play) belongs to an a priori �xed setW of in�nite strings then Player 2 wins the game;
otherwise Player 1 does.

� Q: Do you mean that di�erent sets W give di�erent games?

� A: Yes. The set W de�nes the goals of the players. Let W1 be the complement of
W and W2 = W . Then the goal of Player " is to ensure that the play belongs to his
winning set W".

� Q: I guess, your simplest form is a little too simple. As one of those disruptive users,
I want more than 2 keys on my keyboard.

� A: You are right. Let me describe a more general setting. We are given an in�nite
countable tree A called the arena and a set W of branches of A. Nodes of A are
possible positions of the game �(A;W ); the root is the initial position. Player 1 begins
by choosing a child x1 of the root, then Player 2 chooses a child x2 of x1, and so on. If
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the resulting branch (the play) belongs to W , then Player 2 wins, otherwise Player 1
wins.

� Q: Can a branch be �nite? In other words, are there dead-end positions?

� A: Dead-end positions may be natural in applications and useful in theory [14], but
for simplicity let us stick here to arenas without dead-end nodes.

� Q: Let me return to the game of an operating system against the users. If there are n
users then in e�ect there are n+ 1 players.

� A: It is easier to analyze 2 player games. We can view all users together as one force
against which the operating system has to play.

� Q: Can you give me an example how the winning set of the operating system speci�es
its goals?

� A: Suppose that the users compete for some resource, say, a printer. A computation
is called fair if, whenever a user asks for a printer, she or he eventually gets it. You
may want to require that the winning set of the operating system comprises only fair
plays. If the operating system plays a winning strategy then fairness will be ensured.

� Q: What is a winning strategy exactly? Even simpler, what is a strategy?

� A: A (possibly nondeterministic) strategy for Player " in a game �(A;W ) is a function
F that, given a position x where Player " makes a move, produces a nonempty set
F (x) of children of x. F is deterministic if every F (x) is singleton. F is winning if
Player " wins every play consistent with F .

� Q: I have forgot the exact de�nition of games with complete information, but I remem-
ber that �nite games with complete information are always determinate, i.e., one of the
players has a winning strategy. Isn't any �(A;W ) a game with complete information?
Is determinacy a problem in the in�nite case?

� A: Yes, each �(A;W ) is a game with complete information, but do not worry about the
de�nition of games with complete information: we will not use it. And yes, determinacy
is problematic in the in�nite case. An example of an indeterminate in�nite game
appeared already in the paper by Gale and Stewart [6] where they introduced in�nite
games of interest to us here. (Actually, Gale and Stewart rediscovered in�nite games
in the context of emerging game theory. Similar in�nite games were studied by East
European mathematicians much earlier [11].) Here is their example.

Let A be the arena of binary strings. Index the deterministic strategies (the notion of
strategy does not depend on winning sets) of Player 1 (resp. Player 2) as F� (resp. G�)
where � ranges over ordinals of cardinality less than continuum. By induction on �,
de�ne branches X� and Y� such that X� is consistent with G� and di�erent from any
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Y� with � < �, and Y� is consistent with F� and di�erent from any X� with � � �.
This is possible because there are continuum many branches consistent with any G�

(resp. F�) whereas the set fY� : � < �g (resp. fX� : � � �g) contains less than
continuum many members.

LetW comprise all branches Y�. The game �(A;W ) is indeterminate. For, any strategy
F� of Player 1 is defeated if Player 2 plays Y�, and any strategy G� of Player 2 is
defeated if Player 1 plays X�.

� Q: Is determinacy a big issue in the in�nite game theory?

� A: Yes. It plays also an important role in mathematical applications. The so-called
Axiom of Determinacy is an exciting alternative to Axiom of Choice. Much of in�nite
game theory is related to determinacy, and it is my intention to speak today mainly
about determinacy. Have you noticed anything special about the indeterminate game
above?

� Q: The arena was natural, but the winning set was weird. I can see an essential
use of Axiom of Choice. Do you want to say that games with nice winning sets are
determinate?

� A: Yes. And we need topology to de�ne appropriate nice sets. Call a set U of branches
of an arena A open if every branch X 2 U has a �nite pre�x x such that the cone

[x] = fY : Y is a branch with pre�x xg is included into U ; this is the well-known
Cantor topology. A game �(A;W ) is called open, closed, Borel, etc. if W is so. Tony
Martin proved that every Borel game is determinate [9, 10].

� Q: Are open games of interest? Can you prove that open games are determinate?

� A: Open games are of great interest. In the example with users competing for a
printer, consider a particular request R of a printer. It is easy to see that the collection
of branches, i.e. computations, where R is satis�ed is open and gives rise to an open
game. And I am happy to prove the determinacy of open games for you.

Theorem 1 [6] Every closed or open game is determinate.

� Q: Isn't enough to speak about open games only?

� A: Well, there is this little asymmetry: Player 1 begins. Let me start with a few
de�nitions.

A support for an open set U of branches of an arena A is any subset S of
A such that

S
x2S[x] = U . The collection of all nodes x with [x] � U is

the largest support for U . The rank function corresponding to a subset S of
A and to Player " is the unique function � from A to the set of countable
ordinals augmented with a maximal element1 such that for every node x:
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{ �(x) = 0 if and only if x has a pre�x in S.

{ �(x) � � 6= 0 if and only if either Player " makes a move in position x

and �(y) < � for some child y of x or else the opponent makes a move
in position x and �(y) < � for every child y of x.

If �(x) =1, I will say that �(x) is extra ordinal.

Now we are ready to prove Theorem 1. Let Player " be the \open player" in a closed
or open game �(A;W ) (so that W" is open) and let � = 3 � ". The desired winning
strategy of Player " is to minimize the rank function for a support for W", and the
desired winning strategy for Player � is to maximize that function.

� Q: Will you elaborate?

� A: Sure. Let S be any support for W", and � be the rank function corresponding to S
and to Player ". Player " wins a play X if and only if X meets S, i.e., X has a pre�x
that belongs to S. Let F be the \Decrease the rank" strategy for Player ":

If 0 < �(x) < 1 then F (x) comprises all children y of x such that �(y) <
�(x); otherwise F (x) comprises all children of x.

It is easy to see that F is winning if �(root) is ordinal. All the time that the rank is
positive, it will decrease with each move. Since the order of ordinals is well founded,
the rank will reach 0 in �nitely many steps, and therefore Player " will win.

Let G be the \Keep the rank extra ordinal" strategy for Player �:

If �(x) is extra ordinal then G(x) comprises all children y of x such that �(y)
is extra ordinal; otherwise G(x) comprises all children of x if �(x) is ordinal.

It is easy to see that G is winning if �(root) is extra ordinal. That �nishes the proof
of Theorem 1.

� Q: Why do you speak about countable, rather than �nite, ordinals in the de�nition of
rank?

� A: Consider the case when the root of A has countably many children x1; x2; : : : .
Choose a set S � A in such a way that the rank of xn with respect to S and to
Player 2 is n, and consider the game where W2 is the open set of branches supported
by S. Then the rank of the root is the �rst in�nite ordinal !, and the second player
has a winning strategy in the game.

� Q: I thought for some reason that we are talking about arenas of bounded branching.
Why do you want to allow in�nite branching?

� A: Here is one example. In the game of an operating system against the users, a user
may type a great deal before she or he lets the operating system to make a move.
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� Q: I would like to see again the de�nition of the Borel hierarchy.

� A: Let � range over countable ordinals, and let S be the complement of a subset S of
the given arena A.

{ �0
1 is the collection of open sets.

{ �0
� = fS : S 2 �0

�g.

{ Every S 2 �0
� is the union of countable many members of

S
�<��

0
�.

� Q: Do �0
2 or �

0
2 winning sets appear naturally when an operating system plays against

the users? If yes, I would like to see the determinacy proof for �0
2 games.

� A: Recall the fairness condition and consider the game of an operating system against
the users where the winning set of the operating system comprises those and only those
plays, i.e. computations, that are fair. That winning set is the intersection of countably
many open sets U(R) where U(R) is the set of computations where the request R is
satis�ed. Thus, the winning set is �0

2.

Theorem 2 [16] Every �0
2 and every �0

2 game is determinate.

To prove Theorem 2, let Player " be the �0
2 player in a �0

2 or �0
2 game �(A;W ) (so

that W" is �0
2) and let � = 3 � ". Fix open sets Un such that W" =

T
n Un, and let

Sn be the largest support for Un. The goal of Player " is to hit every Sn. All rank
functions in the proof of Theorem 2 correspond to Player ".

� Q: If the root has the extra ordinal rank with respect to some Sn then the strategy
\Keep the rank extra ordinal" of Player � is obviously winning. Otherwise, Player "
can hit any Sn.

� A: Being able to hit every Sn does not su�ce: The winning strategy of Player " should
guarantee hitting all sets Sn. Let P1 be the collection of positions x such that x has an
ordinal rank with respect to every Sn. From a position in P1, Player " can reach some
position in any Sn, but that position may have the extra ordinal rank with respect to
some other Sm.

� Q: I see your point. Let P2 be the set of positions x such that x has an ordinal rank
with respect to every set P1 \ Sn. From a position in P2, Player " can hit any P1 \ Sn
from where he can hit any Sm; this is again insu�cient for a winning strategy. By
induction on k, de�ne Pk+1 to be the set of positions x such that x has an ordinal rank
with respect to every Pk \ Sn. Finally, let P! =

T
k Pk. I think about positions in P�

as those with potential � to hit sets Sn. It looks like Player " has a winning strategy
if the initial position is in P!.
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� A: Not quite. Potential ! does not su�ce. Given any k and n, where k < ! of course,
and starting in a position of potential !, Player " can reach a position of potential k
in Sn, but it is not guaranteed that he can reach a position of potential ! in Sn.

� Q: But even uncountable potential does not guarantee the ability to reach a position
of potential ! in S1, then in S2, etc. because any descending sequence of ordinals is
�nite. Oh, I see. What we need is that P�+1 = P� for some �. Then potential �
guarantees that Player " can hit a position of potential � in S1, from where he can hit
a position of potential � in S2, and so on. Thus, potential � guarantees victory for
Player ". And of course, there is an ordinal � with P�+1 = P� because, for each � with
P�+1 6= P� , the di�erence P� � P�+1 contains at least one position and there are only
countable many positions.

� A: Very good. Let me just repeat your argument a little more formally. By induction
on countable ordinal �, de�ne sets P�:

{ P0 = A.

{ P�+1 is the set of positions x such that, for every n, the rank of x with respect to
P� \ Sn is ordinal.

{ If � is a limit ordinal then P� =
T
�<� P�:

It is easy to see that the sequence of P� decreases; hence indeed P� = P�+1 for some
�. Fix an appropriate � and de�ne P = P�. De�ne a strategy F for Player ":

If the set N(x) = fn : x 62 Sng is empty, let F (x) comprise all children of
x. Otherwise, let m = minN(x), � be the rank function corresponding to
P \ Sm and to Player " and let F (x) comprise all children y of x such that
�(y) < �(x).

It is easy to see that F is winning if the initial position is in P .

� Q: But now it is not obvious that Player � has a winning strategy whenever the initial
position is not in P .

� A: There is only a little work to do. If x 62 P , let �(x) be the ordinal such that
x 2 P� � P�+1 and n(x) be the least number n such that x has the extra ordinal rank
with respect to P� \ Sn. De�ne a strategy G for Player �:

If x 62 P then G(x) comprises children y of x such that y has the extra
ordinal rank with respect to P�(x) \Sn(x); otherwise it comprises all children
of x.

� Q: I do not understand something. Suppose that the initial position x0 does not belong
to P . The idea of G seems to be to prevent Player " from hitting Sn(x0), but this may
be impossible.
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� A: The idea is slightly more subtle. It is true that, if �(x0) > 0, then Sn(x0) may be
hit at some position x1; but then �(x1) < �(x0). If �(x1) > 0, then Sn(x1) may be hit
at some x2; but then �(x2) < �(x1).

� Q: I see. Eventually, some xk is reached such that Sn(xk) is never hit, and therefore
Player � wins.

� A: That's right, and the proof of Theorem 2 is �nished. In connection to �0
2 sets, the

following observation is of interest: For every �0
2 set W of branches of an arena A,

there exists a subset S of A such that an arbitrary branch X belongs to W if and only
if it hits S in�nitely many times. To prove this, suppose that W is the intersection
of open sets Un and let Sn, n � 1, be a support for Un. Imagine the tree A growing
upward. Let T1 be the set of those nodes x 2 S1 that there is no y 2 S1 below x; T1
is still a support for U1. Let T2 be the set of those nodes x 2 S2 that there is y 2 T1
below x but there is no y 2 S2 below x; T2 supports U1\U2. Let T3 be the set of nodes
x 2 S3 such that there is y 2 T2 below x but there is no y 2 S3 below x; T3 supports
U1 \ U2 \ U3. And so on. The desired S is the union of sets Tn.

� Q: How about proving Martin's theorem in full?

� A: I am reluctant to explain Martin's proof here. Let me mention however that it uses
a relatively powerful set theory. Namely, the existence of cardinal BETH� is assumed

in the proof of �0
� determinacy. (Recall that BETH0 = @0, BETH�+1 = 2BETH�,

and BETH� = supfBETH� : � < �g if � is limit.) Apparently, the assumption is
essential. Let ZC be the standard Zermelo-Fraenkel set theory ZFC without Fraenkel's
replacement axiom. ZC has the power set axiom and therefore the existence of every
BETHn, n < !, is provable in ZC. However, if ZFC is consistent, then ZC has a model
where BETH! does not exist and where a �0

! game may be indeterminate.

One class of Borel games is of special importance in connection to the monadic second-
order theories of in�nite strings and in�nite trees. Let B comprise boolean combinations
of �0

2 sets.

Theorem 3 Every B game is determinate.

� Q: Now the situation is quite symmetric and I wonder which Player will you chose to
be Player ".

� A: We'll break symmetry. Let � be a B game �(A;W ). Fix �0
2 sets V1; : : : ; Vm such

that W is a boolean combination of V1; : : : ; Vm. Let Player " be the player whose
winning set includes the intersection of all Vi.

� Q: Why should the intersection of all sets Vi be included into either winning set?

� A: Every boolean combination E of sets Vi either includes the intersection of all sets
Vi or else is disjoint from it. This can be checked by induction on E.
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We prove Theorem 3 by induction on m. The case m = 1 is taken care by Theorem 2.
It remains to prove the induction step.

Let D be the set of positions x such that Player � has a winning strategy in the
remainder of the game. If the root of A has an ordinal rank with respect to D and
to Player � then Player � can ensure that a position in D is reached and therefore
that he wins the game. Thus, we may suppose that the rank of the root with respect
to D and to Player � is extra ordinal. Obviously, any winning strategy of Player "
is a re�nement of the strategy of keeping the D-rank extra ordinal, and therefore we
may restrict attention to the subarena of positions reachable when Player " keeps the
D-rank extra ordinal. In other words, without loss of generality, we may suppose that
D is empty. In the rest of the proof, all rank function will correspond to Player ".

� Q: You were right about breaking symmetry. It remains to prove that Player " has a
winning strategy in �.

� A: For each Vi, �x a node set Si such that an arbitrary branch belongs to Vi if and
only if it hits Si in�nitely many time. Player " wins if the play hits every Si in�nitely
many times. For example, Player " may adapt the strategy of hitting sets Si in the
cyclic order. In the beginning, he is in mode 1 of going after S1. If Player " is in mode
i and hits Si, then he changes the mode to i+ 1 mod m.

� Q: I do not see how Player " can be sure that he will eventually hit Si when he is in
mode i.

� A: Let Sxi be the set of nodes y 2 Si above x. If the rank of x with respect to Sxi is
ordinal, then Player " may be sure to hit Si in the remainder of the game. Suppose
that Player " goes to mode i in a position x such that the Sxi -rank of x is extra ordinal
and that, moreover, Player � will play a re�nement of the strategy to keep the Sxi -rank
extra ordinal. What will happen? The strategy of keeping the Sxi -rank extra ordinal
de�nes a subarena where all branches avoid Vi; it follows that, over the subarena, the
winning sets are boolean combinations of m� 1 �0

2 sets. By the induction hypothesis,
one of the players has a winning strategy Fx in the remainder of the game. Who can
it be?

� Q: Of course, it is Player ". Otherwise x 2 D, but D is empty.

� A: This allows us to complete the description of a winning strategy for Player ".
Suppose he goes to mode i in a position x. If the Sxi -rank of x is ordinal, he decreases
the rank until he hits Si and goes to a new mode. Otherwise Player " picks the strategy
Fx and sticks to it unless Player � makes a move that results in a position of an ordinal
Sxi -rank. If and when that happens, Player " decreases the Sxi -rank until it hits Si and
goes to a new mode. That �nishes the proof of Theorem 3.
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� Q: I like the mathematics of in�nite games. And I trust you that in�nite games are of
great importance in logic. But what about those applications to concurrent processing?
Is it all about the game of an operating system against the user?

� A: Operating systems are but one example. Others are networks and �le systems [1].

� Q: It seems to me that shear existence of a winning strategy does not su�ce. In the
case of, say, operating systems, the system should be able to implement a winning
strategy.

� A: You are raising a very interesting issue. I hope we can address it one day.
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