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Abstract

Our main result is that every datalog query expressible in �rst-order logic is bounded; in

terms of classical model theory it is a kind of compactness theorem for �nite structures. In

addition, we give some counter-examples delimiting the main result.

1 Introduction

First-order logic and datalog are two important paradigms in the theory of relational database
query languages. How di�erent are they from the point of view of expressive power? What can be
expressed both in �rst-order logic and datalog? Let us make this latter question precise.

An r-ary global relation R of signature � is a function that, given a �-structure A, produces
an r-ary relation RA on A [Gu]. R is abstract if, for every isomorphism f from a �-structure
A to a �-structure B and all elements a1; : : : ; ar in A, RA(a1; : : : ; ar) holds in A if and only if
RB(fa1; : : : ; far) holds in B. Abstract global relations are often called queries. We reserve the
term \query" to denote datalog queries as syntactical objects. By the way, we do not presuppose
any familiarity with datalog. The necessary de�nitions are given in Section 2.

Here and everywhere else in this paper, a signature is a �nite collection of predicates (i.e.
relation symbols) and individual constants; no function symbols of positive arity are allowed. The
term \formula" is restricted to denote �rst-order formulas with equality. As usual, the equality
sign is a logical constant; it does not appear in signatures and is interpreted as the identity in every
structure.

A formula '(v1; : : : ; vr) of signature � with free individual variables v1; : : : ; vr in the lexicograph-
ical order expresses and means the r-ary global relation of signature � that, given a �-structure A,
produces the relation f(a1; : : : ; ar) : A j= '(a1; : : : ; ar)g on A. If � is a datalog program and Q is
an r-ary intentional predicate of � then the r-ary (datalog) query (�; Q) expresses and means the
intended value of Q on databases for �.

By default our structures are �nite. Respectively, a global relation R is considered to be �rst-
order expressible (resp. datalog expressible) if there exists a formula (resp. a query) that expresses
R on �nite structures.

Question: Which global relations are expressible both in �rst-order logic and datalog?
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It is not diÆcult to check that bounded queries (see the de�nition in Section 2) are �rst-order
expressible. Cosmadakis conjectured [Co] that every �rst-order expressible query is bounded and
con�rmed the conjecture in a number of important special cases. We prove the conjecture of
Cosmadakis; this is our main result. Thus, a query is �rst-order expressible if and only if it is
bounded. It is easy to transform every bounded query to a query with no intentional predicates in
the body of any rule (a non-recursive query) in such a way that the two queries are equivalent, that
is, express the same global relation on �nite structures. It is easy to check that each non-recursive
query is equivalent to a positive existential formula (the de�nitions of positivity and existentiality
are recalled in Section 3), and the other way round.

Theorem 1.1 If a query Q and a formula ' express the same global relation on �nite structures
then Q is bounded and ' is equivalent to a positive existential formula.

Since recursion is the strength of datalog, bounded queries are often viewed to be trivial. In
that sense, �rst-order logic and datalog are almost disjoint.

If in�nite structures are allowed, Theorem 1.1 can be established by a straightforward compact-
ness argument; see Section 3. This should not be surprising. In the presence of in�nite structures,
the expressibility condition is stronger whereas every query bounded on �nite structures is bounded
on in�nite ones as well [Section 2]. Of course the proof using a compactness argument does not
survive the restriction to �nite structures. As a rule, theorems whose proofs rely heavily on a
compactness argument do not survive the restriction to �nite structures [Gu]. Theorem 1.1 seems
to be the �rst non-trivial exception. In Section 4 it is reformulated in terms of classical model
theory.

The proof of Theorem 1.1 occupies Sections 3{9. Recall that a sentence is a formula without
free individual variables and that a boolean query is a query of arity zero. In Section 3 we verify
that the following four assertions are equivalent:

B Every �rst-order expressible query is bounded.

B0 Every �rst-order expressible boolean query is bounded.

E Every datalog expressible formula is equivalent to a positive existential one.

E0 Every datalog expressible sentence is equivalent to a positive existential one.

In Section 4 we formulate a kind of compactness assertion C (for �nite structures) and prove
that C is equivalent to E0. In Section 5 we prove that B0, E0 and C are equivalent to their
versions in the case when there are no individual constants.

In Section 6 we de�ne, for each natural number s, the notion of s-wide class of structures. In
Section 7, we prove that, for no sentence ' and no s, the class of models of ' is s-wide. Then, in
Section 9, we prove that, for each unbounded boolean query Q, the class of models of Q is s-wide
for some s. This completes the proof of Theorem 1.1. The Section 8 is auxiliary (and probably the
most interesting mathematically speaking).

In Section 10 we construct counter-examples to the generalizations of Theorem 1.1 in the case
when negations or only inequalities are allowed in the bodies of datalog rules. In particular,
there exists an unbounded boolean query with inequalities but without individual constants that
is �rst-order expressible. In Section 11, we construct a counter-example to the generalization of
Theorem 1.1 in the case when the notion of �rst-order expressibility is relaxed to implicit �rst-order
expressibility.

The reference [AG] is an extended abstract of this paper.
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2 Datalog

In this section, we explain what datalog is and establish terminology. An atomic formula is an
equality e1 = e2 or a proper atomic formula P (e1; : : : ; er) where P is an r-ary predicate di�erent
from equality; here each ep is an individual variable or individual constant. A datalog rule is an
expression of the form

�  �1; : : : ; �k

where k is a natural number (possibly zero), � is a proper atomic formula and each other �i is an
atomic formula. The atomic formula � is the head of the rule, and the sequence �1; : : : ; �k is the
body . A datalog program is a �nite set of datalog rules. In the rest of the paper, the terms \rule"
and \program" refer to datalog rules and datalog programs respectively.

Here is an example program �0:

xTy  xEy

xTy  xTz; zEy

Q  c1Tc2

The head predicates of a program � are intentional ; the other predicates are extensional . The
extensional predicates and the individual constants form the extensional signature Sige(�) of �.
Any structure D of signature Sige(�) is a database for �. In the case of the example program
�0, the extensional signature comprises the binary predicate E and the individual constants c1,
c2. A database for �0 is a directed graph with two distinguished nodes. �0 has two intentional
predicates, namely, the binary predicate T and the zero-ary predicate Q.

By analogy with directed graphs, an edge of an arbitrary structure D is a true statement of the
form a1 = a2 or P (a1; : : : ; ar) where P is an r-ary predicate in the signature of D and each ai is
an element of D.

Given a database D, a program � computes the intended values of its intentional predicates.
To de�ne the intended values, interpret the pair (�; D) as a logical calculus with edges of D as
axioms and rules of � as inference rules. Objects derivable in the calculus (�;D) have the form
Q(�a) where Q is an intentional predicate and �a is a tuple of elements in D of the appropriate length.
If (�;D) derives Q(�a), then Q(�a) is a link of D (with respect to �). The intended value Q�

D of an
intentional predicate Q on D is the set of all Q-links of D. (In order for this to make sense in the
case of zero-ary predicates, we suppose that the empty set represents falsity and the singleton set
whose only element is the empty tuple represents truth.)

It is convenient to view the intended values of intentional predicates as the result of some
evolution. For each intentional predicate Q and every natural number t, let Qt

D be the set of Q-
links derivable in � t steps. Thus, Q0

D is empty and Q�
D =

S
tQ

t
D. The least t such that Qt

D = Q�
D

is the evolution time of Q over D. Let Dt be the enrichment of D with all the relations Qt
D and

D� be the enrichment of D with all the relations Q�
D. Structures D

0;D1; : : : ;D� are stages of the
evolution in question.
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Consider the example program �0 and a digraph G with two distinguished vertices. It is easy
to see that, for each k > 0, T k comprises pairs (a; b) of vertices of G such that G has a path of
length at most k from a to b. The intended value of T is the transitive closure of the edge relation
E, the evolution time of T is the diameter of G, the intended value of Q is the truth value of the
statement \There is a path from c1 to c2", and the evolution time of Q is bounded by 1 plus the
diameter of G. Notice that replacing zEy with zTy in the body of the second rule does not change
the intended values of intentional predicates but speeds up the evolution exponentially.

A (datalog) query Q is a pair (�; Q) where � is a program and Q is an intentional predicate
of �. The arity of predicate Q is the arity of the query Q; Q is boolean if the arity is zero. The
meaning of Q is the global relation of signature Sige(�) that, given a database D for �, produces
the intended value Q�

D of Q on D with respect to �.
For brevity only, we de�ne the evaluation time of a query (�; Q) over a database D to be the

evolution time of Q over D.
A query is non-recursive if no intentional predicate appears in the body of any rule. A query

is bounded if there is a number b such that the evaluation time of the query over any database is
bounded by b. Every non-recursive query is bounded (with b = 1).

A structure B is a substructure of a structure A of the same signature if every element of B is
an element of A and every edge of B is an edge of A. A substructure B is induced if every edge of
A on elements of B is an an edge of B.

Lemma 2.1 A query (�; Q) is bounded if and only if there exists a positive integer n such that
every Q-link of an arbitrary database A for � is also a link of a substructure B of A with at most
n elements.

Proof To establish the only-if implication, notice that derivations of depth bounded by a �xed
number involve only so many axioms and therefore only so many elements. To establish the if
implication, notice that databases of size bounded by a �xed number n have only so many links;
this gives a bound on evolution time. 2

The lemma and the proof remain valid in the case when in�nite structures are allowed. It
follows that every query bounded on �nite structures is bounded on in�nite structures as well.

3 Reduction to boolean queries

In this section we prove that the assertions B, B0, E, E0 de�ned in the Introduction are indeed
equivalent.

The de�nition of positive formulas can be found in logic textbooks. For our purposes, the follow-
ing simpli�ed de�nition will do. Positive formulas are built from atomic formulas and propositional
constants true, false by means of conjunctions, disjunctions, existential quanti�ers and universal
quanti�ers. A formula is existential if it has the form (9u1 : : : 9uk)� where � is quanti�er-free.
Universal formulas are de�ned similarly.

Lemma 3.1 Every positive existential formula is equivalent to a non-recursive query.

Proof Without loss of generality, the quanti�er-free part of the given positive existential formula
'(v1; : : : ; vr) is a disjunction where the i-th disjunct is the conjunction of some list Li of atomic
formulas. It is easy to see that ' is equivalent to the non-recursive query that consists of a new
r-ary predicate Q and the program with rules Q(�v)  Li. 2
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Lemma 3.2 Every bounded query is equivalent to a positive existential formula.

Proof The desired formula uses � n existential quanti�ers where n is the smallest number such
that the bounded-ness criterion of Lemma 2.1 is satis�ed. 2

By the way, it may be necessary to use the equality in the formula even if the given query
(�; Q) does not use it [Me]. For example, � may have a single rule Q(v1; v1)  . Then the desired
formula is v1 = v2.

Notice that the bounded-ness criterion is purely semantical. It follows that every query equiv-
alent to a bounded one is bounded itself. This is an interesting peculiarity of datalog. There is no
semantical characterization of positive existential formulas because any such formula is equivalent
to a formula that is neither positive nor existential.

Theorem 3.1 The assertions B, B0, E and E0 are equivalent.

Proof By Lemma 3.2, B implies E, and B0 implies E0.
To prove that E implies B, assume E and let Q be a query that is �rst-order expressible. By E,

Q is equivalent to a positive existential formula. By Lemma 3.1, Q is equivalent to a non-recursive
query. By Lemma 2.1, Q is bounded. The same proof establishes that E0 implies B0.

Obviously, B implies B0, and E implies E0.
To prove that B0 implies B, assume B0 and let (�; Q) be a query expressible by a formula

'(v1; : : : ; vr). De�ne �0 to be the extension of � by an additional rule R  Q(c1; : : : ; cr) where
R is a new zero-ary predicate and c1; : : : ; cr are new individual constants. Clearly, the sentence
'(c1; : : : ; cr) is equivalent to the boolean query (�0; R). By B0, there exists a bound k + 1 on the
evaluation time of (�0; R) over any database. We claim that k is a bound on the evaluation time
of (�; Q) over any database. By contradiction, suppose that the evaluation time of (�; Q) on some
database D exceeds k. Pick a link Q(a1; : : : ; ar) in Q

�
D � Q

k
D and interpret individual constants

c1; : : : ; cr as elements a1; : : : ; ar respectively. The evolution time of R over the resulting extension
of D exceeds k + 1, which gives the desired contradiction. 2

For future use, we notice the following corollary of the proof.

Corollary 3.1 In the case of logic without individual symbols, B is equivalent to E, and B0 is
equivalent to E0.

The following claim is a side remark; it is not needed for the proof of Theorem 1.1.

Claim 3.1 E0 holds if in�nite structures are allowed.

Proof Suppose that a sentence ' is equivalent to a boolean query (�; Q). For each k, there exists
a positive existential sentence  k that is true on a database D if and only if Q is derivable in (�;D)
it at most k steps. Obviously, every  k implies '. It suÆces to prove that ' implies some  k.

By contradiction, suppose that ' does not imply any  k. Then every pair f';: kg is satis�able.
Clearly, every �nite subset of the in�nite collection C = f';: 1;: 2; : : :g is satis�able. By the
compactness theorem, C itself is satis�able. Let A be a model of C. Since A j= ', Q is a link of A
and therefore some  k holds in A which is impossible. 2
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4 Finite Compactness

In this section, we show that boolean queries are equivalent to special second-order sentences.
Then we reformulate our main result in terms of traditional model theory as Finite Compactness
Theorem.

We recall (variations of) some well known de�nitions. A Horn clause is a formula of the form
� ! � where the antecedent � is a conjunction of some number j of atomic formulas and the
succedent � is either a proper atomic formula or the logical constant false. If the succedent is
atomic, we call the clause imperative; otherwise we call it declarative. The number j can be zero in
which case � is the logical constant true. A Horn formula is a conjunction of clauses. It is common
to represent Horn formulas as sets of clauses. The predicates that appear in the succedents of
imperative clauses are intentional ; the other predicates are extensional . The extensional predicates
and the individual constants form the extensional signature Sige(�) of a Horn formula �.

If � is a Horn formula then Pr(�) is the class of all structures A of signature Sige(�) such
that A together with some values of the intentional predicates universally satis�es � (that is, � is
satis�ed for all values of individual variables). A class K of structures is projective if there exists a
Horn formula � such that K = Pr(�). For example, the class of acyclic digraphs is projective; the
projectivity witness is

xEy ! xTy; (xTy ^ yTz)! xTz; xTx! false :

Call a boolean query (�; Q) proper if Q does not occur in the body of any rule of �. Every
boolean query (�; Q) is equivalent to a proper one. Just remove all rules where Q occurs in the
body; it is clear that this does not change the meaning of the query.

There is a close connection between proper boolean queries and Horn formulas. To transform
a given proper boolean query Q = (�; Q) into a Horn formula,

� replace every rule Q �1; : : : ; �j with the declarative clause

(�1 ^ : : : ^ �j) �! false

� and replace every other rule �0  �1; : : : ; �j with the imperative clause

(�1 ^ : : : ^ �j) �! �0:

Call the resulting formula H(Q).

A database D for a boolean query Q = (�; Q) is a model for Q if D generates Q. Mod(Q) is
the class of models of Q.

Lemma 4.1 Let � = H(Q). Then Pr(�) is the complement of Mod(Q) in the class of databases
for Q. In other words, for arbitrary database D for Q, the following statements are equivalent:

1. D 2 Mod(Q).

2. For all interpretations of the intentional predicates of � in D such that all imperative clauses
of � are universally true, some declarative clause fails, that is the body of that declarative
clause is satis�ed.
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Proof To simplify the exposition, we assume that P is the only intentional predicate of �. Let D
be a database for Q = (�; Q) and P � be the intended value of P with respect to the program of Q.

(1)!(2). Assume (1) and let P 0 be an arbitrary interpretation of P such that all imperative
clauses of � are satis�ed. Clearly, P 0 includes P �. By (1), some Q-rule �res in D. Hence the
corresponding declarative clause fails in (D;P �) and therefore in (D;P 0).

(2)!(1). Assume (2) and choose P 0 = P �. Some declarative clause of � fails in (D;P �) and
therefore the corresponding Q-rule �res in D. 2

We say that a class K of structures of some signature � is compact if there exists n such that
an arbitrary �-structure A belongs to K if and only if all substructures of A of cardinality at most
n belong to K.

Lemma 4.2 K is compact if and only if its complement is axiomatizable by means of a positive
existential sentence.

Proof Clear. 2

Restrict the term \axiomatizable" to mean �nitely axiomatizable.

Theorem 4.1 The following two assertions are equivalent:

E0 Every datalog expressible sentence is equivalent to a positive existential one.

C Every axiomatizable projective class is compact.

In particular, C implies that acyclicity is not expressible in the �rst-order language of digraphs
(a known fact). To prove this, it suÆces to check that the class of acyclic digraphs is not compact.
To show that a given n is not a compactness witness, consider a cycle of length n+ 1.

Proof First we assume E0 and prove C. Let K be an axiomatizable, projective class of �-
structures. There exist a sentence ' and a Horn formula � such that K = Mod(') = Pr(�).
Construct a boolean query Q such that � = H(Q). By Lemma 4.1, Mod(Q) is the complement
of Pr(�) and therefore Mod(Q) = Mod(:'). By E0, :' is equivalent to a positive existential
sentence. Now use Lemma 4.2.

Next we assume C and prove E0. Let a sentence ' be equivalent to a boolean queryQ = (�; Q).
This means that the formula and the query denote the same global relation R of some signature �
where � is the signature of ' and the extensional signature of Q. Let K be the class of �-structures
D where RD is false. By Lemma 4.1, K is projective. By C, K is compact. Now use Lemma 4.2.
2

For future use, we notice the following corollary of the proof.

Corollary 4.1 In the logic without individual constants, E0 is equivalent to C.

5 Removing individual constant

Call a formula or query or signature plebeian if it does not have individual constants. In this
section, we reduce assertion B0 to its restriction B0P to plebeian formulas.

Theorem 5.1 The following assertions are equivalent:

B0 Every �rst-order expressible boolean query is bounded.
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B0P Every �rst-order expressible plebeian boolean query is bounded.

E0 Every datalog expressible sentence is equivalent to a positive existential sentence.

E0P Every datalog expressible plebeian sentence is equivalent to a plebeian positive existential
sentence.

C Every axiomatizable projective class is compact.

CP Every axiomatizable projective class of plebeian signature is compact.

Proof Obviously, B0 implies B0P, and E0 implies E0P, and C impliesCP. By Theorem 3.1, B0
is equivalent to E0; by Corollary 3.1, B0P is equivalent to E0P. By Theorem 4.1, E0 is equivalent
to C; by Corollary 4.1, E0P is equivalent to CP. It suÆces to prove that CP implies C.

Let K be an axiomatizable projective class of structures of some signature �. We need to prove
that, for some n, an arbitrary �-structure A belongs to K if and only all substructures of A of
cardinality � n belong to K. To simplify the exposition, we suppose that � = fP; c; dg where P is a
binary predicate and c; d are individual constants. Let K1 (resp. K2) be the collection of structures
from K where c = d (resp. c 6= d). Obviously, K2 is axiomatizable and projective. View K1 as a
class of structures of signature fP; cg; it is also axiomatizable and projective. It suÆces to prove
that K1 and K2 are compact. We restrict attention to K2. In the rest of the proof, K = K2.

Call an element of a given � structure A plebeian if it is not distinguished, i.e., if it isn't the
interpretation of some individual constant. Call A trivial if it has no plebeian elements. If A is not
trivial, let Ap be the induced substructure of A that contains all and only plebeian elements (the
plebeian substructure).

Remove individual constants from � and then add unary predicates Pc�, Pd�, P�c, P�d and zero-
ary predicates Pcc, Pcd, Pdc, Pdd; call the resulting signature �

0. For each non-trivial �-structure A,
enrich Ap with values of the new predicates in such a way that the following axioms are satis�ed
when u ranges over Ap.

Pc�(u) $ P (c; u) (1)

P�c(u) $ P (u; c) (2)

Pd�(u) $ P (d; u) (3)

P�d(u) $ P (u; d) (4)

Pcc $ P (c; c) (5)

Pcd $ P (c; d) (6)

Pdc $ P (d; c) (7)

Pdd $ P (d; d) (8)

This turns Ap into a �0 structure which will be called A0. Let K 0 = fA0 : A 2 Kg.

Lemma 5.1 K 0 is projective.

Proof Let a Horn formula � witness that K is projective. To simplify the exposition, we suppose
that � is

Q(u; v) [P (c; u) ^Q(v; c)]:
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The desired projectivity witness �0 for K 0 is the conjunction of the following 9 clauses where
Qc�; Qd�; Q�c; Q�d are new unary predicates and Qcc; Qcd; Qdc; Qdd are new zero-ary predicates. The
idea is to restrict variables to plebeian elements.

Qcc  [Pcc ^Qcc] (9)

Qcd  [Pcc ^Qdc] (10)

Qdc  [Pcd ^Qcc] (11)

Qdd  [Pcd ^Qdc] (12)

Qc�(v)  [Pcc ^Q�c(v)] (13)

Qd�(v)  [Pcd ^Q�c(v)] (14)

Q�c(u)  [Pc�(u) ^Qcc] (15)

Q�d(u)  [Pc�(u) ^Qdc] (16)

Q(u; v)  [Pc�(u) ^Q�c(v)] (17)

First we check that every structure in K 0 with some values of Q and its relatives satis�es �0.
Let A 2 K and �x an interpretation of Q such that the corresponding enrichment of A universally
satis�es �. Interpret Qc� and other new predicates on the plebeian elements x of A in the obvious
way, e.g., interpret Qc� as fx : A j= Q(c; x)g. It is easy to see that the corresponding enrichment
of A0 universally satis�es �0.

Now suppose that B is a �0-structure and some enrichment B� of B with interpretations of Q
and its relatives universally satis�es �0. There exists a �-structure A such that B = A0. To obtain
the desired A, add to B two new elements interpreting c and d respectively, then extend P with
respect to equalities 1{8 and forget the other predicates. Extend the interpretation of Q to the new
universe such that it equals the union of the following sets:

f(x; y) : B� j= Q(x; y)g;

f(c; x) : B� j= Qc�(x)g;

f(d; x) : B� j= Qd�(x)g;

f(x; c) : B� j= Q�c(x)g;

f(x; d) : B� j= Q�d(x)g;

f(c; d) : B� j= Qcdg

The respective enrichment of A satis�es �, so that A 2 K and therefore B = A0 2 K 0. 2

Lemma 5.2 K 0 is axiomatizable.

Proof By induction on a �-formula  , we de�ne a �0-formula  0 with the same individual variables,
the plebeian companion of  . The intention is that  0 translates  but speaks about plebeian
elements only.

� In the case when  is atomic and contains an individual constant, we are guided by the
equivalences 1{8. For example, if  = P (c; v) then  0 = Pc�(v).

� In the case when  is an atomic formula without individual constants,  0 =  .

� ( 1 ^  2)
0 = ( 0

1 ^  
0
2); ( 1 _  2)

0 = ( 0
1 _  

0
2); (: )0 = :( 0).
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�

((8v)( (v)))0 = [ 0(c) ^  0(d) ^ (8v)( (v)0)]

((9v)( (v)))0 = [ 0(c) _  0(d) _ (9v)( (v)0)]

It easy to see that, for every �-formula  (v1; : : : ; vk), every non-trivial �-structure A and every
tuple a1; : : : ; ak of plebeian elements of A,

A j= '(a1; : : : ; ak) ! A0 j= '0(a1; : : : ; ak):

It follows that if ' axiomatizes K then '0 axiomatizes K 0. 2

We are ready now to �nish the proof of Theorem 5.1. By CP and Lemmas 5.1{5.2, there
exists n such that an arbitrary �0-structure belongs to K 0 if and only if every substructure of it of
cardinality � n belong to K 0. We check that n+ 2 is a compactness witness for K.

Since K is projective, it is closed under substructures. For, let � be a projectivity witness,
A 2 K and B is a substructure of A. There are values of intentional predicates such that the
enrichment of A universally satis�es �. Restrict those values to B. It is easy to see that this
enrichment of B universally satis�es every clause of �.

Now, suppose that all substructures of cardinality � n+2 of a non-trivial �-structure A belong
to K. (The case of trivial A is obvious.) It follows that all substructures of cardinality � n of A0

belong to K 0. Hence A0 2 K 0 and therefore A 2 K. 2

6 The proof of the main theorem

Theorem 3.1 reduces Theorem 1.1 to assertion B0. Theorem 5.1 reduces B0 to assertion B0P.
Thus it suÆces to proove B0P. In the this section we reduce B0P to two theorems. One of them
will be proved in Section 7 and the other in Section 9.

A mapping h from a structure A into a structure B of the same signature is a homomorphism
if the h-image of every edge of A is an edge of B, i.e., B j= P (h(a1); : : : ; h(ar)) whenever A j=
P (a1; : : : ; ar). (Notice that we do not require, as it is often done, that h is onto.) A sentence
' is preserved under homomorphisms if, for structures A;B of the signature of ' and for every
homomorphism h from A to B, A j= ' implies B j= '.

Lemma 6.1 For every boolean query Q, the class Mod(Q) is closed under homomorphisms.

Proof Suppose that A satis�es Q, h is a homomorphism from A into B, and � = H(Q). We check
that B satis�es condition (2) of Lemma 4.1. To simplify the exposition, we suppose that a binary
predicate P is the only intentional predicate in �. Given an arbitrary value P 0 of P which makes
all imperative clauses of � universally true in B, de�ne relation

P 00 = f(a1; a2) : (ha1; ha2) 2 P
0g

on A. It is easy to see that P 00 makes all imperative clauses of � universally true in A. By
Lemma 4.1, some declarative clause of � fails in (A;P 00). It is easy to see that the same clause fails
in (B;P 0). 2

A member A of a class K of structures is minimal if no proper substructure of A satis�es '.
(A substructure of A is proper if it di�ers from A.)
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The Gaifman graph G(A) for a structure A is the graph (jAj; E) where jAj is the universe of
A and E comprises pairs fa1; a2g such that some edge of A involves both a1 and a2. The distance
between elements a1 and a2 in A is the distance between a1 and a2 in G(A), i.e., the number
of edges in the shortest path connecting the two vertices; the distance is 1 if there is no path
connecting the two vertices. A subset S of a structure A is d-scattered if the distance between any
two elements of S exceeds d.

De�nition 6.1 A class K of structures is s-wide if, for all positive integers m; d, there exist a
minimal A 2 K and an induced subgraph H of G(A) such that jjAjj � jjHjj � s and H has a
d-scattered subset of cardinality m. K is s-narrow if it is not s-wide.

The condition that H has a d-scattered subset of cardinality m is not necessarily equivalent
to the condition that the corresponding induced substructure B of A has a d-scattered subset of
cardinalitym. To show this, suppose that A has an edge P (a; b1; b2) where a 2 A�B and b1; b2 2 B.
Then b1; b2 are adjacent in G(A) and therefore in H, but they are not necessarily adjacent in B.

Theorem 6.1 If a plebeian �rst-order sentence ' is preserved under homomorphisms then Mod(')
is s-narrow for all s.

Theorem 6.1 will be proved in Section 7.

Theorem 6.2 If a plebeian boolean query Q is unbounded then Mod(Q) is s-wide for some s.

Theorem 6.2 will be proved in Sections 9.

Corollary 6.1 The assertion B0P is true. In other words, if a boolean query without constants is
�rst-order expressible then it is bounded.

7 Local Properties

We prove Theorem 6.1. It can be generalized to the case with equality but we do not need the
generalization.

The vicinity V r
A(a) (or simply V r(a)) of radius r of an element a in a structure A is the induced

substructure of A containing elements b with the distance Æ(a; b) � r. Given positive integers r; n
and a formula  (v) in the language of A, it is easy to write a sentence ' in the same language
asserting that there is a 2r-scattered subset S of cardinality n such that if v 2 S then V r(v) j=  (v).
Such sentence ' will be called local .

Proposition 7.1 ([Ga) ]Every �rst-order sentence without individual constants is logically equiv-
alent to a boolean combination of local sentences.

First we prove that, for every plebeian sentence preserved under homomorphisms, Mod(') is
0-narrow.

Lemma 7.1 Suppose that a plebeian sentence ' is preserved under homomorphisms. There exist
d and m such that no minimal model of ' has a d-scattered set of cardinality m.

11



Proof By virtue of Proposition 7.1, we may suppose that ' is a boolean combination of local
sentences 'i, 1 � i � j. Each 'i asserts that there is a 2ri-scattered subset of cardinality ni such
that if v belongs to the subset then V r1(v) j=  i(v).

Let d = 4maxi ri. For each i, write down a formula 	i(u) asserting the existence of v such that
Æ(u; v) � ri and V

ri(v) j=  i(v). In any structure whose signature is that of ', de�ne two elements
v1; v2 to be equivalent if

[V 2ri(v1) j= 	i(v1)]  ! [V 2ri(v2) j= 	i(v2)]

for all i in [1::j]. Set m = 2j + 1.
By contradiction, suppose that there is a minimal model A for ' with a d-scattered subset S

of cardinality m. Since m > 2j , S contains equivalent elements a 6= a0. It is impossible that both a
and a0 are isolated (i.e. incident to no edge) because if they are then the identi�cation of a0 with a
is a homomorphism of A onto a proper substructure of A. Without loss of generality, there exists
an edge e that involves a. Let B be the result of removing e from A. By the minimality of A, B
fails to satisfy '. Let n = maxi ni, Bn be the disjoint sum of n copies of B, and An = A + Bn.
There exists an (injective) homomorphism from A into An and therefore An satis�es '. There is a
(surjective) homomorphism from Bn onto B and therefore Bn does not satisfy '.

To get a contradiction, we show that no 'i distinguishes between An and Bn. By the symmetry,
we may restrict attention to the case i = 1. Since Bn is isomorphic to a induced substructure of An,
An satis�es '1 if Bn does. We suppose that An has a 2r1-scattered subset X of cardinality n1 such
that V r1

A (x) j=  1(x) for all x 2 X and prove that Bn has such a subset as well. The case n1 > 1
is easy. In this case, the r1-vicinity of some x 2 X does not contain e. Then V r1

B (x) = V r1
A (x) and

therefore each of the n summands of Bn has an r1 vicinity isomorphic to V r1
A (x).

Suppose n1 = 1 and let x be the only element of X. It suÆces to prove that A contains an
element y such that V r1

A (y) does not contain e and V r1
A (y) j=  1(y). If V r1

A (x) does not contain
e, we have �nished; so suppose that V r1

A (x) contains e. Then Æ(a; x) � r1 and therefore V 2r1
A (a)

satis�es 	1(a). Recall that a0 is equivalent to a and Æ(a; a0) > d � 4r1. Hence V 2r1
A (a0) satis�es

	1(a
0) and does not contains e. Hence there exists y 2 A such that V r1

A (y) j=  1(y) and V
r1
A (y) is

included into V 2r1
A (a0) and therefore does not contain e. 2

In the remainder of the section we suppose that ' is a plebeian sentence preserved under
homomorphisms and s is a positive integer, and we prove that Mod(') is s-narrow.

Let � be the extension of the signature of ' by s individual constants c1; : : : ; cs and let '0 be
the plebeian companion of ' with respect to � as de�ned in Section 5 (at the beginning of the proof
of Lemma 5.2).

The sentence '0 is preserved under homomorphisms. For suppose that h is a homomorphism
from B1 into B2. As we saw in Section 5 (in the proof of Lemma 5.1), each Bi is the plebeian
companion of some Ai. In the obvious way, the homomorphism h extends to a homomorphism
from A1 into A2. We have,

[B1 j= '0] �! [A1 j= '] �! [A2 j= '] �! [B2 j= '0]:

By the previous lemma, there exist d and m such that no minimal model of '0 has a d-scattered
subset of cardinality m. Fix appropriate d and m. We prove that, for no minimal model A of ',
there is an induced subgraph H of G(A) such that jjAjj � jjHjj � s and H has a d-scattered subset
of cardinality m.

By contradiction, suppose that A and H form a counter-example. Let A+ be the enrichment
of A obtained by interpreting the individual elements c1; : : : ; cs by means of elements in jAj � jHj
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in such a way that all those elements become distinguished. It is easy to see that the plebeian
companion A0 of A is a minimal model for '0 and it has a d-scattered subset of cardinality m. This
contradicts the previous lemma. Theorem 6.1 is proved. 2

8 Nostrums

In order to prove Theorem 6.2, we introduce and study objects that we call nostrums.

De�nition 8.1 A nostrum is a forest F together with a nonempty set V and a function that assigns
a nonempty connected subset of F to each element of V .

We use the following terminology and notation. Elements of F are nodes, and elements of
V are vertices. The set of nodes assigned to a vertex is a twig . It is often convenient to view
the given nostrum as the forest together with the function that assigns to each node X its grasp
fv : X 2 Twig(v)g. We will be interested in nostrums of bounded grasp-size. Bruno Courcelle
[Cou] pointed out that the notion of nostrums of bounded grasp-size is related to the notion of the
bounded-width tree decompositions of Robertson and Seymour [RS].

Further, a sequence (X0; : : : ;Xk) of nodes forms a bridge from X0 to Xk if, for every pair
(Xi;Xi+1) of successive nodes, some Twig(v) contains both nodes. A forest path P embeds a
bridge B if (i) B is a subsequence, not necessarily contiguous, of P and (ii) for every two successive
members X;Y of B, some twig includes the corresponding segment [X;Y ] of P .

Lemma 8.1 For every bridge B from U1 to U2, there exists a bridge B0 from U1 to U2 of the same
or smaller length that is embedded into the shortest path from U1 to U2.

The shortest path from U1 to U2 goes from U1 straight up to the youngest common ancestor of
U1 and U2 and then straight down to U2.

Proof First we notice that B is embedded into some path P . One such path can be constructed by
replacing every two-element segment [X;Y ] of B with the shortest path from X to Y ; the resulting
path embeds B because every twig (as any other connected set) that contains X and Y includes
the shortest path from X to Y .

If the sequence P has no repetitions then P is the shortest path from U1 to U2, and we have
�nished. Suppose that P contains a segment Q from some Z to the same Z. It suÆces to prove
that the path P 0 obtained from P by replacing Q with one node Z embeds a bridge B0 from U1 to
U2 whose length is bounded by the length of B.

If no node of B is in Q, choose B0 = B. Otherwise, let P1 be the initial segment of P bordering
upon Q, B1 be the initial segment of B embedded in P1, X be the �nal node of B1 and X

0 be the
successor of X in B. Clearly X 0 2 Q. Since P embeds B and Z belongs to the segment [X;X 0]
of P , some twig includes the segment [X;Z] of P 0. Similarly, some twig contains Z and the initial
node Y of the �nal segment B2 of B that is embedded into the �nal segment P2 of P bordering
upon Q. The desired B0 is composed of B1, Z and B2. 2

The forest of a nostrum N is denoted Fr(N), and the vertex set is denoted VS(N). N dominates
a nostrum N 0 if VS(N) = VS(N 0) and, for every node Y of N 0, there exists a node of N whose
grasp includes that of Y . We introduce three transformations of nostrums where some nodes are
discarded but the grasps of the surviving nodes are not changed.

To perform the �rst transformation, discard all empty-grasp nodes. Surviving nodes are ordered
as before; if a surviving node X looses its parent but retains at least one proper ancestor then the
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youngest surviving proper ancestor of X becomes the parent of X. The result is a nostrum that
dominates the original one.

A weak child is a node X with a parent such that the grasp of the parent includes the grasp
of any descendent of X (including X). To perform the second transformation, discard all weak
children and their descendants. The resulting nostrum dominates the original one.

A weak dynasty is a maximal node sequence (X1; : : : ;Xk) where every Xi�1 is the only child of
Xi and the grasp of Xi�1 includes that of Xi. To perform the third transformation, reform every
weak dynasty (X1; : : : ;Xk) by discarding nodes X2; : : : ;Xk. Again, the order of surviving nodes
does not change; if (X1; : : : ;Xk) was a weak dynasty and Xk had a parent Y , then Y becomes the
parent of X1. The resulting nostrum dominates the original one.

A nostrum is strong if it has no empty-grasp nodes, no weak children and no weak dynasties.
Performing the three transformation (in the order they were introduced) results in a strong nostrum
that dominates the original one; the combined transformation will be called simpli�cation.

Lemma 8.2 Let N be a strong nostrum, u a vertex of N , X a node of N , X 0 the parent of X
and X0 a child of X. Suppose that X;X 0 and X0 grasp u, and X grasps at least one other vertex.
Discard u and simplify the resulting nostrum. The node X survives the simpli�cation.

Proof Obviously, X survives the �rst simpli�cation stage.
We show that all descendents of X in N survive the second stage. It suÆces to show that an

arbitrary leaf Y � X survives the �rst two stages. Since N is strong, Y isn't a weak child in N .
Hence it grasps a vertex v not grasped by its parent and therefore not grasped by any other node.
In particular, v is not grasped by X and thus v 6= u. Thanks to v, Y survives the �rst two stages.

By contradiction, suppose that X is discarded during the third simpli�cation stage. This means
that, after the second stage, X0 is the only child of X and the grasp of X0 includes that of X. But
then the same is true in N which contradicts the fact that N is strong. 2

De�nition 8.2 A graph G admits a nostrum if there is a nostrum N such that the universe of G
is the vertex set of N and every edge of G is within the grasp of some node of N .

If N satis�es the requirement in the above de�nition, we say that G and N are legal for each
other.

Lemma 8.3 Suppose that N is a legal nostrum for a graph G and u 2 G and jGj�fug 6= ;. Let H
be the induced subgraph of G with universe jGj�fug. Discard u from N and simplify the remaining
nostrum N0. The result is a strong nostrum legal for H.

Proof Let e be an edge of H. It is also an edge of G. Hence there exists a node X of N that grasps
both ends of e. Clearly, X grasps both ends of e in N0. The simpli�cation N1 of N0 dominates N0

and therefore some node of N1 grasps both ends of e. 2

Lemma 8.4 If G is a legal graph for a nostrum N , X grasps x and Y grasps y, then the length of
the shortest bridge from X to Y is bounded by 1 plus the distance between x and y in G.

Proof Let z0; : : : ; zk be a path from x to y in G. For every positive i � k, let Zi be a node that
grasps both zi�1 and zi. Then X;Z1; : : : ; Zk; Y is a bridge from X to Y . 2

Let N be a legal nostrum for a graph G. A set I of nodes and vertices of N is a marsh if:
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� Any I-vertex is disconnected in G from the other I-vertices and from the vertices grasped by
I-nodes.

� The I-nodes that belong to the same tree form a chain, i.e., a connected linearly ordered
subset.

Theorem 8.1 Suppose that a graph G admits a strong nostrum that has a marsh of cardinality
n � ms+1(d + 2)s with marsh-nodes of grasp-size � s. Then G has an induced subgraph H such
that jjGjj � jjHjj � s and H has a d-scattered subset of cardinality m.

Proof An induction on s. Suppose that either s = 1 or else s > 1 and the lemma is proved for
s � 1. De�ne C(t) = mt+1(d + 2)t and let N be a legal strong nostrum for G with a marsh I of
cardinality C(s) with nodes of grasp-size � s.

Case 1: There exists a vertex u such that jjI \ Twig(u)jj � C(s� 1) + 2.
By the de�nition of marshes, I \Twig(u) is a chain. Remove the end-nodes from the chain and

let J be the remaining chain of cardinality C(s � 1). Let G0 be the induced subgraph of G with
universe jGj� fug. Remove u from N and simplify the remaining nostrum N0. By Lemma 8.3, the
resulting strong nostrum N 0 is legal for G0.

By Lemma 8.2, every node of J that grasps a vertex di�erent from u survives the simpli�cation.
Thus the grasp of every discarded node of J is fug.

There is a function f that assigns a vertex in N 0 to each discarded node in J in such a way
that the surviving part of J and the range of f form a marsh I 0 for N 0. Indeed, consider a node
X in J discarded during the simpli�cation. If X0 is the child of X in I, we have Grasp(X) =
fug � Grasp(X0). Since N has no weak dynasties, X has another child X1. Let X2 be any leaf
descendant of X1 in N . Since N has no weak children, there is a vertex grasped by X2 only. Choose
one such vertex to be f(X). We check that, in G0, f(X) is disconnected from any vertex v such
that v = f(Y ) for some other discarded I-node Y or else v is grasped by a surviving I-node. By
contradiction, suppose that f(X) is connected to v and consider nostrum N0. By Lemma 8.4, there
is a bridge B from X2 to a node Z grasping v. By Lemma 8.1, the shortest path P from X2 to Z
embeds a bridge from X2 to Z. The node X is necessarily on P and belongs to some twig which
is impossible.

If s = 1 then I 0 is composed of �m disconnected elements of G0. Thus G0 is the desired H.
Suppose that s > 1. By the induction hypothesis, there is an induced subgraph H 0 of G0 such

that jjG0jj � jjH 0jj � s� 1 and H 0 has a d-scattered set S of cardinality m. H 0 is the desired H.
Case 2: For every vertex u, jjI \ Twig(u)jj � ms(d+ 2)s�1 + 1.
Let b = n=m. We consider only the case when I has no vertices and all nodes of I belong to

the same tree; other cases are even easier. In our case, I is a chain (X1; : : : ;Xbm. Set S = fXbi :
1 � i � mg.

If (Z0; : : : ; Zk) is a bridge from one node of S to another then k � d + 2. By contradiction,
suppose that k � d+ 1. By Lemma 8.1, we may suppose that the given bridge is embedded in the
shortest path from Z0 to Zk. Since the distance between Z0 and Zk is at least n=m, the average
distance between Zi and Zi+1 is at least n=(mk) which exceeds ms(d + 2)s�1. Hence there exists
i such that the distance between Zi and Zi+1 is at least ms(d + 2)s�1 + 1, so that the interval
[Zi; Zi+1] contains at least m

s(d+ 2)s�1 + 2 members. According to the de�nition of embedding a
bridge into a path, there exists a vertex u whose twig includes [Zi; Zi+1] which contradicts Case 2.

We de�ne a one-to-one function f from S to G. f coincides with the identity function on the
vertices of S. If X is a node in G, let f(X) be an arbitrary vertex in the grasp of X. By Lemma 8.4,
R is d-scattered is G. The desired H is G. 2

15



9 Global properties

In this section, we prove Theorem 6.2. Suppose that a plebeian boolean query Q = (�; Q) is
unbounded. The equality sign can be eliminated from � without changing the meaning of Q.
Thus, we may assume that the equality sign does not appear in �.

Call an individual variable relevant to a rule � if it appears in the head of the rule or in at least
two atomic formulas in the body. Let s be the maximal number of variables relevant to any rule in
�. We will prove that Mod(Q) is s-wide. Pick arbitrary d and m. With respect to Theorem 8.1,
it suÆces to prove that there exists a minimal A 2 Mod(Q) whose graph admits a strong nostrum
with nodes of grasp-size � s and a marsh of cardinality n � ms+1(d+ 2)s.

Consider a calculus (�;D) where D is an arbitrary database for �. Statements of the form
R(a1; : : : ; ar), where R is an extensional or intentional predicate and a1; : : : ; ar 2 D, will be called
D-claims.

A proof of a D-claim � is a tree labeled with D-claims in such a way that:

� Leaves are labeled with edges and the root is labeled with �, and

� If a node X has k children then there exist a rule �0  �1; : : : ; �k and an instantiation I of
the variables with elements of D such that I(�0) is the label of X and I(�1); : : : ; I(�k) are
the labels of the children of X.

If an element a 2 D appears in the label of a node X or in the labels of at least two children of X,
we say that a and X are relevant to each other.

It is well known (and easy to check) that no sentence without equality distinguishes between
a structure D and the structure D0 obtained from D by replacing an element a with an arbitrary
number k � 1 of indistinguishable copies a1; : : : ; ak of a. We explain more exactly what D0 is. The
universe of D0 is obtained from D by removing a and adding a1; : : : ; ak instead. A D0-edge � is
true if and only if the D-edge �0 obtained from � by replacing a1; : : : ; ak with a is true in D. (In
other words, D0 treats a1; : : : ; ak as aliases for a.)

Let D be a minimal model of Q satisfying a certain condition. For expository reason we delay
specifying the condition. For the moment it is important only that the empty subset of D does not
generate Q.

Let P0 be a shortest proof of Q in (�;D). Clearly, every element and every edge of D appears
in P0.

Rewrite P0 using fresh elements whenever possible. More exactly, for each element a 2 D do
the following. In each connected component C of the set of nodes relevant to a replace a with
an indistinguishable copy aC . Let D

0 be the structure obtained from D by replacing each a with
indistinguishable copies aC .

Let P be the result of this transformation of P0. It is easy to check by induction that, for each
node X of P , the induced substructure of P comprising the descendents of X is a proof over D0.
We address only the subtlety that arises when an element a is relevant to children X1;X2 of X but
not to X itself. In P , some copy a1 (respectively a2) of a appears in X1 (respectively X2). The
danger was that a1 and a2 are di�erent and then the P -label of X may not follow from the P -labels
of its children. This danger is avoided by our de�nition of relevance. Since a appears in the P0
labels of X1;X2, it is relevant to X as well as to X1;X2 in P0. Thus, all three nodes lie in the same
connected component of the set of elements relevant to a, and therefore a1; a2 are the same.

The desired structure A is obtained from D0 by removing all edges that do not appear in P .
Clearly, A is a minimal model of Q.
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G(A) admits a nostrum. Indeed, let N 0 be the nostrum where P is the forest, jAj is the vertex
set, and the twig of any a 2 A comprises the nodes relevant to a. Clearly N 0 is legal for G(A).
Unfortunately, N 0 is not necessarily strong. How can we �nd the desired strong nostrum legal for
G(A)? One may play with � (before constructing P ) to insure that P is strong. In that approach
D should be chosen in such a way that it generates Q on stage � n of the evolution. Then a longest
branch of P is the desired marsh.

We choose a quick and dirty (and wasteful) solution. Chose D in such a way that every
substructure of D that generates Q is of cardinality � bns where b is the maximal number of atoms
in the body of any rule of � (unless this number is 1 in which case let b = 2). Let N be the result
of simpli�cation of N 0. Clearly, N is legal for G(A).

The number of nodes in N is � bn. For, the equivalence relation \twigs of x and y have the
same root" partitions A into blocks of cardinality � s, and the number of nodes is at least as large
as the number of blocks.

Let M range over nostrums of cardinality � bn with nodes of grasp-size � s, and let c(M) be
the cumulative depth of the trees in Fr(M). It suÆces to prove that each c(M) � n. For, then
c(N) � n and we can construct the desired marsh as follows. Pick a longest branch in each tree of
Fr(N). The union of the branches is a marsh of cardinality � c(N) + 1 > n. (The branch of length
k has k + 1 nodes.)

It suÆces to prove that c(M) � n in the case when M is a tree because c(M) is the smallest
when M is a tree. The tree Fr(M) has c(M) levels (with the root being on level zero). By the
de�nition of b, there are � bi elements on the level i. If c(M) < n then the total number of nodes
is <

P
i<n b

i < bn. Therefore c(M) � n. 2

10 Two Extensions of Datalog

Call a datalog program pure if it contains no occurrences of the equality sign. A rule of a pure
program has the form �  �1; : : : ; �k where � as well as each �i is a proper atomic formula.
We consider two generalizations of pure datalog. In the �rst generalization, called for brevity
datalog with negations, each �i is either a proper atomic formula or the negation of a proper atomic
formula. In the second generalization, called for brevity datalog with inequalities, each �i is either
a proper atomic formula or an inequality e1 6= e2. First we show that there exists an unbounded
plebeian query with negations equivalent to a �rst-order formula. Then we show that there exists
an unbounded plebeian query with inequalities equivalent to a �rst-order formula.

In model theory, a �rst-order sentence ' is said to have the the extension property if, for every
structure A of the appropriate signature and every induced substructure B of A, B j= ' implies
A j= '. If ' expresses a query in datalog with negations or inequalities or both then ' has the
extensions property; moreover, ' is equivalent to an existential formula if and only if the query is
bounded. If in�nite structures are allowed, then, by a classical theorem, every formula with the
extension property is equivalent to an existential formula.

In �nite model theory, the situation is di�erent. Gurevich and Shelah [Gu] constructed a �rst-
order sentence 0 that is preserved by induced substructures but is not equivalent to any universal
�rst-order sentence. It follows that :0 has the extension property but is not equivalent to any
existential formula. Kolaitis and Vardi [KV] constructed an unbounded query in datalog with
negations and inequalities. This gives a counter-example to the analog of Theorem 1.1 for datalog
with negations and inequalities. We o�er a little improvement of Gurevich-Shelah's formula.

Say that a formula with one and only free variable has the extension property if the sentence
obtained by replacing the free variable with a fresh individual constant has the extension property.
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Let (v) be a �rst-order formula with equality saying the following:

If < is a linear order with a minimal element 0, and a binary relation S is consistent
with the successor relation of <, then for every x < v there exists y with xSy.

The consistency of E with the successor relation means that, for all x; y, if xSy then y is the
successor of x with respect to <.

Lemma 10.1 (v) has the extension property and is not equivalent to any existential formula.

Proof To check the extension property, let B be an induced substructure of A and B j= (a).
Suppose that the premise of (a) holds in A. It is easy to see that the premise holds in B. Since
B j= (a), for every x < a in B, there exists y such that B j= xSy. Using the induction principle,
check that every element x 2 A such that A j= x < a belongs to B. (To establish the base of
induction, use the fact that 0, being a distinguished element, belongs to B.) Now suppose that
x < a in A and let y be such that B j= xSy; then A j= xSy.

By contradiction, suppose that (v) is equivalent to an existential sentence

(9u1; : : : ; uk)�(v; u1; : : : ; uk)

where � is quanti�er free. Consider a model B for for the premise of (v) such that jjBjj � k + 3
and S coincides with the successor relation. Choose v to be the maximal element. Fix elements
x1; : : : ; xk such that B j= �(v; x1; : : : ; xk) and choose a non-initial and non-�nal element y di�erent
from all xi. If y0 is the successor of y in B, discard the edge ySy0 of S. The resulting structure
satis�es the existential formula but does not satisfy (v). 2

It is easy to eliminate equality and 0 from . Introduce a unary predicate Z and abbreviate
x 6< y ^ y 6< x as xEy. Let 1(v) be a formula saying:

If

� < is a partial order,

� E is an equivalence relation and the equivalence classes of E are linearly ordered
by <,

� S respects E and is consistent with the successor relation of <, and

� if Z 6= ; then Z coincides with the minimal E-class,

then Z 6= ; and, for every x < v, there exists y such that xSy.

(The formula would look a little more natural if we delete the two occurrences of statement
Z 6= ; and then form the conjuction of statement Z 6= ; and the doctored implication. The reason
for the present, more awkward form is purely technical.)

The global relation of 1(v) can be expressed in datalog with negations. Let �1 be the following
program:

Qv  x < x (18)

Qv  x < y; y < z; x 6< z (19)

Qv  xEy; z < x; z 6< y (20)

Qv  xEy; x < z; y 6< z (21)

Qv  xEy; xSz;:(ySz) (22)

Qv  xEy; zSx;:(zSy) (23)

Qv  xSy; x 6< y (24)

Qv  xSz; x < y; y < z (25)

Qv  Z(x); y < x (26)

Qv  Z(x); xEy;:Z(y) (27)

Qv  Z(v) (28)

Qv  Qu; uSv (29)
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�1 has only one intentional relation, the intentional relation is unary, and there is only one
recursive rule.

Theorem 10.1 The query (�1; Q) is unbounded and equivalent to 1(v).

Proof First, we check that if the antecedent of 1(v) fails then Q is universal. To this end we
suppose that Q is not universal and prove the antecedent. By rules 18 and 19, < is a partial order.
By the de�nition, E is symmetric. By 18, E is reexive. If E is not transitive, then there are
x; y; z with xEy, yEz and either x < z or z < x which contradicts rule 20 or rule 21. Thus, E is
an equivalence relation. It is easy to check that the equivalence classes of E are linearly ordered
by <. By rules 22 and 23, S respects E. By rules 24 and 25, S is consistent with the successor
relation of <. By rules 26 and 27, if Z 6= ; then it coincides with the <-minimal E-class.

Now we can restrict attention to the case when the antecedent of 1(v) holds. In this case, the
rules 18{27 do not �re. Say that an equivalence class Y of E is the successor of the equivalence
class X if there are x 2 X and y 2 Y such that xEy holds. Let I be the smallest collection of
equivalence classes that contains Z and is closed under the successor function. By rules 28 and 29,
the intended value Q� of Q is the union of I. It is easy to see that the succedent of 1(v) holds if
and only if v belongs to that union. Thus, 1(v) and (�; Q) are equivalent.

The unboundedness of (�; Q) is obvious. 2

We turn attention to datalog with inequalities. Recall that a formula or program is plebeian if
it has no individual constants.

Theorem 10.2 In the case of datalog with inequalities, there exists an unbounded plebeian query
that is �rst-order expressible.

Proof We start with constructing a �rst-order expressible unbounded query (�2; Q) with one
individual constant 0. Here is �2:

Qv  x < x

Qv  x < y; y < x

Qv  xSy; xSy0; y 6= y0

Qv  xSy; x0Sy; x 6= x0

Qv  xSy; y < x

Qv  xSz; x < y; y < z

Qv  x < 0

Qv  xS0

0G0

0Gy  xGx; xSy; 0 < y

x0Gy  xGy; xSx0; x0 < y

yGy  xGy; xSy

xBy  x < y; yGy

xBy  xBy0; ySy0; x 6= y

Qv  xB0

Qv  vGv

To check that Q is unbounded, consider an initial segment [0::k] of natural numbers with S
being the successor relation. It is easy to see that the intended value of G is the relation � but k
steps do not suÆce to generate G.

Next we show that Q is �rst-order expressible. Let

Æ = 8x8y
8̂

i+1

:�i

where �i is the conjunction of the members of the body of the i-th clause of �2. Æ says that
< is irreexive and anti-symmetric, that no element has more than one successor or more than
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one predecessor with respect to S, that 0 is a minimal element with respect to < and it has no
predecessors with respect to S, and that S is consistent with < in the following sense: if xSy then
6 y < x and there is no z with x < z < y. The sentence Æ fails if and only if the �rst 8 rules establish
the universality of Q.

We may restrict attention to the class K = Mod(Æ). For, the formula Æ ! "(v) expresses Q if
the formula "(v) expresses Q on K.

View S as the graph of a partial function s. De�ne �0 = 0 and i+ 1 = s(��). Let N be the
greatest number i such that �� exists in the given database. It is easy to check by induction on i
that if i < j � N then �� 6= ��. (Use the fact that if i < j � N but �� = �� then j � 1 is a predecessor
of �i.)

Let n be the greatest number i � N such that for all k < j � i, the given database satis�es
�k < ��. If x < �� and x is di�erent from any �� with j < i, we say that x is a bastard of ��. Let m be
the greatest number i such that no �� with j � i has any bastards.

Let g(v) be the conjunction of three formulas saying respectively:

0 � v

8x8y[x < v �! 9y(xSy ^ y � v)]

< is a linear order on fx : x � vg

where � is the usual abbreviation.

Lemma 10.2 1. g(v) ! (9i � m)(v = �i):

2. xGx ! (9i � n)(x = �i):

Proof (1) Clearly, the right-hand side implies the left-hand side. To prove the other implication,
assume g(v). Then 0 is the minimal element in the set V = fx : x � vg and, for every �i 2 V , if
�i 6= v then i+ 1 2 V . It follows that v = �i where i is the largest number j with �j 2 V . If some
�� 2 V has a bastard b then there is k < j such that �k < b < �k + 1 which is impossible.

(2) It is easy to generate every �iG�i with i � n. Thus, the right-hand side implies the left-hand
side. To prove that left-hand side implies the right-hand side, notice that every G-link has the form
�iG�j, that links �iG�j are generated in the lexicographical order and that a link �iG�j is generated only
if �i � �j. 2

It follows that m � n. Let Æ0 be the universal closure of the formula

[g(x) ^ xSy ^ (8z � x)(z < y)]! (8z < y)(z � x):

Lemma 10.3 1. Æ0  ! m = n:

2. If n > m then Q is universal.

Proof (1) First suppose m = n and check Æ0. The case x < m is obvious. If x = m then the
antecedent fails and therefore the implication holds. Next suppose m < n and check that x = �m
and y = m+ 1 give a counter-example for Æ0.

(2) Suppose that m < n and x is a bastard of m+ 1. Use Lemma 10.2 to verify that � generates
xB�j for every j � m+ 1. Because of the penultimate rule, Q is universal. 2

We may restrict attention to the class K 0 � K of databases satisfying Æ0. For, by Lemma 10.3,
the formula Æ0 ! "(v) expresses Q on K if the formula "(v) expresses Q on K 0.
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By Lemmas 10.2 and 10.3, the formula g(v) expresses Q on K 0. Thus query (�2; Q) is indeed
�rst-order expressible and unbounded. (It is easy to see that B can be replaced by G in �2.)

To get rid of the individual constant 0, one may use a unary predicate Z . Alternatively check
that the reduction of B to B0P given above generalizes to datalog with inequalities. We have
refuted B0P; it follows that B fails as well. Theorem 10.2 is proved. 2

11 Implicit First-Order De�nability

Let R be an r-ary global relation of signature � and P an r-ary predicate that does not belong to
�. R is implicitly de�nable if there exists a �rst-order sentence '(P ) of signature �[fPg such that,
for every �-structure A and every r-ary relation R on A, (A;R) satis�es ' if and only if R = RA.

Theorem 11.1 There exists an unbounded datalog query Q = (�; Q) such that the global relation
of Q is implicitly de�nable.

Proof The desired program � is

xQy  xEy

xQy  xQz; zQy

xQy  xQx0; x0Qx0; y0Qy0; y0Qy

Thus, databases are digraphs, and the intended meaning Q� of Q is obtained from the transitive
closure of the relation E by connecting every ancestor of any circle vertex with every descendent of
any circle vertex. In particular, on acyclic graphs, Q� is the transitive closure of S. By Theorem 1.1,
Q is not �rst-order expressible (without using additional predicate symbols).

The desired sentence ' that de�nes implicitly the global relation of Q is the conjunction of the
universal closures of the following formulas:

xEy ! xPy

(xPz ^ zPy) ! xPy

(xPx0 ^ x0Px0 ^ y0Py0 ^ y0Py) ! xPy

(xPy ^ :xEy) ! (9u; v)[(xEu ^ uPy) ^ (xPv ^ vEy)

Let G be an arbitrary digraph. Obviously, (G;Q�) j= '. Suppose that R is an arbitrary binary
relation on G such that (G;R) j= '. It is easy to see that R includes Q�. By contradiction, suppose
that R properly includes Q� and pick a pair (a; b) 2 R�Q�. Obviously, G has no path from a to b.
According to the last conjunct of ', there exist in�nite chains aEa1Ea2 : : : and : : : b2Eb1Eb. But
G is �nite. Hence some ai lies on a circle and some bj lies on a circle. Hence (a; b) 2 Q�, which
gives the desired contradiction. 2
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