
NEARLY LINEAR TIME �

Yuri Gurevich

Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122

Saharon Shelah

Mathematics, Hebrew University, Jerusalem 91904, Israel

Mathematics, Rutgers University, New Brunswick, NJ 08903

January 1989

Abstract

The notion of linear-time computability is very sensitive to machine model. In

this connection, we introduce a class NLT of functions computable in nearly linear

time n(log n)O(1) on random access computers. NLT is very robust and does not

depend on the particular choice of random access computers. Kolmogorov machines,

Sch�onhage machines, random access Turing machines, etc. also compute exactly
NLT functions in nearly linear time. It is not known whether usual multitape

Turing machines are able to compute all NLT functions in nearly linear time. We

do not believe they are and do not consider them necessarily appropriate for this

relatively low complexity level. It turns out, however, that nondeterministic Turing

machines accept exactly the languages in the nondeterministic version of NLT. We

give also a machine-independent de�nition of NLT and a natural problem complete

for NLT.

�Springer LNCS 363, 1989, 108{118. Partially supported by an NSF grant and a grant from Binational
US-Israel Science Foundation. A substantial portion of the work was done during a week in Fall 1985
when both authors visited Rutgers University; during the last stage of the work, the �rst author was
with Stanford University and IBM Almaden Research Center (on a sabbatical leave from the University
of Michigan).

2

1 Introduction

What is Linear Time? In other words, what is the correct notion of linear time com-
putability? The answer to this question is not clear at all. The notion of Linear Time
seems to be badly dependent on computational model. It is possible that there is no
universal notion of Linear Time and di�erent versions of Linear Time are appropriate to
di�erent applications. On the other hand, Polynomial Time is very robust. Even Turing
machines (walking painfully from A to B on their tapes to achieve what their luckier com-
petitors can do in one step) are adequate for Polynomial Time. An analysis of arguments
in favor of the robustness of Polynomial Time turns up a much more modest but still very
robust extension of the apparently ill-de�ned notion of Linear Time.

To prove that two machine models give the same notion of polynomial time com-
putability, one often checks that any T (n)-time-bounded machine of one kind can be
simulated by some machine of the other kind in time T (n)h(n) where the overhead h(n)
is bounded by a polynomial of T (n) or even n. (We restrict attention to computations
with T (n) � n.) It is often the case that the overhead h(n) is bounded by a polynomial
of the logarithm of T (n); let us call such simulations eÆcient. A noticeable exception is
the simulation of random access machines by Turing machines.

Call a function f(n) nearly linear if it is bounded by the product of n and some
polynomial of logn. (Functions bounded by polynomials of logn are often called polylog
functions of n. Thus, a nearly linear function f(n) is the product of n and a polylog
function of n.) If two machine models eÆciently simulate each other (i.e. every machine
of one kind is eÆciently simulated by a machine of the other kind) then they give the
same notion of nearly linear time computability (as well as the same notion of nearly
square time computability, etc.).

Turing machine models with 2, 3, etc. (linear) tapes form one cluster of machine
models that eÆciently simulate each other. Schnorr [12] introduced and studied the class
QL (for Quasilinear Time) of functions computable on such Turing machines in nearly
linear time and the class NQL of languages accepted by nondeterministic multitape Turing
machines in nearly linear time. He showed in particular that SAT is complete for NQL
with respect to QL reductions; see also [4] in this connection.

We identi�ed an apparently di�erent cluster of machine models that eÆciently simulate
each other. Choosing random access computers (RACs) of Angluin and Valiant [3] as our
basic model in the cluster, we introduce a class NLT of functions computable on RACs in
nearly linear time. (A language is NLT if its characteristic function is NLT.) Among other
models in the cluster are random access Turing machines, Kolmogorov machines, storage
modi�cation machines of Sch�onhage, and Turing machines with the tape in the form of a
tree. All models in the cluster give the same notion of nearly linear time computability.
Thus NLT is very robust. In particular, the de�nition of NLT does not depend on whether
RACs can multiply (or even add) in one step. Section 2 is devoted to the robustness of
NLT. (The class NLT has been announced in [6].)

Whether NLT is the \robust closure" of Linear Time, we believe that it is a useful
approximation to and an extension of Linear Time. QL, on the other hand, may not
contain some functions computable in linear time on any | whatever modest | machine
modelM in the cluster of RACs. For, if (as one may expect) NLT properly contains QL,
then padding inputs of any non-QL function in NLT gives a non-QL function computable

3

in linear time on M machines.
EÆcient simulations of Section 2 survive if deterministic models are replaced by cor-

responding nondeterministic models (and computing functions is replaced by accepting
languages). The nondeterministic version NNLT of class NLT is even more robust than
NLT: We show in Section 3 that NNLT = NQL. The coincidence of NNLT and NQL
sheds some light on the diÆculty of the problem whether NLT properly includes QL. It
implies that NQL contains every NLT language. Moreover, if NLT contains some non-QL
function, then NQL contains some non-QL language L; without loss of generality, some
NTM accepts L in linear time. This is a much wider gap between deterministic and
nondeterministic versions of Turing time that is presently known [10].

In order to stress the machine independent character of NLT, we provide a calculus of
total NLT operations on binary strings in Section 4.

Finally, what reductions are appropriate for NLT decision problems? A natural choice
is to use QL reductions. Problems that are QL hard for NLT are imposible to solve on
Turing machines in nearly linear time unless QL=NLT. In Section 5, we exhibit a decision
problem QL complete for NLT.

2 The Robustness of NLT

2.1 Random Access Computers

A random access computer [3] is an abstract machine with a sequence of memory locations.
The size and the number of locations depend on the input size, so that a RAC can be
seen as a sequence of �nite machines. Each location contains a binary string of length
l = c� logn where n is the size of input and c depends on the given machine only. There
are exactly 2l locations. RAC is controlled by a program (that does not depend on n)
consisting of a �nite sequence of instructions. The time-complexity of a computation is
the number of instructions executed. RACs do all the usual (for random access machines)
operations: store, load, etc. The exact instruction set is immaterial for our purposes.
The instruction set used in [3] is �ne. Those instructions do not use registers. For some
purposes, it may be convenient to use registers.

Call a RAC frugal if the visited locations always form an initial segment. In particular,
a frugal RAC with a nearly linear time bound uses only nearly linear many locations.

Lemma 1 Every RAC can be eÆciently simulated by a frugal RAC.

Proof Whenever the simulated RAC R uses a new location i, the simulating RAC R0

uses the �rst unused location L(i) where it stors both i and the content of i. To be able
to �nd L(i) promptly (whenever R needs location i), R0 uses the balanced tree search and
insertion algorithm [3, 7], namely, the locations L(i) with weights i form a balanced tree.
2

In accordance with [9], call a RAC is a write-once memory machine (or simply non-
erasing) if any bit of (any location in) the memory may be changed from 0 to 1 but never
from 1 to 0.

Lemma 2 Every frugal RAC R can be eÆciently simulated by an appropriate frugal non-
erasing RAC R0.

4

Proof When R writes into a location i for the 2m-th time, R' creates (on a new bloc
of locations) a binary tree Tm with 2m leaves equidistant from the root. If and when R
writes into i for the (2m + k)-th time, where k < 2m, R0 writes (the same content) into
the k-th leaf of Tm; R

0 makes sure that all ancestors of the �rst k leaves, except for the
root, are marked. Marking makes it easy to �nd the last leaf that has been written into
(and thus facilitates easy reads) as well as the �rst leaf that has not been written into yet.
When all leaves of Tm are written into, the address of the next relevant block of locations
is written into the root of Tm. 2

2.2 Generalized Turing Machines

It is not diÆcult to check that RACs can be eÆciently simulated by random access Turing
machines. For the sake of de�niteness, let us formulate a speci�c version of random access
Turing machines.

De�nition 1 An RTM is a Turing machine with three linear tapes, called the main tape,
the address tape and the auxiliary tape, such that the head of the main tape (the main
head) is always in the cell whose number is the contents of the address tape. An instruction
for an RTM has the form

(p; �0; �1; �3)! (q; �0; �1; �2; 1; 2)

and means the following: If the control state is p and the symbols in the observed cells on
the three tapes are binary digits �0; �1; �2 respectively, then print binary digits �0; �1; �2
in the respective cells, move the address head to the left (resp. to the right) if 1 = �1
(resp. = +1), move the auxiliary-tape head with respect to 2, and go to control state
q. An RTM is frugal if at any time t, the length of the address tape is 1 + log(1 + t) and
the length of the auxiliary tape is O(1 + log(1 + t). An RTM is non-erasing if, for every
instruction, �0 � �0.

Lemma 3 Every frugal RAC R can be eÆciently simulated by a frugal RTM M . More-
over, if R is non-erasing then so is M .

Proof Suppose that R uses l-bit locations. Then M uses the i-th block of l cells of the
main tape to store the contents of the i-th location of R. The auxiliary tape is used to
perform arithmetical operations, to make sure that the address head does not fall o� the
address tape, etc. 2

De�nition 2 A BTM is a Turing machine with jumping and bisecting abilities. It has
one tape and one head. In addition to usual Turing instructions, a program for a BTM
can use the following instructions.

Goto(a) Move the head to the cell with the �rst, i.e., leftmost occurrence of a; if a does
not occur on the tape then do nothing.

Bisect(a) If symbol a appears on the tape to the left of the head and the distance j � i
between the position j of the head and the position i of the �rst occurrence of a is
even then move the head to the middle cell (i+ j)=2; otherwise do nothing.

5

Lemma 4 Frugal RTMs can be eÆciently simulated by BTMs.

Proof De�ne BTMs with several heads and call them GTMs. The Bisect command
has the following form for GTMs: Bisect(h1; h2). It sends the active head to cell number
(i + j)=2 where i; j are the positions of h1; h2 respectively (provided that i; j have the
same parity; otherwise the command has no e�ect). A GTM can be simulated by some
BTM with a constant overhead. The desired BTM uses additional tape symbols to mark
the locations of the heads of the given GTM.

Now let M be the given frugal RTM. One head (the right guard) of the desired GTM
M 0 occupies the position of the rightmost used cell of M . Another head (the left guard)
stays in the leftmost cell of the tape. M 0 mimics the address tape of M on a special track
of its only tape. Using the two guards and some auxiliary heads, M 0 is able to simulate
one step of M in O(log t) steps where t is the current position of the right guard. 2

2.3 Storage Modi�cation Machines

There are two brands of storage modi�cation machines in the literature: Kolmogorov
(or Kolmogorov-Uspensky) machines [8] and Sch�onhage machines [13]. A "philosophical"
discussion on storage modi�cation machines versus Turing machines can be found in [5].

Lemma 5 BTMs can be eÆciently simulated by Kolmogorov machines.

Proof Easy. 2

Lemma 6 Kolmogorov machines can be eÆciently simulated by Sch�onhage machines.

Proof Easy. 2

Lemma 7 Sch�ongage machines can be eÆciently simulated by RACs.

Proof In [13], Sch�onhage proves that his machines can be real-time simulated by very
restricted RAMs (RAM1model in his terminology). The same proof shows that Sch�onhage
machines can be eÆciently simulated by very restricted frugal RACs. 2

2.4 Robustness Theorem

The lemmas of this section imply the following theorem.

Theorem 1 RACs, frugal non-erasing RACs, RTMs, frugal nonerasing RTMs, BTMs,
Kolmogorov machines and Sch�onhage machines all eÆciently simulate each other and
therefore compute exactly NLT functions in nearly linear time.

6

3 Nondeterministic Nearly Linear Time

Recall that NNLT (resp. NQL) is the class of languages accepted by nondeterministic
RACs (resp. nondeterministic multitape Turing machines) in nearly linear time.

Theorem 2 NQL = NNLT.

Proof It is obvious that NNLT includes NQL. The proof that every NNLT language L
is NQL builds on the fact that multitape Turing machines can sort in nearly linear time
[12].

Fix an RTM M that accepts L in nearly linear time T (n). If C is a computation of
M of some length t0, de�ne the trace of C as the sequence h(t; qt; at; It; bt; Jt; ct) : t � t0i
where qt; at; It; bt; Jt; ct are respectively the state, the con�guration of the address tape,
the position of the head of the address tape, the con�guration of the auxiliary tape, the
position of the head of the auxiliary tape, and the observed character on the main tape
in the moment t.

Given a string x of length n on a special input tape, the desired nondeterministic
multitape Turing machine N guesses the trace h(t; qt; at; It; bt; Jt; ct) : t � T (n)i of a
presumably accepting computation C of M . It guesses the 6-tuples one by one and
checks that the �rst tuple is correct, and every t + 1-st tuple is consistent with the t-th
one, and qT (n) is accepting. However, N does not check whether characters ct are correct;
this may require going too far into the history of the computation.

In order to check the correctness of characters ct+1, N sorts the tuples �rst by the third
and then by the �rst components. Then it reads the sorted list from the left to right. It
uses a head on the input tape to check the correctnes of the �rst tuple in the block of
tuples with the same content a of the address tape. Now suppose that (t; q; a; I; b; J; c),
(t0; q0; a; I 0; b0; J 0; c0) are in the same block and N knows already that c is correct. The �rst
of the two tuples has enough information for N to decide whether and what M writes
on the main tape at moment t. If M does not write at moment t then c0 = c, else c0 is
exactly the character that M writes on the main tape at moment t. 2

4 A Calculus for NLT

In this section, the term operation is used to denote total functions from binary strings to
binary strings. The lower case letters u; v; w; x; y; z (with or without subscripts) denote
binary strings.

De�nition 3 Initial replacement operations are as follows.

R0u;y(x) If u is an initial segment of x then replace it with y; else do nothing.

R1u;y(x) If u appears in x (as a substring) then replace the �rst, i.e., leftmost occurrence
of u in x with y; else do nothing.

R2u;v;y;z(x) If u and v appear in x and their �rst occurrences do not overlap then replace
the �rst occurrences of u and v with y and z respectively. It is assumed that all four
parameter strings have the same length.

7

R3u;v;w;y;z(x) If x has a form : : : ux0vx00w : : : where the shown occurrences of u and w are
leftmost and jx0j = jx00j then replace the shown occurrences of v and w with y and z
respectively; else do nothing. It is assumed that all �ve parameter strings have the
same length.

De�nition 4 If f is an operation, then f 0(x) = x, f i+1(x) = f(f i(x)) and f �(x) =
f jxj(x). The operation f � is called the iteration of f .

De�nition 5 An iterated replacement is the iteration of the composition of initial re-
placement operation.

Lemma 8 Every iterated replacement is NLT.

Proof Sketch Suppose we want to compute the iteration of a composition g of initial
replacement operations. The initial replacement operation in g have parameter strings (u
or u; v or u; v; w) that need to be found and ma;y be replaced; let U be the collection of
all such parameter strings. The idea of the desired algorithm is to maintain a tree such
that the current string x is the string of leaves and every node p of the tree keeps the
list of U -strings that occur in the portion of x below p (trees tend to grow downward in
computer science). It is easy to see that every replacement and the resulting update of
the tree can be performed in polylog time. 2

De�nition 6 Initial extension and contraction operations are as follows.

Eu;v(x) Simultaneously replace every 0 with u and every 1 with v. Here u and v are
di�erent strings of the same length.

Cu;v(x) If x = Eu;v(y) for some y then y, else x.

Au(x) Add a tail of ln many copies of u to x. Here n is the length of x, and l is the
length of the binary notation for n.

Du(x) Delete the (maximal) tail of u's in x.

LetK be the closure of initial operations and iterated replacements under composition.

Theorem 3 K is exactly the set of NLT operations.

Proof It is easy to see that every initial operation is NLT and that NLT is closed under
composition. It remain to apply Lemma 8 to show that every K operation is NLT.

To show that every NLT operation f is in K, �x a BTM (see Section 2) that computes
f in nearly linear time and consider the computation of M on an input x of length n. Let
A1 be the set of states of M , A2 be the set of tape symbols of M and A = A2[(A1�A2).
Assign di�erent binary strings of a �xed length l to elements of A; if an element a is
assigned a string b1 : : : bl, code a with a string c(a) = 11b10b20 : : : bl0 of length 2 + 2l. If
w is a string a1 : : : ak over A, code w with c(w) = c(a1) : : : c(ak). (The arti�cial form of
letter codes serves the following purpose: There are no "illegal" sneaking occurrences of
letter codes in any c(w).)

If p is the initial state of M , a codes the pair (p; 0) and b codes (p; 1), then

8

f0 = R0c(1);b ÆR0c(0);a Æ Ec(0);c(1)

is the code for the the initial con�guration of M where the blanks are ignored. Let B
the code of the blank tape symbol of M and m = m(n) be a nearly linear upper bound
on both the run-time of M and the space used by M . There is a composition (AB)

k of
several copies of AB such that the length of the string

f1(x) = (AB)
k(f0(x))

exceeds lm.
For expositional purposes, it is convenient to assume thatM has a �nite tape of length

m. Then instantaneous descriptions (IDs) of M have the form a1 : : : am where exactly
one of the symbols ai belongs to A1 � A2 and the others belong to A2. The code c(w) of
an ID w will be called the binary instantaneous description (BID) of M . In particular,
f1(x) is the initial BID of M .

For every instruction I ofM there is a composition gI of initial replacement operations
such that for every BID y of M ,

gI(y) = [If I is applicable at y then the next BID, else y].

In the case of a Turing instruction, the desired gI is a composition of R1 operations.
In the case of Goto, gI is the composition of R2 operations. And in the case of Bisect,
gI is a composition of R3 operations. Let g be the composition of all gI . Then for every
BID y of M , g(y) is the next BID of M (if y is a halting BID then g(y) = y).

It is easy to see that f2(x) = g�(f1(x)) is the �nal BID ofM . Let f3 be the composition
of f2 with a composition of R1 operation that "erases" the state, so that f3(x) is c(f(x))
with a tail of B's. Then

f = Cc(0);c(1) ÆDB Æ f3:2

5 A Complete Problem

We start with a generalization of boolean formulas. The two boolean constants \true"
and \false" are identi�ed with 1 and 0 respectively. A simple (boolean) variable is an
expression of the form pu, where u is a binary string. A complex (boolean) variable is an
expression of the form pw where w is a string of boolean constants and simple boolean
variable. (A simple variable is also a complex variable.) An equation is an expression
of the form pw = F where pw is a complex variable and F is a boolean combination of
complex variables. A generalized boolean formula is a sequence of equations.

An environment is a function that evaluates (i.e. assigns boolean constants to) some
simple variables. An environment e identi�es a complex variable pw if every simple
variable in w belongs to the domain of e. For example, if w = 01p0p1 and e(p0) = 0 and
e(p1) = 1 then e identi�es pw as the simple variable p0101. An environment e evaluates a
complex variable pw if it identi�es pw and evaluates the resulting simple variable. Suppose
that e identi�es pw as some simple variable q and suppose that e evaluates every variable

9

in a boolean combination F and therefore evaluates F to some boolean value b; then the
equation pw = F alters e to a new environment e0 such that dom(e0) = dom(e)[fqg, and
e0(p) = e(p) for every p in dom(e)� fqg, and e0(q) = b (the original environment e could
be de�ned or unde�ned at q.)

A generalized boolean formula E0; : : : ; Em is true if there are environments e0; : : : ; em
such that

� e0 is the empty environment,

� Ei alters ei to ei+1, for every i < m, and

� em evaluates Em to \true".

Theorem 4 The problem of evaluating generalized boolean formulas is complete for NLT
under QL reductions.

Proof It is clear that the problem is NLT. We will prove that the problem is hard
for NLT. Given a language in NLT, �x a frugal non-erasing RTM M (see Section 2) that
accepts the language. The desired generalized boolean formula describes the computation
of M on some input of length n. Let t range over the steps in the computation and a over
possible contents of the address tape. The diÆculty is how to describe the main tape of
M at all times; we cannot have a separate boolean variable for every pair (t; a). To get
around a similar diÆculty in his proof of NQL completeness of SAT, Schnorr used the
fact that Turing machines can be eÆciently simulated by oblivious Turing machines [11].
However no obliviousness result is known for random access Turing machine.

Our generalized boolean formula will use nearly linear many simple boolean variables
which split into several groups. For example, qt is a group of about T � logm simple
boolean variables where T is a bound on the length of the computation and m is the
number of control states; the intended meaning of qt is the control state at moment t.
The intended meaning of other groups of simple variables is as follows:

at The contents of the address tape at moment t.

at;i The i-th digit in at.

It The position of the head of address tape at moment t.

bt The contents of the auxiliary tape at moment t.

bt;j The j-th digit of bt

Jt The position of the head of auxiliary tape at moment t.

ca The contents of the cell number a of the main tape. (Notice the lack of the time
parameter.)

accept A special boolean variable to signal the acceptance.

For each t, the desired system of equations contains a subsystem St of polylog(n) many
equations each of length polylog(n). If t1 < t2 then St1 equations precede St2 equations.
S0 equations reect the initial conditions of M ; they

10

� set q0 to the initial state of M ,

� initialize all a0;i and b0;j to zero,

� set variables ca with respect to the initial con�guration.

The St+1 equations reect the updates performed at time t. They set each of

qt+1; at+1;It; It+1; bt+1;Jt; Jt+1

equal to an expression of the form

f(qt; at;It; bt;Jt; cat)

for appropriate boolean functions f . And cat is set to:

cat _ g(qt; at;It; bt;Jt)

for an appropriate function g.
The �nal equation in our system (in addition to all equations in all St) sets the variable

accept to 1 if the �nal state of M is accepting. 2

Remark 1 During the presentation of this paper in IBM Almaden Center on Bay
Area Theory Day, November 11, 1988, Moshe Vardi noted the special character of the
generalized boolean formulas, constructed in the proof of Theorem 4: if an environment
e is altered to an environment e0 and e0(q) 6= e(q) then e0(q) = 1. In other words,
environments are revised only upward; this gives a avor of least �xed points to our
generalized boolean formulas. Moshe asked about a natural NLT problem explicitly in
terms of least �xed points. The thought is attractive; the details need to be worked out.

Remark 2 The reductions of Theorem 4 are not only QL but also logspace. There is
however a problem with logspace QL reductions: there is no reason to believe that they
are closed under composition.

11

References

[1] G. M. Adelson-Velsky. Soviet Math. 3 (1962), 1259-1263.

[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass. 1974.

[3] Dana Angluin and Les Valiant. Fast Probabilistic Algorithm for Hamiltonian Cir-
cuits and Matchings. J. of Computer and System Sciences 18 (1979), 155{193.

[4] Stephen A. Cook. Short Propositional Formulas Represent Nondeterministic Com-
putations. IPL 26 (1987/88), 269{270.

[5] Yuri Gurevich. Kolmogorov Machines and Related Issues: The Column on Logic
in Computer Science. Bulletin of European Assoc. for Theor. Comp. Science 35,
June 1988, 71{82.

[6] Yuri Gurevich and Saharon Shelah. Functions Computable in Nearly Linear Time.
AMS Abstracts 7:4 (1986), p. 236.

[7] Donald E. Knuth. The Art of Computer Programming: Volume 3 / Sorting and
Searching. Addison-Wesley, Reading, Mass. 1973.

[8] A. N. Kolmogorov and V. A. Uspensky. On the De�nition of an Algorithm. Uspekhi
Mat. Nauk 13:4 (1958), 3{28 (Russian) or AMS Translations, ser. 2, vol. 21 (1963),
217{245.

[9] Sandy Irani, Moni Naor, Ronitt Rubinfeld. On the Time and Space Complexity of
Computation Using Write-Once Memory.Manuscript, Computer Science Division,
UC Berkeley, Nov. 1988.

[10] W. J. Paul, N. Pippenger, E. Szemeredi and W. T. Trotter, On determinism versus
non-determinism and related problems. Proc. 24th IEEE Symposium on Founda-
tion of Computer Science, November 1983, Tucson, Arizona, 429{438.

[11] N. Pippinger and M. J. Fischer. Relations among Complexity Measures. J. ACM
26:2 (1979), 361{381.

[12] Claus P. Schnorr. Satis�ability is Quasilinear Complete in NQL. Journal of ACM
25:1 (1978), 136{145.

[13] A. Sch�onhage. Storage Modi�cation Machines. SIAM J. Computing 9:3, August
1980, 490{508.

