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1. Introduction 

In [2), Yuri Matijasevitch, famous for complet- 
ing the solution of Hilbert’s tenth problem sug- 
gested three very nontraditional methods to solve 
the search version of the well-known NP-complete 
problem 3-SAT: Find values of propositional vari- 
ables pt,. . . , p, satisfying a given formula 

A = A (P,{,l,l, v PfOn.2) v Pf(m.3) > 
m 

where 1 <f(m, k) Q 2n and ~~+~=~p, for all 
i Q n. He wrote: “A unifying feature of the meth- 
ods is that they are inspired by real phenomena in 
nature. The phenomena were only the starting 
point for reflection; they give a convenient lan- 
guage, but the author does not propose to realize 
the corresponding physical processes. We speak 
only about solving the corresponding differential 
equations.” 

* The work of the first author was partially supported by 
NSF Grant DMS 85-01752. 

* * The work of the second author was partially supported by 
NSF Grant DCR85-03275. Also, during the final stage of 
the work the second author was with Stanford University 
and IBM Almaden Research Center (on a sabbatical leave 
from the University of Michigan). 

We offer here our critical reaction, pointing out 
some apparently major problems with the sug- 
gested methods. In spite of the criticism, the spirit 
of nontraditional methods appeals to us. 

For the reader’s convenience, the reaction is 
interleaved with descriptions of the methods. 

1. Method I: In vitro 

Description of the method 
Reactions among 2n chemicals M,, . . . , M2” in 

a solution lead to formation of precipitates; 
namely, precipitates result from 
l every pair M, and M,+i, 

l every triple MfC,.,), MfC,, 2) and MfCm.3). 
The concentrations ci( t), . . . , c2,,( t) of chemi- 

cals M,,..., M,, satisfy differential equations: 

c’ = --a&” I n+i - fix (C~~,I&n.2&m.3~) 

where the sum is over all m such that i = j(m, k) 
for some k, and c2,,+, = c,, and parameters 
a, fi, X, p are positive. 

The system tends to a limit equilibrium 
c,(oo),..., c2”(cc) with ~~(cc)c,,+~(cc) = 0. Call an 
equilibrium degenerute if fewer than n chemicals 
remain. Every equilibrium gives a partial assign- 

0020-0190/89/%3.50 8 1989, Elsevier Science Publishers B.V. (North-Holland) 41 



Volume 32, Number 1 INFORMATION PROCESSING LETTERS 3 July 1989 

ment to variables p,, . . . , pn: p, is true if c,(co) = 
0 f c,+,(cc), and p, is false if ci(cc) f 0 = 

1.1. Lemma. Suppose that p, appears as a literal in 
every clause of A that contains p, as a Literal and 

c,+,( cc). If the equilibrium is nondegenerate then 
this is a full assignment that satisfies A. 

that c,(O) > c,(O) + c,,+;(O). Then c,(w) > c,(w) + 

c,+,(@J)- 
A state of the system is determined by the 

current concentrations ci. The initial states are 
chosen randomly from the unit hypercube. Mati- 
jasevitch asks whether the event [the equilibrium is 
degenerate] comprising the initial states that lead 
to degenerate equilibria, is of measure zero. 

Comments 
Unfortunately, the method does not work even 

for 2-SAT; we presume that if the mth clause 
contains only two literals p,(,,,,) and ~t(,,,~), then 
it contributes a summand -&~C,,,&,,Z) to the 
corresponding differential equations. The formula 

Proof. It suffices to prove that the derivative (c, - 

cj - C,+i) ’ is never negative. Rewrite the derivative 
using the differential equations for c,, cj and c,+,. 
The term -ac;hc,h+, arising from c,: is cancelled by 
the corresponding term arising from c:,~. The 
other terms arising from c,!, those involving /3, are 
cancelled by corresponding fi terms arising from 
c;. After these cancellations, only nonnegative 
terms remain. 0 

B=A{(,p,Vpj):j=i+l,orelsei=n 

1.2. Lemma. Zf reals x,, x2, x3 are randomly and 
independently chosen from the real interval [0, l] 
then Pr[x, > x1 + x3] = 2. 

and j= l} 

has exactly two satisfying truth assignments, one 
with all pl,..., p, true and one with all pl,. . . , p, 
false. But the corresponding chemical reaction has 
many stable equilibria. in the cyclic ordering 

Proof. In the unit cube of all possible triples 

tx,, x2, x3), the triples that satisfy x2 > x, +x3 
form a tetrahedron whose volume is easily com- 
puted to be t. u 

any initial distribution that has at least one zero 
concentration between every two non-zero ones is 

an equilibrium, i.e., will not change with time. If, 
furthermore, there are never more than two con- 
secutive zero concentrations (in the cyclic order 
above), then the equilibrium is stable in the fol- 
lowing sense: any sufficiently close initial condi- 
tion leads to the same pattern of zero and non-zero 
concentrations (but not, of course, to the same 
numerical values of the non-zero ones, so we are 
dealing not with a stable state but with a stable 

manifold). The number of stable equilibria in- 
creases exponentially with n, and it is reasonable 
to expect that Pr[the equilibrium is degenerate] 
quickly increases with n. We prove next that this 
expectation is correct. 

Let the event [A fails] comprise the initial 
states leading to degenerate equilibria such that 
the corresponding partial assignments cannot be 
extended to a total assignment satisfying A. 

1.3. Theorem. As n increases, Pr[ B fails] ap- 
proaches 1 exponentially fast (relative to n). 

Proof. Let 

P n, TPn* PI ) 

and let dj be the concentration of the chemical 
corresponding to q,. To simplify the exposition, 
we suppose that n is divisible by 3. Split the 
interval [l..2n] into 6-tuples [1..6], [7..12], [13..18], 
and so on. 

In the next lemma, A is the instance of 3-SAT 
exhibited in the introduction or a similar formula 
with some clauses of length 2. In particular, the 

lemma applies to B. 

By Lemma 1.2 and the independence of ran- 
dom variables d,, the probability that some 

d,,+,(O) ’ d,,+,(O) + d,,+,(O) 

equals 1 - (z)“/3. Similarly, the probability that 
some 

42 



Volume 32, Number 1 INFORMATION PROCESSING LETTERS 3 July 1989 

4,+,(O) ’ 4,+4(O) + 4,+&o 
equals 1 - (“)“/3. By the independence, the 
probability th”,t there are k and I such that 

4,+,(O) ’ 4,+,(O) + 4ik+3@) 

and 

4,+,(O) ’ 4,+,(O) + 4,+,(O) 

equals (1 - ($)“/‘)*. By Lemma 1.1, the probabil- 

ity that some deki2 (co) > 0 and some d,,+,(m) > 
0 is at least (1 - (2)“13)*. But every dbkc2 is some 
ci with i,<n, and every d6,+5 is some c,+, with 

i < n. Hence, every event [dhk+*(w) > 0 A 
d 6,+k(co) > 0] implies the event [B fails]. 0 

The exponential character of convergence is 
important in the light of an attractive conjecture 
that NP = R. Recall that a language L over some 
alphabet Z is in R if there exist a deterministic 
Turing machine M and polynomials g, h such 
that for every Z-string s the following are equiv- 
alent: 
a SEL, 
l there is a binary string t of length h( 1 s I) such 

that M accepts the pair (s, t) within time 

g(Isl), and 
l for at least one half of all binary strings t of 

length h( Is I), M accepts the pair (s, t) within 

time g( Is]). 
It is clear that R c NP and that NP = R if 

3-SAT belongs to R. If Pr[the equilibrium is not 
degenerate] exceeds 1 A I -k for some constant k 
and all (sufficiently long) formulas A, then repeat- 
ing the experiment only polynomially many times 
yields Pr[in at least one run, the equilibrium is not 
degenerate] > $; this would imply that 3-SAT be- 
longs to R. But then, in the case of B, Pr[the 
equilibrium is not degenerate] exceeds nmZk for 
sufficiently large n (because I B I = O(n log n) = 
0( n*)), which contradicts Theorem 1.3. 

In Theorem 1.3, we dealt, for simplicity, with 
an instance B of 2-SAT (rather than 3-SAT) and 
we assumed a corresponding modification of 
Matijasevitch’s differential equations. Let us ex- 
hibit similar difficulties in the originally proposed 
context of 3-SAT. (One of our referees felt that 
this is unnecessary, but a proponent of Matijase- 

vitch’s method may feel differently.) Define B’ to 
be the instance of 3-SAT obtained from B by 
replacing each clause (7pi V pi) with 

( ~P,vP,vq)*(,P,vP,v,q), 

where q is a new variable. The proof of Theorem 
1.3 can be repeated to establish that Pr[B’ fails] 
approaches 1 exponentially fast. 

One may argue that the failure of Method I for 
the specific formulas B and B’ does not exclude 
the possibility that the method works for “most” 
formulas. But the traditional methods, like back- 
tracking, are known to solve 3-SAT in expected 
polynomial time with respect to many natural 

probability distributions; see, for example, [3]. 
The formula B was chosen as a simple illustration 
of fairly general phenomena. It is still possible 
that Method I gives a good heuristics for an 
important subclass of 3-SAT; it is up to the pro- 
ponents of the method to exhibit such a subclass. 

2. Method II: “Creation” 

Description of the method 
In a k-dimensional space, there are ci atoms of 

an element ~1, where 1 Q i Q 2n. The following 
gravitational forces act: 

(1) If Ii -jl f n then an atom of a, and an 
atom of aj attract each other with force F(r) 
where r is the distance between them; otherwise 

they repel each other with force G(r). 

(2) If i=f(m, l), j=f(m, 2) and k=f(m, 3) 
for some m, then three atoms of ai, (I, and a, 
respectively repel with forces H(r,,,, r/,k, rk,;), 

H(Tj.k, ‘k.,, r,.,>T H(rk.,r r,,j7 5.k) where ‘l,j* ‘I,k? 

I-~,; are the respective distances. 
Forces F, G, H decrease to zero at infinity and 

increase to infinity when atoms draw together in 
an unbounded way. In addition, “the force of the 
friction on vacuum” may exist; it may depend on 
velocities and/or higher derivatives. A “Newton’s 
law” holds: the acceleration (or a higher deriva- 
tive) is proportional to the sum of acting forces. 
(One of the referees suggests that the three forces 
in (2) should lie in the plane of the three atoms 
and should sum to zero, so that Newton’s third 
law holds.) 
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In the evolution of the system, planets-gather- 
ings of atoms with only attracting forces-may 
form. A planet with atoms of n elements gives an 

assignment 

P, - [the planet has no atoms of a,] 

to P,,..., p, that satisfies the formula A. Mati- 
jasevitch asks whether it is possible to use the 
arbitrariness in the choice of “physical laws” to 
create a model where, for not very big quantities 
ci, some n-element planets will form in a relatively 
short time provided the formula A is satisfiable. 

Comments 
Since only one planet of the right size is needed, 

it seems reasonable to expect that such a planet 
will form if A is satisfiable and there is a suffi- 
ciently big number of atoms of each kind. But 

then it may take too long to decide whether the 
final state has a large enough planet. 

A space of finite measure seems more ap- 
propriate for the “experiment”. One possibility is 
to consider the unit hypercube and stipulate that 
whenever an atom leaves the hypercube it im- 
mediately reappears from the opposite side. 

In the case of formula B, there are only two 

sets of n elements ai and exponentially many sets 
of fewer than n elements a, such that the corre- 
sponding planets repel any atom of any kind that 
does not exist on the planet. It seems unlikely that 
for not very big quantities cir some n-element 
planets will form in a relatively short time. 

The relative magnitudes of forces are very im- 
portant. If attractive forces are comparable to 
repulsive then there may be stable gatherings with 
some repulsive forces (pseudo-planets); a few re- 
pelling atoms may be kept on a pseudo-planet by 
overwhelming attractive forces. But with strong 
repulsive forces, a planet can have pieces knocked 
loose by near-collisions with atoms that it repels. 

3. Method III: Resonance 

Description 
There are 2n + 1 pendulums P,,,.. ., P2,, which 

are one-dimensional oscillators satisfying the dif- 
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ferential equation x” = --(IX in the absence of 
outside forces. The following additional forces, 
depending on velocities, influence pendulums 

p PZ”. ,,...r 
Braking forces act on Pi and P,,+, when they 
swing in the same direction, and accelerating 
forces act on them the rest of the time. 

Braking forces act on &,,,t,, P,(,+, &,,,,s, 
when they all swing in the direction of P,, and 
accelerating forces act the rest of the time. 
Given a satisfying assignment for A, swing Pi 

in phase (resp. out of phase) with PO if pi is false 
(resp. true); here 1 < i Q 2n. In this initial mo- 
ment, only accelerating forces influence pendu- 
lums PI,..., Pzn, and one may expect that also in 
the future most of the time there will be no 
braking forces and, out of two pendulums Pi and 
P,,+i, one will be almost always in phase with PO 
and the other will be almost always out of phase. 
Is it true that if formula A is satisfiable then the 
system will arrive at a similar regime from almost 
any initial state? 

It is possible, writes Matijasevitch, to introduce 
forces of friction and parametric pumping [l]. 

Comments 
The third method is different; the idea seems to 

be to avoid stable configurations of wrong kinds. 
Again, the relative magnitudes of forces are of 
great importance. If braking forces are compara- 
ble to accelerating ones then unwanted configura- 
tions may resonate, with the braking forces being 
dominated by accelerating ones. If braking forces 
are much stronger than accelerating then they may 
bring the system to a halt. 

The method introduces many arbitrary parame- 
ters to determine the exact forces. Since this makes 
analysis very difficult, we consider a greatly sim- 
plified model, which we hope preserves some of 
the spirit of Matijasevitch’s proposal. 

We represent the motion of the pendulum cor- 
responding to a literal 4 of the formula A by a 
number xg whose absolute value is the amplitude 
of the oscillation, with xq -z 0 (resp. xq > 0) if the 
pendulum is in phase (resp. out of phase) with the 
yard-stick pendulum P,,. (We pretend that inter- 
mediate phases do not occur.) As a further sim- 

plification, we consider a simple discrete-time ana- 
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log. We suppose that every conjunct in A is a > 0, each y;U+3.J(t) < 0 and ~~,,~(t) > a + 

2-clause. yJuc3(t) if t = 0. Then the same holds for every t. 

At each time step, each xg is updated by get- 
ting a number of summands. One summand is 
contributed by the pair (q, r) where r is the 
opposite of q, i.e., either q is a variable and 
r = -q or else r is a variable and q = 7r. This 

summand is 

Proof. By symmetry, it suffices to prove only the 
first statement. Without loss of generality, II = 0. 
It is easy to see that each ~,.~(t) > 0, each xi,Jr) 

(0, each y, ,(t) > 0 and each ~;,~(t) -c 0 for all 
t. 

if X~X, > 0 then - a sig( x,) else a’ sig( .x4). 

In addition, every clause q V r contributes a sum- 
mand 

Suppose that yl(t) is positive and exceeds LY -t 
x, (t ). If x, (t ) Q 0 then y, gets only positive sum- 
mands at moment t. If x,(t) > 0 then 

_Y,(t + I) &Yi(f) -a > x,(t) > 0. 

ifx,<Oandx,<O thenp elsep’sig(x,). 

Here (T, (r’, 8, /3’ are positive reals. At each 
moment t, the system defines the following assign- 
ments sA(t) to the propositional variables: A vari- 
able p is true if and only if xP > 0. We suppose 
that the initial values x,(O) are drawn at random 
from some real interval [ - Y..v] with v exceeding 
any of the four numbers (r, a’, p, p’. 

In any case, y,(t + 1) > 0. It remains to check that 

yi(t + 1) > OL + x,(t + 1). First suppose that x,(r) 

> 0. Then 

y,(t+l)=y,(t)+j?‘(h+l)-a 

>a+x,(t)+p’(h+l)-a 

>,a+x,(t+ 1). 

Let h be the least integer s.t. 2a’ + (2h + l)p 
> /?, and let C be the extension of the formula B 
by means of clauses q v qJ where q ranges over 
the 2n literals of B and 1 GJ’ < h and each qJ is a 
new propositional variable (the total number of 

variables in C is n + 2nh). 

The case xl(t) = 0 is trivial: xi does not change 
at moment t whereas yi increases. So suppose 
that x,(t) -Z 0. Then 

3.1. Theorem. The probability that the assignment 
s,-( t ) does not satisfy C for any t whatsoever ap- 

proaches 1 exponentially fast (relative to n). 

Proof. For each variable p = pi of B, let 

xi, y,, x ,,,, x;.~, yi,‘, y,lj abbreviate quantities x 

with subscripts p, ip, pJ, -(p’), (7p)j, 
4(-,p)‘) respectively. As in the proof of Theorem 
1.3, we assume for simplicity that n is divisible by 
3. Break the sequence xi, y,, x2, yr,. . . , x,, y, 
into 6-tuples 

1x 3ut1, Y3uc19 x3u+2, Y3u+2, X3,+39 Y3ut3 . 1 

3.2. Lemma. (1) Suppose that ~~~+~(t) > 0, each 
X 3u+4~)>Ot eachXL+,i(t)<Ov eachY3,+li(t> 
’ 0. each y~,+,,_Jt) -z b and Gus+, > h + 

x3,+,(t) if t = 0. Then the same holdr hoI& for 
every t. 

By the choice of h, the increase of yi is at least as 
big as the increase of xi. The lemma is proved. •I 

Proof of Theorem 3.1 (continued ). There exists a 
positive probability E that all conditions of the 
first (resp. second) part of the lemma are satisfied 
for a given u (resp. v). With probability (1 - (1 - 
E)~‘~)* there exist u, v such that the conditions of 
both parts of the lemma are satisfied. But the 
conclusions of the lemma imply that no s(t) 
satisfies B and therefore no s(t) satisfies C. EI 
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