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THE JOURNAL OF SYMBOLIC Looic 
Volume 54, Number 2, June 1989 

ON THE STRENGTH OF THE INTERPRETATION METHOD 

YURI GUREVICH AND SAHARON SHELAH 

Abstract. In spite of the fact that true arithmetic reduces to the monadic second-order 
theory of the real line, Peano arithmetic cannot be interpreted in the monadic second-order 
theory of the real line. 

?0. Introduction. The decision problem for the monadic second-order theory of 
the real line was posed by Grzegorczyk in 1951 [Gr], and was proved undecidable 
in 1976 by Shelah [Sh]. Shelah reduced the first-order theory of true arithmetic to 
the monadic second-order theory of the real line. In other words, he constructed an 
algorithm that, given a sentence p in the first-order language of arithmetic, produces 
a sentence p' in the monadic second-order language of order such that p is true in 
the standard model of arithmetic if and only if p' is true in the real line. Shelah's 
proof was analyzed, strengthened and generalized in several papers by the present 
authors (see [Gu2]). In particular, the following somewhat strange results were 
proved in [GS]: 

Let V be a model of ZFC, B the Boolean algebra of regular open subsets of the 
real line in V, and VB the corresponding Boolean-valued model of ZFC. The full 
second-order VB-theory of arithmetic reduces to the monadic second-order V- 
theory of the real line. If V satisfies the continuum hypothesis then the full second- 
order VB-theory of the real line reduces to the monadic second-order V-theory of 
the real line. 

In spite of these strong reducibility results, we prove in this paper that Peano 
arithmetic is not interpretable in the monadic second-order theory of the real line. 
Actually, we prove a stronger result which is also more convenient to prove. To 
formulate the stronger result we need a couple of definitions. 

DEFINITION 0.1. We define a first-order theory with equality which will be called 
the weak set theory. The signature of the weak set theory consists of one binary 
predicate symbol P, and the axioms of the weak set theory are as follows: 

(a) Vx3yVz[P(z, y) +-* z = x]. 
(b) VxVy3uVz[P(z, u) +-+ (P(z, x) or P(z, y))]. 

(c) 3xVy1-- P(y, x)]. 
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It is a very weak set theory indeed, and it is easily interpretable in Peano 
arithmetic; see ?3 in this connection. 

DEFINITION 0.2. A chain is a linearly ordered set. A colored chain is a chain with 
additional unary predicates (the colors). 

DEFINITION 0.3. A chain C is short if every well-ordered subchain of C is 
countable and every well-ordered subchain of the inverse of C is countable. (Notice 
that the real line is short.) 

MAIN THEOREM. The weak set theory is not interpretable in the monadic second- 
order theory of any short colored chain. 

The notion of interpretation is recalled in detail in ?1. 
The reader may wonder: If Shelah's reduction of true first-order arithmetic to the 

monadic second-order theory of the real line is not an interpretation, then what is it? 
A closer look on the reduction reveals that it is a kind of generalized Boolean-valued 
interpretation. This is made explicit in [GS], where the Boolean-valued character 
of generalized interpretations is exploited to give the above-mentioned stronger 
reducibility results. Our Main Theorem shows that the Boolean-valued character of 
the generalized interpretation is essential. 

We are greatly thankful to the referee for the following important remark: 

It should be noted ... that this is not the first example in the literature of 
an undecidable theory T such that true arithmetic or Peano arithmetic or 
even the weak set theory cannot be interpreted in T. The examples I have in 
mind are various stable theories which have been shown to be undecidable 
by Walter Baur, such as the theory of pairs of abelian groups or the theory 
of modules over certain finite rings. Baur's method is to give a reduction of 
undecidable word problems into these theories. Clearly any interpretation 
of the weak set theory into a theory T would give rise to a formula defining 
a linear ordering on an infinite set in some model of T, forcing such a T to be 
unstable. 

For a specific example, see [Ba]. 

?1. The notion of interpretation. In this section we recall the well-known notion 
of interpretation of one first-order theory in another. This notion is a generalization 
of Tarski's original and slightly more restricted notion [TMR]. 

It will be assumed in this paper that every first-order language is a first-order 
language with equality. 

DEFINITION 1.1. Let a be a signature <P1, P2,...>, where each Pi is a predicate 
symbol of some arity ri. An interpretation of a in a first-order language L' is a 
sequence 

I = <d, U(v1), E(v1,v2), P'1(v1,. ..,Vr1), P'2(v1, ,vr2), >, 

where: 
(a) d is a positive integer (the dimension); 
(b) U(v1) and E(v1,v2) are L'-formulas (the universe formula and the equality 

formula respectively); and 
(c) each PX(v1,..., Vri) is an L'-formula (the interpretation of Pi). 
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Here v1, V2, .. are disjoint d-tuples of distinct variables of L', and the formulas 
U(v1), E(v1,v2), and P'(vl,..., vi) contain no free variables in addition to those 
shown. If U(v1) is logically true we call I universal. 

Definition 1.1 may be criticized as not sufficiently rigorous. What is exactly the d- 
tuple v1 in the universe formula? First of all, the universe formula may have less than 
d variables. But even if it has exactly d variables, how are they ordered? What is the 
first variable in v1, for example? Similarly, what exactly are the d-tuples v1 and v2 
in the equality formula, and what are the d-tuples vl,..., vi in the formula 
Pi(vl,... , Vri)? One can settle these questions by requiring that v1 consists of the first 
d variables of L', V2 consists of the next d variables, and so on. 

Definition 1.1 may also be criticized as not sufficiently general. One way to 
generalize Definition 1.1 is to allow individual parameters in the interpreting 
formulas U(v1), E(v1, v2) and P'(vl,... , VJ However, the same effect can be achieved 
by extending L' by means of individual constants. This is why the Main Theorem 
speaks about colored chains. Extending a specific monadic second-order language 
of colored chains by finitely many individual constants means simply adding fi- 
nitely many colors to the existing signature. Thus introducing colors allows us to 
use the simpler definition of interpretation without losing generality. 

Another natural way to generalize Definition 1.1 is to allow function symbols and 
in particular individual constants (which we consider to be 0-ary function symbols) 
in the signature a. We will in effect circumvent this generalization by restricting our 
attention to relational versions of first-order theories. 

DEFINITION 1.2. Let T be an arbitrary first-order theory, and let a be the signature 
of T. A relational version v* of a is the signature that results from replacing every 
function symbol f in a by a new predicate symbol, called Gf in this definition, of arity 
equal to one plus the arity of f. The functional version of an arbitrary a*-formula p is 
the result of replacing, every subformula Gf(xi,. . . , Xr, y) of p by the a-formula 
f(x1, .. ., Xr) = y. The relational version of T in the signature v* is the first-order 
theory T* in the signature v* such that an arbitrary a*-formula p is a theorem of T* 
if and only if the functional version of a is a theorem of T. 

If a is a signature, let L(a) be the first-order language of a. 
DEFINITION 1.3. Let a, L' and I be as in Definition 1.1. Fix a function that 

associates each L(a)-variable v with a d-tuple v' of distinct L'-variables in such a 
way that if u and v are different L(a)-variables then the tuples u' and v' share no 
common variables. By induction, we define the I-translation p' of an arbitrary 
L(a)-formula A: 

(a) (x = y)' = E(x', y'). 
(b) If P is a predicate symbol of arity r in L, then (P(x1, . . , Xr))' = P'(x'1,.. ., 4). 
(c) (n (p)' = m ((P'), ((P & //' = (p' & V'), and (p v /)' = (p' v /'). 

(d) (Vx(p(x))' = Vx'[U(x') -+ p'(x')], and (3xp(x))' = 3x'[U(x') & p'(x')]. 
The function that associates variables of one first-order language L 1 with d-tuples 

of another first-order language L2 can be fixed once for all. For example, it may 
associate the first L 1-variable with the tuple of the first d L2-variables, the second 
L2-variable with the tuple of the next d L2-variables, and so on. 

If T is a first-order theory let L(T) be the language of T. As usual, a first-order 
formula p is called closed if it has no free variables. 
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DEFINITION 1.4. Let T and T' be first-order theories such that the signature of T 
consists of predicate symbols, and T' is consistent and complete. Let I be an 
interpretation of the signature of T in the language of T', and let U(x) be the 
universe formula of I. I is an interpretation of T in T' if 

(a) the formula 3xU(x) is a theorem of T', and 
(b) the I-translation of every closed theorem of T is a theorem of T'. 
T is interpretable in T' if there is an interpretation of T in T'. 
DEFINITION 1.5. Let T, T', I, and U(x) be as in Definition 1.3 except T' may be 

incomplete. Let T" be the extension of T' by an additional axiom 3xU(x). I is an 
interpretation of T in T' if 

(a) T" is consistent, and 
(b) the I-translation of every closed theorem of T is a theorem of T". 
T is interpretable in T' if there is an interpretation of T in T'. 
It is easy to generalize Definition 1.1 to the case of arbitrary v: the interpretation 

of a function symbol f of arity r is a formula p(v1,. . . , vr, Vr+ i) intended to translate 
the equality f (vl , ... V Vr) = Vr+ 1. The generalization of Definition 1.3 is a little messy 
but nevertheless pretty obvious. Definition 1.4 does not need to be generalized; just 
omit the restriction that a consists of predicate symbols only. It seems more 
convenient, however, to deal with relational versions of theories where functions are 
presented by their graphs. 

LEMMA 1.1. Let T be an arbitrary consistent first-order theory, and let T* be a 
relational version of T. Then T and T* are interpretable in each other. 

The proof is easy. LI 
In the rest of this paper it is supposed that the signature of every first-order theory 

consists of predicate symbols. 
DEFINITION 1.6. Let - be an equivalence relation on a nonempty set A, and let R 

be a relation of some arity r on A. The equivalence relation - respects R if for all 
elements al,...ar, bl,...,br of A, [R(a,...,ar) & (a, - b1) & & (ar - br)] 
implies R(b1 ,... ,br). 

DEFINITION 1.7. Let a, I and L' be as in Definition 1.1. Let M be a model for L' and 
(a) U* = {x: x is a d-tuple of elements of M and U(x) holds in M}; 
(b) E* = {(x,y): x E U*, y E U* and E(x,y) holds in M}; and 
(c) if P is a predicate symbol of arity r in a, then P = {(x1, ... , xr): each xi belongs 

to U* andP'(xi,... ,Xr) holds in M}. 
The interpretation I respects the structure M if U* is not empty, E* is an 

equivalence relation, and E* respects every P*. 
LEMMA 1.2. Any interpretation of a first-order theory T in a consistent complete 

first-order theory T' respects every model of T'. 
The proof is easy. LI 
DEFINITION 1.8. Let a, I and L' be as in Definition 1.1, and let M, U*, E*, and P* 

be as in Definition 1.7. We suppose that I respects M and define a model for L which 
will be called the I-image of M and will be denoted I(M). Elements of I(M) are 
equivalence classes x/E* = {y E U*: xE*y} of E* (where x ranges over U*). If P is a 
predicate symbol of arity r in a then P is interpreted in I(M) as the relation 
{(x1/E*,. * *xr/E*): (x1,. . . Xr) E P* }. 

LEMMA 1.3. Let I = (d, U(vl), E(v, v2), .. .) be an interpretation of a signature a in 
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the first-order language of a structure M. Suppose that I respects M. Let 
((v1,.. ., vl) be an arbitrary L(a)-formula, 
cp', 9. ..,v 9) be the I-translation of p(vj,. .., v), 
U*= {x: x is a d-tuple of elements of M and U(x) holds in M}, 
E* = {(x, y): x E U*, y E U* and E(x, y) holds in M}, and 
x1,. . ., xI belong to U*. 
Then p'(x1,. . ., x) holds in M if and only if p(xi/E*,. .., x/E*) holds in I(M). 
PROOF. An obvious induction on p. LI 
LEMMA 1.4. If I is an interpretation of a first-order theory T in the first-order 

theory of a structure M, then the I-image of M is a modelfor T. 
PROOF. Let p be any closed theorem of T. Since I interprets T in the theory of M, 

the I-translation p' of p holds in M. By Lemma 1.3, p holds in I(M). D 
THEOREM 1.1. Suppose that I is an interpretation of a first-order theory T in the 

first-order theory of some structure M, and J is an interpretation of the signature of T 
in the first-order language of some structure N such that J respects N. If the I-image 
of M is isomorphic to the J-image of N, then J interprets T in the theory of N. 

PROOF. Since J respects N, the universe formula of J is satisfiable in N. It remains 
to show that the J-translation of an arbitrary closed theorem p of T holds in N. By 
Lemma 1.4, p holds in I(M). Since J(N) is isomorphic to I(N), p holds in J(N). By 
Lemma 1.3, the J-translation of p holds in N. D 

?2. Colored short chains. It will be convenient for us to deal only with first-order 
theories. The monadic (as well as full) second-order theory of any first-order 
structure can be viewed in a natural way as the first-order theory of some associated 
structure. In this section, we define the monadic second-order theory of a colored 
chain C as the first-order theory of an appropriate associated structure C and then 
prove that if an arbitrary first-order theory is interpretable in the monadic second- 
order theory of a colored short chain, then it is one-dimensionally and universally 
interpretable in the monadic second-order theory of some noncolored short chain. 

DEFINITION 2.1. The monadic second-order theory of a chain C with colors 
A 0,.. ., Am -1 is the first order theory of the associated structure 

C = <PS(C), c, <, Empty, P 
Mt 

.m. 

where PS(C) is the power set of C, c is the proper inclusion relation, < is the binary 
relation {({x}, {y}): x, y are elements of C and x < y in C}, Empty is the unary 
relation {0}, and P0,... Pm_ 1 are the singleton unary relations {A0} ,., {Am 1 }. 

REMARK. The relation Empty seems superfluous because it is easily definable from 
the other relations, but it is needed for the composition theorem of ?4. The colors are 
presented in the associated structure by unary relations rather then individual 
constants because of our commitment to deal with relational versions of first-order 
theories. 

We will be interested only in the monadic second-order theories of chains, and not 
in their first-order theories. This fact allows us the following abbreviation. 

ABBREVIATION. Let C be a colored or uncolored chain. An interpretation of T in C 
is an interpretation of T in the monadic second-order theory of C. A first-order 
theory T is interpretable in C if T is interpretable in the monadic second-order 
theory of C. 
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Recall that an interpretation is called universal if its universe formula is logi- 
cally true. 

THEOREM 2.1. If a first-order theory T is interpretable in any colored short chain, 
then there is a one-dimensional universal interpretation of T in some noncolored short 
chain. 

PROOF. Let a be the signature of T. To simplify the exposition, we suppose that a 
consists of one binary predicate symbol P. In our application of Theorem 2. 1, T will 
be the weak set theory whose signature consists of one binary predicate symbol. 

LEMMA 2.1. If T is interpretable in a colored chain C, then there is a universal 
interpretation of T in the extension of C by one additional color. 

PROOF. Let I = (d, U, E, P') be an interpretation of T in C. We may suppose that 
both U(X) and U(Y) hold in C if either E(X, Y) or P'(X, Y) holds in C. Let A be 
any subset of C satisfying the universe formula U, and let C$ be the extension of C 
by the additional color A. The desired interpretation J = (d, TRUE, E$, P$) where 
E$(X, Y) is the disjunction of the formulas 

- U(X) & [U(Y) -, E(A, Y)], 

[U(X) -+ E(A, X)] & m U(Y), 

U(X) & U(Y) & E(X, Y), 

and P$(X, Y, Z) is the formula 

3X'Y'Z'[U(X') & U(Y') & U(Z') 

& E$(X, X') & E$(Y, Y') & E$(Z, Z') & P'(X', Y', Z')]. 

It is easy to see that J respects the structure C$ and the J-image of C$ is isomorphic 
to the I-image of C. Now use Theorem 1.1. Lemma 2.1 is proved. D 

Recall that a chain C is short if every well-ordered subchain of C is countable and 
every well-ordered subchain of the reverse of C is also countable. Short chains were 
introduced in [Gul]. The class of short chains happens to be closed under many 
operations. 

LEMMA 2.2. The monadic theory of every colored short chain C is universally 
interpretable in some noncolored short chain D. 

PROOF. Suppose that C is a short chain with colors A0,...,Am_1 so that the 
associated structure C = <PS(C), c, <, Empty, P,, ..,Pm-l>, where each Pi = 

{Ai}. Let INT be the ordinal type of integers. For each point c e C, let M(c) be a 
chain of the type (INT + 1) + n(c) + (1 + INT), where n(c) is the number 
{2'a#(c): i < m} with ai(c) = 1 if c e Ai and ai(c) = 0 otherwise. M(c) has a unique 
point without an immediate predecessor (we will identify this point with c itself) and 
a unique point without an immediate successor; the interval strictly between the two 
points contains exactly n(c) points. Without loss of generality, the chains M(c) are 
disjoint. The desired noncolored short chain D is the chain Z{M(c): c e C} obtained 
from C by replacing every point c with the chain M(c). Obviously, C is a definable 
subchain of D. For each X c D, let X' = X r- C. 

We now describe the desired universal interpretation I. The dimension of I is 1. 
The equality formula is X' = Y'; the interpretations of the formulas X c Y, X < Y 
and Empty(X) are the formulas X' c Y', X' < Y' and Empty(X'). The interpre- 
tation of Pi(X) expresses in D that an arbitrary c e C belongs to X' if and only if 
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ai(c) = 1. It is easy to see that I respects D and the I-image of D is isomorphic to C. 
Now use Theorem 1.1. Lemma 2.2 is proved. D 

It remains to prove that if T is universally interpretable in a short chain C then 
there is a one-dimensional universal interpretation of T in some short chain. Let 
I = <d, TRUE, E, P'> be a universal interpretation of T in some short chain C. If 
d = 1 then there is nothing to prove, so suppose that d > 1. 

Let S be the power set of C and Sd the artesian product of d copies of S. Every 
element X of Sd is a d-tuple (X0,... , Xd_ 1) of subsets of C called the components of 
X; Xi will be called the ith component of X, the 0th component will be called main, 
and the rest of the components will be called auxiliary. Let Cd be the structure 
<Sd, c, SO, Fo,. . ., Fd_ 1, <, Empty>, where c is the relation {(X, Y): every com- 
ponent of X is included in the respective component of Y}, SO = {X: all auxiliary 
components of X are empty}, F1(X, Y) means that X E SO and the main component 
of X is the ith component of Y, < is the relation {(X, Y): X E SO, Y E SO and there 
are elements a < b of C such that {a} is the main component of X and {b} is the 
main component of Y}, and Empty(X) means that all components of X are empty. 

In a natural way, the interpretation I gives rise to a universal one-dimensional 
interpretation Id = < 1, TRUE, Ed, Pd> of T in Cd, where Ed(X, Y) says that there are 

XO, ,Xd- 1, YO, Yd-1 in SO such that 

FO(XO,X),...,Fdl(XdlX) hold, 

FO(YO, Y),..., Fd(Yd ,Y) hold, 

and the tuple of the main components of XO, .. ., Xd- 1, Yo, . d- 1 satisfies E; and 
Pd(X, Y, Z) says that there are X0,. . ., Xd- 1, Yo,..., Yd- 1, Zo,.. ., Zd- 1 in SO such that 

F0(X0,X),...,Fdl(XdlX) hold, 

FO(YO, Y),. . .,Fdl(Ydl, Y) hold, 

FO(ZOZ),...,Fd(ZdZ) hold, 

and the tuple of the main components of XO, ,Xd- 1, YO, Yd- 1, ,ZO, 
Zdl satisfies P'. In other words, Ed(X, Y) says that if X and Y are viewed as 
d-tuples of subsets of C then E(X, Y) holds in C. Similarly, Pd(X, Y, Z) says that if 
X, Y and Z are viewed as d-tuples of subsets of C then P'(X, Y, Z) holds in C. It 
is easy to see that Id respects Cd and the Id-image of Cd is isomorphic to the I-image 
of C. By Theorem 1.1, Id is an interpretation of T in Cd. 

Since the composition of one-dimensional universal interpretations is a one- 
dimensional universal interpretation, it remains to construct a one-dimensional 
universal interpretation of Cd in some short chain. In the rest of the proof we 
construct a short chain C* and a one-dimensional universal interpretation J of Cd 

in C*. 
Let M be a chain of ordinal type INT + d + INT, where INT is the ordinal type 

of integers. M has a unique point without an immediate predecessor; let us call this 
point po. Let Pt' ., IPd-i be the d - 1 point following po; Pd-i is the only point 
of M without an immediate successor. For every point c of C, let M(c) be an 
isomorphic copy of M, and let cO, . . ., Cd- 1 be the points of M(c) corresponding to 
the points pox.. . ., Pd - 1 of M. Without loss of generality, the chains M(c) are disjoint. 
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Let C* be the chain Z{M(c): c E C} obtained from C by replacing every point c 
by M(c). For every X c C* and every c E C, let X' = {ci: c E C and i < d} and 
X'(c) = {ci: i < d}. 

We now construct the desired one-dimensional universal interpretation J of Cd in 
C*. The equality formula of J is the formula X' = Y'. The J-interpretation of the 
formula X c Y is the formula X' c Y'. The J-interpretation S'(X) of the formula 
S0(X) says that no element of X' has an immediate predecessor. In other words, 
S'(X) expresses that for every c E C, X'(c) c {c0}. Call a subset X of C* standard if it 
satisfies S'(X). The J-translation F'(X', Y') of the formula Fi(X, Y) says that X' is 
standard and for every element z without immediate predecessor, z E X' if and only 
if the ith successor of z belongs to Y'. In other words, F'(X', Y') expresses that 
X= {c0: ci E Y'}. The J-translation of the formula X < Y says that X' and Y' are 
standard and X' < Y'. Finally, the J-translation of the formula Empty(X) says that 
X' is empty. It is easy to see that J respects C* and the J-image of C* is isomorphic 
to the Id-image of Cd. By Theorem 1.1, J is an interpretation of T in C*. LI 

?3. The weak set theory. The weak set theory was defined in the Introduction. It is 
a first-order theory whose signature consists of one binary predicate symbol P. The 
axioms of the weak set theory are as follows: 

(a) Vx3yVz[P(z, y) +- z = x], 
(b) VxVy3uVz [P(z, u) *-* (P(z, x) or P(z, y))], 
(c) ]xVy [1- P(y, x)]. 
The intuitive meaning of axiom (a) is that for every element x there is a set y whose 

only element is x. Axiom (b) is the union axiom, and (c) is the empty set axiom. 
LEMMA 3.1. The weak set theory is interpretable in Peano arithmetic. 
PROOF. Here is one obvious interpretation I of the weak set theory in Peano 

arithmetic. I is one-dimensional and universal. The equality formula E(x, y) of I is 
simply x = y. The I-interpretation of P(x, y) says that there is a prime number p such 
that pX divides y but pX+l does not. Oi 

COROLLARY. The Main Theorem implies that Peano arithmetic is not interpretable 
in the monadic second-order theory of any colored short chain. 

PROOF. The relation of interpretability is transitive. Oi 
LEMMA 3.2. The weak theory does not have finite models. 
PROOF. Obvious. Oi 
DEFINITION 3.1. Let M be a model for the weak set theory and y an element of M. 

The extent of y in M is {x: x is an element of M and the statement P(x, y) holds 
in M}. 

Notice that a model of the weak set theory may have different elements with the 
same extent. 

LEMMA 3.3. Let M be a model of the weak set theory. For every finite subset S of M 
there is an element y of M whose extent is S. 

The proof is easy. Oi 
LEMMA 3.4. There is a formula P(x, y, z) in the language of the weak set theory 

which satisfies the following requirement. Let M be a model of the weak set theory. 
For every finite nonempty subset S of M x M there is an element w of M such that 
{(a, b) e M x M: c(a, b, w) holds in M} = S. 
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PROOF. With respect to the usual convention, we say that z is a code for an ordered 
pair (x, y) if there exist u and v such that the extent of u is {x}, the extent of v is {x, y} 
and the extent of z is {u, v}. The desired p(x, y, z) says that z contains a code for (x, y). 

Let M be a model for the weak set theory. For all a and b in M there is a code for 
(a, b) in M. The proof uses Lemma 3.3. There is some c whose extent is {a}, there is 
some d whose extent is {a, b}, and there is some e whose extent is {c, d }. Obviously, 
e is a code for (a, b). 

Let S = {(a,, bi): i < k} be a finite nonempty subset of M x M. For every i < k, 
choose a code ci for (ai, bi). By Lemma 3.3, there is some w whose extent is {cj: i < k}. 
It is easy to see that p(x, y, w) holds in M if and only if (x, y) = (ai, bi) for some 
i<k. D 

THEOREM 3.1. Suppose that I is a one-dimensional universal interpretation of the 
weak set theory in the first-order theory of some structure N. Two elements a and b of 
N will be called equivalent if the pair (a, b) satisfies the equality formula of I. 

(a) There is a formula ( 1(x, y) in the first-order language of N such that for every 
finite S c N there is some w E N such that for every b E N, (p1(b, w) holds in N if and 
only if there is some a E S that is equivalent to b. 

(b) There is aformula q,2(x, y, z) in the first-order language of N such that for every 
finite S c N x N there is some w E N such that for every (c, d) E N x N, p2(c, d, w) 
holds in N if there is some (a, b) E S with a equivalent to c and b equivalent to d. 

PROOF. Let M be the I-image of N. For every x E N, let [x] be the equivalence class 

{y: x - y} of N. 
(a) The desired p 1 (x, y) is the I-translation of the formula P(x, y). Given S c: N, let 

[S] = {[x]: x E S}. By Lemma 3.3, there is some [w] E M such that [S] is the extent 

of [w] in M. Now use Lemma 1.3. 
(b) The desired 92(x, y, z) is the I-translation of the formula p(x, y, z) of Lem- 

ma 3.4. Given S E N x N, let [S] = {([a], [b]): (a, b) E S}. By Lemma 3.4, there is 

some [w] E M such that p([x], [y], [w]) holds in M if and only if ([x], [y]) E [S]. 
Now use Lemma 1.3. El 

?4. Finite subtheories and additive colorings. For the reader's convenience, we 

recall here some definitions and facts. We start with adapting the well-known notion 

of finite subtheories to the case of the monadic second-order theories of chains. 

DEFINITION 4.1. Let C be a chain, and let AO,.. ., Al1 be subsets of C. 

(a) The 0-theory ThO(C, AO ... , Al - 1) of the system (C, AO,..., Al -) is the set of 

atomic formulas 9(X0,..., XI- ) in the monadic language of order such that the 

statement (Ao,... ., Al - ) holds in C. 
(b) The (d + 1)-theory Thd+l(C, AO,. . ,Al 1) of the system (C, AO,. . ., Al1) is 

the set {Thd(C, AO. . ., Al_ 1,Al): A, c C}. 
REMARK. An atomic formula p(Xo,...,X_1 ) may miss part of the variables 

x0,. . ,X- 
LEMMA 4.1. Suppose that Thd(C, AO,.. ., Al - 1) = Thd(C', At0, . . ,Aj1), and let 

O(XO,.. ., Xl_ 1) be an arbitrary formula in the monadic language of order without any 
free variables except for those shown. If the quantifier depth of ,(XO, .. ., Xl- 1) is at 
most d, then 9(A0,... ,Al 1) holds in C if and only if 9(A'0,. ..,A-1) holds in C'. 

PROOF. An easy induction on d. El 
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LEMMA 4.2. Suppose that Thd(C, AO,..., Al- 1) = Thd(C ,A AI, . . ,Aj1), and let f 
be a function from {O,..., m-1 } to {O,... .,l- 1}. Then 

Thd(C Af(O). . . Af(m_ 1)) = Thd(C, Af(O, * 1 

PROOF. An easy induction on d. C] 
DEFINITION 4.2. If C and D are chains then C + D is any chain that can be split 

into an initial segment isomorphic to C and a final segment isomorphic to D. If 

<Cn: n <w> is a sequence of chains then EZ,< CQ, is any chain D that is the 
concatenation of segments D, n < co, such that each Dn is isomorphic to C". It is 
supposed of course that Do is the initial segment of D, D1 is the next segment, and 
so on. 

THEOREM 4.1 (composition theorem). (1) If 

Thd(C, A0,. . . ,Al 1) = Thd(C',A'0,,A 
and 

Th4(DBO,._..,B 1) = Thd(D',B' ...BI1) 

then 
Thd(C + D,AO u BO,_-,A1l u Bl l) 

- Thd(C' + D',A'0 u B' A-.A u Bl_ 

(2) If 
Thd(CnA,0, 

*,A,(l)) = Ad(C, . ,(1) for each n, then 

Thd(Z 
Cn, 

U 
AnO,,..., 

U A (ll)) =Th ( E C,, U A'O,..., U A' n<co n<co n<co n<co n<co n<co 
PROOF. This is a special case of much stronger composition theorems (see [Sh] 

and [Gul]) which can easily be proved directly by induction on d. El 
DEFINITION 4.3. (1) 

Thd(C, A0, . .., Al- 1) + Thd(D, BO,. . ., 1) 

= Thd(C + D, A0 u Bo,. . . ,A1 u B- 1) 

(2) En< co Thd(Cn, Ano, . . - 1)) = Thd(En <co Cn, Un <co AnO,. ., Un< co AnU - U). 
ABBREVIATION. If D is a subchain of C and X0,... ,XI1- are subsets of C then 

Thd(D, X0,. . ., XI -1) abbreviates Thd(D, X0 r D,. . ., XI1- ri D). 
THEOREM 4.2. Let T be a finite semigroup, and let f be a function from {(i, j): i < j 

< w} to T. Suppose that f satisfies the following additivity condition: for all i < j < k, 
f(i, k) = f(i, j) + f(j, k). Then there are an element t of T and an infinite subset S of w 

such that f(i, j) = t for all i < j in S. 
This is a special case of Theorem 1.1 in [Sh]. We will use the following corollary of 

Theorem 4.2. 
THEOREM 4.3. Let C be a chain, AO,... Am-I subsets of C, and <Hi: i < w0> an 

increasing sequence of initial segments of C. For every d there is an infinite subset S of 
wo such that all d-theories Thd(Hj - Hi, AO,.. , Am - , where i, j belong to S and i < j, 
are the same. 

PROOF. Consider the set T of all d-theories Thd(DXo,..., Xm - where D is an 
arbitrary chain and X0, . . , Xm- 1 are subsets of D. The set T is finite and forms a 
semigroup with respect to the addition operation defined above. For every pair i < j 
of natural numbers, let f(i,j) be the d-theory Thd(Hj - Hi,AO,..., Am ). Obvi- 
ously, f satisfies the additivity condition. Now apply Theorem 4.2. DU 
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?5. Setting the stage for the proof by contradiction. The Main Theorem will be 
proved by contradiction. Suppose that the weak set theory is interpretable in the 
monadic second-order theory of some colored short chain. By Theorem 2.1, there is 
a one-dimensional universal interpretation q of the weak set theory in some 
noncolored short chain C. In the rest of the paper we deal with C and a. Elements 
of C will be called points. Subsets of C will be called point sets. The letters U, V, W, 
X, Y, Z with or without subscripts will be used to denote point sets. 

Notice the slight change in our notation. The interpretation is called q rather than 
I. The letter I is reserved for other purposes. 

Let E(X, Y) be the equality formula of a. Point sets X and Y will be called 
equivalent if E(X, Y) holds; to indicate the equivalence of X and Y we will write 
X - Y. 

LEMMA 5.1. The number of equivalence classes of point sets is infinite. 
PROOF. The equivalence classes form the universe of the q-image of C. By Lemma 

1.4, the 1-image is a model of the weak set theory, but the weak set theory does not 
have finite models. E 

LEMMA 5.2. There are monadic second-order formulas 9 1(X, Y) and p2(X, Y, Z) 
such that 

(a) for every finite nonempty collection S of point sets there is a point set W such 
that an arbitrary point set X satisfies the formula 9p1(X, W) in C if and only if X is 
equivalent to some X' e S, and 

(b) for every finite nonempty collection S of pairs of point sets there is a point set W 
such that an arbitrary pair (X, Y) of point sets satisfies the formula (p2(X, Y, W) in C if 
and only if there is (X', Y') e S with X - X' and Y - Y'. 

PROOF. Use Theorem 3.1. D 
For future references, we fix appropriate formulas 91 and 92. Let dO be the 

quantifier depth of the equality formula of t1, and dl and d2 the quantifier depths of 
91 and 92 respectively. Without loss of generality, dl ? dO and d2 ? dO. 

THEOREM 5.1. (a) For all point sets U, V, X, Y, and every d ? dO, if Thd(C, U, V)- 
Thd(C, X, Y) then U V-+ X Y. 

(b) For every nonempty finite collection { UV: i < m} of point sets there is a point 
set W such that for every point set X, if Thdl(C, X, W)-Thdl(C, L4, W) for some 
i< , then X - Uj for some j < m. 

(c) For every nonempty finite collection {(Ui, Vj): i < m} of pairs of point sets there 
is a point set W such that if Thd2(C, X, Y, W) = Thd2(C, U., V;, W) for some i < m, 
then there is some j < m such that X - Uj and Y - Vj. 

PROOF. Use Lemmas 5.2 and 4.1. E 
The rest of this section is devoted to terminology and notation. A subchain D of a 

chain C' is a segment of C' if it is convex, i.e., for all points x < y < z, x e D and z e D 
imply y e D. (It is supposed of course that subchains are not empty.) A segment D is 
proper if D # C'. A proper Dedekind cut of C' is a pair (L, R), where L is a proper 
initial segment of C' and R is the corresponding final segment C' - L; the pairs 
(0, C') and (C', 0) also are Dedekind cuts of C' but they are not proper Dedekind 
cuts. In the case C' = C, we will often omit "of C"; segments will mean segments of 
C, and Dedekind cuts will mean Dedekind cuts of C. 

The symbol c will be used to denote proper inclusion; thus A c B means that 
A C B and A 0 B. As usual, the cardinality of a set or structure S will be denoted 
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IS1. We will say that point sets X and Y coincide on (respectively outside) a seg- 
ment D it X f D = Y fi D (respectively X - D = Y - D). 

?6. Minor segments. In this section, we define the bouquet size of a segment and 
prove that for every proper Dedekind cut (L, R) either the bouquet size of L or the 
bouquet size of R is bounded by an a priori fixed number. 

DEFINITION 6.1. The bouquet size of a segment D is the supremum of cardinals ISI 
where S ranges over collections of nonequivalent point sets coinciding outside D. 

REMARK. The strange name "bouquet size" seems to require an explanation. We 
looked for a suggestive name that will distinguish the size of a segment introduced 
here from another size introduced in the next section. The bouquets in question are 
of course collections of nonequivalent point sets coinciding outside D. 

DEFINITION 6.2. A segment D of C is minor if the bouquet size of D is at most 

Ni = l{Thd2(D, Ao, A, A2): D is a chain and X, Y. Z c D} 1. 

THEOREM 6.1. For every proper Dedekind cut (L, R) of C, either L or R is minor. 
PROOF. To get a contradiction, suppose that neither L nor R is minor. Fix 

nonequivalent point sets Uo,..., UN, which coincide on R, and nonequivalent point 
sets VO,..., VNl which coincide on L. 

By Theorem 5.1, there is W such that if Thd2(C, X, Y. W) = Thd2(C, Ui, Vi, W) for 
some i < N1, then there is j < Ni with X - Uj and Y - Vj. 

By the definition of N1, there are i < j < Ni such that 

Thd2(R, UV, 1A, W) = Thd2(R, Uj, Vj, W). 

By the composition theorem, 

Th CUj, W) = Thd2(L, Uj, Vj, W) + Thd2 (R, UJ, Vj, W) 

= Thd2 (L, Uj, Vi, W) + Th d2 (R,LU, Vj,;W) 
= Thd2(L, Ui, Vi, W) + Thd2(R, Ui, Vi, W) 

= Thd2(C , ,Vi, W). 

Here the second equality holds since Vj r- L = Vi r L and UL n R = Uj r R, and the 
third holds by the choice of i < j. 

By the choice of W, UL Uk and Vj Vk for some k < N1. By the choice of 
point sets U0,., UN1, we have i = k. Similarly, j = k. Hence i = j, which is 
impossible. El 

?7. Independence. In this section, we define the span of a segment and prove that 
the span of every minor segment is bounded by an a priori fixed number. 

DEFINITION 7.1. Let D be a segment, and let S be a collection of point sets. A point 
set Y depends on S with respect to D if some point set Y' Y coincides with some 
X E S on D; otherwise Y is independent from S with respect to D. 

DEFINITION 7.2. A sequence <Xa: ot < A> of point sets is independent with respect 
to a segment D if every Xa is independent from KXE: ft < oc> with respect to D. The 
span of a segment D is the supremum of ordinals A such that there is a sequence 
<Xa: ot < A> of point sets which is independent with respect to D. 

LEMMA 7.1 Let , be the number-theoretical function such that ,(Oj) = 1 and 
((i + 1, j) = j x ((ij) + 1, and let m and n be positive integers. Let S be a set of 
cardinality at least ,(m, n), and let $ be a binary operation on S such that for every 
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b e S, I{a $ b: a e S}I < n. Then there are elements bo, . , bmi in S such that for 
every i < m there is ci E S with bj $ bi = ci for all j < i. 

PROOF. It suffices to construct elements bo,.. ., b._ -1 such that for every i < m 
there is ci E S with bj $ bi=ci for all j > i. 

Let SO = S. By induction on i, construct a sequence <(bi, ci, Si + ): i < m>. Sup- 
pose that i = 0 or i > 0 and the portion <(bj,cj,S+1) :j < i < m> of the desired 
sequence is already constructed. Choose bi arbitrarily in Si. Choose Cj such that 
I{a E Si: a $ bi = ci}lI is maximal possible. Set Si+ 1= {a E Si: a $ bi = ci} - {bi}. 

The construction fails if some Si, i < m, turns out to be empty. To ensure that all 
the Si are nonempty, we check that for every i, ISjI ? 4(m - i, n). For i = 0, this is 
one of the conditions of the lemma. Suppose that i < m - 1 and ISAI 2 ((m - i, n). 
By the definition of 4, JSdI > n x 4(m - i - 1, n). Recall that for every b e S, 
I{a $ b: a e S}I < n. Hence l{a $ bi: a Si} I < n. By the choice of ci, we obtain 

l{a E Si: a $ bi = ci > {(m - i - 1, n). Hence Si,, > 4(m - i - 1, n). 
Now suppose that i < j < m. Then b e Sj c Si+ 1 and therefore bj $ bi = ci. El 
DEFINITION 7.3. Let 4 be as in Lemma 7.1. Set 

N2 = 4(N1 + 2, Ni) x I{Thd1(D,Aj,A2): D is any chain and A1,A2 c D}. 

THEOREM 7.1. The span of every minor initial or final segment is at most N2. 
PROOF. By virtue of symmetry, it suffices to prove the theorem for initial 

segments. For a contradiction, suppose that a sequence S = < UO,..., UN2 > of point 
sets is independent with respect to a minor initial segment L. 

Using Theorem 5.1, fix point sets WI and W2 such that 
(a) for every X, if Thdl(CXWi) equals some Thdl(C,L, WI) then X is 

equivalent to some Uj, and 
(b) for all X and Y, if Thd2(C, X, Y, W2) equals some Thd2(C, UL, Uj, W2) with 

i < j, then there are k < 1 such that X Uk and Y Us. 
Let 4 be as in the definition of N2. Let R = C - L. By the definition of N2, there is 

a subset I of {O,. . ., N2} such that III > ((N1 + 2, N1) and Thd1(R, Uj, WI) has the 
same value for all i e 1. If i, j e I and i < j, let Uij = (UL n L) u (Uj) n R). Then 

Thd(C, i, WI) = Thdl(L, UL, WI) + Thd1(R, Uj, W1) 

= Thdl(L, UL, WI) + Thdl(R, UL, WI) = Thdl(C, Li, WI) 

and, by the choice of W 1, Uij is equivalent to some Uk. Fix a function f that, given 
i <j in I, produces k with Uk b Uij. Since L is minor, for every j, the number of 
different k's such that some ULj is equivalent to Uk is at most NI. 

By Lemma 7.1 with m = Ni + 2 and n = Ni, there are a subset J c I and a 
function g: J -+ I such that IJI ? NI, and for all i < j in J, fij = gj. Notice that if 

Uij - Uk then k < i; otherwise Uk depends on { UO,..., Uk - I } with respect to L, which 
is impossible. Let i = min(J). Then for every j > i, g(j) ? i. 

As IJI 2 NI + 2, there are j, k in J such that i < j < k and Thd2(R, UUj, W2) = 
Thd2(R, Uj, Uk, W2). Then 

Thd2(C, U j, U), W2) = Thd2(L, Uj, Uj, W2) + Thd2(R, Uj, Uj, W2) 

- Thd2 (L, UL, Uj, W2) + Thd2 (R, Uj, Uk, W2) = Thd2(C, Ub, Ujk, W2). 

By the choice of W2, there are a < b < N2 such that UL - U. and Ujk -Ub. By the 
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independence of <UO,..., UN2>, a = i. Let n = gk, so that n < i = a < b and fjk = n. 
Then U, 1, Uik Ub, which contradicts the independence of <UO,..., UN2>. > l 

?8. Major segments. 
DEFINITION 8.1. A segment is major if its bouquet size is infinite. 
LEMMA 8.1. C is major, and for every proper Dedekind cut (L, R), either L or R is 

major. 
PROOF. By Lemma 5.1, the bouquet size of C is infinite. Let (L, R) be a proper 

Dedekind cut (L, R). By Theorem 6.1, either L or R is minor. Without loss of 
generality, L is minor. By Theorem 7.1, the span of L is finite. Choose a longest 
possible sequence < UO,..., U. - 1 > of point sets which is independent with respect to 
L. For a contradiction, suppose that the bouquet size of R is finite too. For every Ui, 
choose a maximal (with respect to the cardinality) collection Si of nonequivalent 
point sets coinciding with Ui on L. Since the bouquet size of R is finite, every Si is 
finite. 

Consider an arbitrary point set X. By the maximality of <UO,..., Un- 1>, there 
are Y - X and i < m such that Y coincides with Ui on L. By the maximality of Si, 
Y is equivalent to some Z e Si. Thus an arbitrary X is equivalent to a member of 

U {Si: i < m}, which contradicts the fact that there are infinite many equivalence 
classes (Lemma 5.1). Cl 

LEMMA 8.2. There is a segment D of C satisfying one of the following two 
conditions: 

(a) D is a major initial segment, and all proper initial segments of D are minor, or 
(b) D is a major final segment, and all proper final segments of D are minor. 
PROOF. Let L be the union of all minor initial segments, and let R = C - L. If L is 

major then L is the desired segment D. Suppose that L is minor. By Lemma 8.1, R is 
major. Suppose that R' is a proper final segment of R, and L' = C - R'. Then L' D L 
and therefore L' is not minor; by Theorem 6.1, R' is minor. Thus R is the desired 
segment D. C 

By virtue of symmetry we can assume that C has a major initial segment all of 
whose proper initial segments are minor. 

DEFINITION 8.2. D is the major initial segment all of whose proper initial segments 
are minor. 

Since the bouquet size of D is infinite, there is an infinite collection of non- 
equivalent point sets coinciding outside D. 

DEFINITION 8.3. We choose and fix an arbitrary subset D' c C - D such that 
there are infinitely many nonequivalent point sets coinciding with D' outside D. A 
point set X is normal if it coincides with D' on C - D. 

LEMMA 8.3. For all normal point sets U, V, X, Y, and every d ? dO, if Thd(D, U, V) 
=Thd(D, X, Y) then U - V- X Y. 

PROOF. Use Theorem 5.1 and the composition theorem. Cl 
DEFINITION 8.4. Any proper initial segment of D will be called a head of C, or 

simply a head. 
LEMMA 8.4. There is a strictly increasing sequence <HII: n < wo> of heads that 

converges to D. 
PROOF. If D does not have a last point then the statement follows from the 

fact that C is short. Thus it suffices to show that D does not have a last point. 
For a contradiction, suppose that b is the last point of D. Let L = D - {b} and 
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R = C - D, so that both L and R are minor. An easy alteration of the proof of 
Lemma 8.1 establishes that there are only finitely many equivalence classes of 
point sets, which is impossible. El 

?9. Vicinities and shufflings. 
DEFINITION 9.1. The vicinity [X] of a point set X is the collection { Y: some point 

set Z - Y coincides with X outside some head H}. 
LEMMA 9.1. Every vicinity [X] is the union of at most Ni different equivalence 

classes. 
PROOF. By contradiction, suppose that some [X] contains nonequivalent point 

sets Yo,..., YN1. For each i < N 1, choose a point set Zi and a head Hi witnessing that 
Yj E [X]. Then ZO,. . ,ZN1 witness that the bouquet size of H = U{H1: i < N1} 
exceeds N 1, which contradicts the fact H is minor. El 

THEOREM 9.1. There is a sequence <U,?: n < co> of nonequivalent normal point sets 
such that for all i < j, [Uj] n [Uj] = [U0] rn [U1] # [UJ]. 

PROOF. By the definition of normal point sets in ?8, there is an infinite sequence 
<X": n < co> of nonequivalent normal point sets. Choose any collection S of non- 
equivalent point sets such that {n: S C [X,]} is infinite and the cardinality of S is 
maximal possible. (S can be empty. By Lemma 9.1, the cardinality of S is bounded 
by N1. This guarantees the existence of the desired S.) Without loss of generality, 
every [X"] includes S. Let S* = {Z: S contains a point set equivalent to Z}. S* 
contains at most Ni different point sets X". Let <Xo,,: n < co> be an infinite sub- 
sequence of <X,,: n < co> such that no X0, belongs to S*. 

Choose U0 = X00, and let <Xl,,: n < co> be the sequence obtained from <X0": 
n < co> by throwing away all members whose vicinities meet [U0] - S*; by the 
maximality of S, only finitely many members should be thrown away. Choose 
U1 = X10, and let <X2": n < w> be the sequence obtained from <X1": n < w)> by 
throwing away all members whose vicinities meet [U1] - S*. Choose U2 = X20, 

etc. Then for all i < j, [UJ] r [Uj] = S* 0 [Uj]. El 
DEFINITION 9.2. Given <He: n < wo>, a strictly increasing sequence of heads 

converging to D, define Do = Ho and Dn + 1 = Hn + 1-Hn . The sequence <Dn: n < o> 
is the partition of D corresponding to <Hn: n < wo>. A legal partition of D is the 
partition of D corresponding to some strictly increasing sequence of heads 
converging to D. 

DEFINITION 9.3. Let <Dn: n < wo> be a legal partition of D, and A c wo. The 
shuffling of point sets X and Y with respect to <Dn: n < wo> and A is a normal point 
set Z such that: 

(a) if n e w - A then Z coincides with X on Dn, and 
(b) if n e A then Z coincides with Y on Dn. 
LEMMA 9.2. Let <Hn: n < o> be a strictly increasing sequence of heads converging 

to D, let <Dn: n < wo> be the partition of D corresponding to <Hn: n < w)>, let U0, U1, V 
be normal point sets, and let A and B be infinite and coinfinite subsets of w) such that 
0 e A O-+ 0 e B. Let X be the shuffling of U0, U1 with respect to <Dn: n < w)> and A, 
and Y the shuffling of U0, U1 with respect to <Dn: n < C)w> and B. Suppose that 

(a) all d-theories Thd(Hn, L4U V), where n < w and i < 1, are the same, and 
(b) all d-theories Thd(Hn - Hm. Ui, V), where m < n < w and i < 1, are thd same. 
Then X - V4-+ Y - V. 

PROOF. We consider only the case when 0 does not belong to A; the case 0 e A 
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is similar. Without loss of generality, B is the set ODD of odd natural numbers. Let 
fO = 0; let f(21 + 1) be the least > f(21) in A, and f(21 + 2) the least j> f(21 + 1) 
in o - A. Let Do = {D: n< fI}, D*1 += {D,:f(21+ 1)<n< f(21+2)}, 
and D*1+2 = Z{D,:f(21 + 2) < n <f(21 + 3)}. Notice that X coincides with U0 
on each D 1 and with U1 on each D1 +1. Thus, Thd(D*,X, V) = Thd(D", Y, V) 
for each n. 

By the composition theorem, 

Thd(D, X, V)= E Thd(D*,X, V)= Thd(Dn, y, V) = Thd(D, Y, V). 
n<Qo n<o) 

Now use Lemma 8.3. Li 

?10. Finishing the proof of the Main Theorem. On the grounds of Theorem 9.1, 
choose a sequence < Un: n < wo> of nonequivalent normal point sets such that for all 
i < j, [Uil ]) [Uj] = [Uo] M lU1] 0 [Ui]. 

DEFINITION 10.1. N3 is 1 plus the square of the number 

I{Thdl(M,Al,A2): M is any chain and A1,A2 c M}I. 

N4 is the least number such that for every partition of the set {(i, j, k): i <j < 
k< N4} into 32 colors, there is a subset I of {i: i< N4} such that II ? N3 and 
all triples in {(i,j, k): i e I, j e I, k e I and i <j < k < N4} have the same color. 
(The existence of N4 follows from Ramsey's theorem [Ra].) 

Applying Theorem 4.3, choose a strictly increasing sequence <H': n < w)> of 
heads converging to D such that: 

(a) all dl-theories Thdl(H', UL, Uj), where n < w and i <j < N4, are equal, and 
(b) all dl-theories Thdl(HI - H,,, Uj, Uj), where m < n < wo and i <j < N4, are 

equal. 
By Lemma 4.2, (a) and (b) imply 
(a') all dl-theories Thdl(H', UJ, Uj), where n < w and i < N4, are equal, and 
(b') all dl-theories Thdl(H - HI, J, U[), where m < n < wo and i < N4, are 

equal. 
Let <D': n < wo> be the partition of D corresponding to <H': n < W>, and for each 

A c= , let S'(i, j, A) be the shuffling of Ub and Uj with respect to <D': n < wo> and A. 
Set 

K(i, j, A) = min{k: either S'(i, j, A) - Uk or k = N4}. 

LEMMA 10.1. If A and B are infinite and coinfinite subsets of o - {0}, then 
K(i, j, A) = K(i, j, B). 

PROOF. If k = K(i, j, A) < N4 or k = K(i, j, B)< N4 then use Lemma 9.2. Other- 
wise K(i, j, A) = K(i, j, B) = N4. Li 

Let K(i,j) =K(i,], A), where A is any subset of w - {O} which is infinite and 
coinfinite. 

LEMMA 10.2. There is a subset I of {0, ... , N4 - 1} of cardinality at least N3 such 
that the following five statements have the same truth values for all triples i < j < k 
in I: K(j, k) = i, K(i, k) = j, K(ij) = k, K(i, j) = i, and K(i,]j) =. Further, if K(ij) e I 
for some pair i < j in I, then either K(i,j) = i for all i < j in I or K(i,]j)= j for all 

<jin I. 
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PROOF. The first statement follows from the definition of N4. Suppose that K(C4, 1) 
= y E I for some a < 1 in I. If y < a then K(j, k) = i for all i < j < k in I, which 
contradicts the fact that K is a function (with unique K(j, k)). Similarly, the cases 
a < y < 1 and 13 < y are impossible. It remains that y = a or y = 13. If y = a then 
K(ij) = i for all i < j in I. If 7 = ,B then K(ij) = j for all i < j in I. C1 

On the grounds of Theorem 5.1, choose W such that for every X, if 
Thdl(CX, W) = Thdl(C, Li, W) for some i E I, then X - Uj for some j E I. Use 
Theorem 4.3 to choose a subsequence <HII: n < w)> of <H': n < w)> such that: 

(c) all dl-theories Thdl(Hn, UL, Uj, W), where n < w and i < j < N4, are equal, 
and 

(d) all dl-theories Thdl(H -Hm, LJ, LI, W), where m < n < wo and i < i < N4, 
are equal. 

By Lemma 4.2, (c) and (d) imply 
(c') all dl-theories Thdl(Hn, UL, UL, W), where n < w and i < N4, are equal, and 
(d') all dl-theories Thdl(Hn - Hm, UL, UL, W), where m < n < wo and i < N4, are 

equal. 
Let <Dn: n < w)> be the partition of D corresponding to <Hn: n < w)>. For all i < j 

< N4 and every A c wo, let S(i, j, A) be the shuffling of Uj and Uj with respect to 
<Dn n < w)> and A. 

LEMMA 10.3. For all i < j < N4, every k < N4 and every A c w, 

S(i, j, A) - Uk S'(i, j, A) - Uk. 

Hence, min{k: either S(i, j, A) - Uk or k = N4} = K(i, j, A). 
PROOF. The second statement follows from the first statement and the definition 

of K(i, j, A). We prove the first statement. For each n there is I e {i, j } such that 
S'(i, j, A) coincides with U1 on D' and S(i, j, A) coincides with U1 on Dn, so that 

Thdl(D', S'(i, j, A), Uk) = Thdl (Dn, S(i, j, A), Uk). 

Thus, 

Thd1(D, S'(i, jI A), Uk) = E Thdl(D S,(i, j, A), Uk) 
n<co 

= Z 
Thdl(Dn' S(i, j, A), Uk) = Thdl(D, S(i, j, A), Uk). 

n<co 

By Lemma 8.3, S(i,j,A) - Uk 4-+ S'(i,j,A) - Uk. g 

By the definition of N3, there is a pair i < j in I such that if n = 0 or n = 1 then 

Thdl(Dn, UL, W) equals Thdl(Dn, Uj, W). Let U = UL and V = Uj. By the choice of 
<Hn n < wj>, Thdl(Dn, U, W) equals Thdl(Dn, V, W) for all n. For each A c W, let 
S(U, V, A) be the shuffling S(i, j, A) of U and V with respect to <Dn: n < w)> and A. 

LEMMA 10.4. For every A c wo there is k e I with Uk - S(U, V, A). 
PROOF. If n e w - A then S(U, V, A) coincides with U on Dn and therefore 

Thdl(DnS(U, V, A), W) = Thdl(D , U, W) = Thdl(D , V, W). 

If n e A then S(U, V, A) coincides with V on Dn and therefore 

Thdl(DnS(U, V, A), W) = Thdl(Dn, V, W). 
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Thus 

Thdl(D, S(U, V, A), W) = E Thdl(Dn, S(U, V, A), W) 
n<c) 

- 

E Thdl(Dn, V, W) = Thdl(D, V, W). 
n<w) 

By the choice of W, S(U, V, A) is equivalent to some Uk with k E I. E 
Let POS = wc-{0}, EVEN = {2n + 2: n < C} and ODD={2n + 1: n < w}. 

Notice that EVEN does not contain 0. 
LEMMA 10.5. S(U, V, POS) - V, S(U, V, {0}) - U, and either S(U, V, ODD) U or 

S(U, V, ODD) - V. 
PROOF. By Lemma 10.4, there is k e I with Uk - S(U, V, POS). Notice that 

S(U, V, POS) belongs to the vicinity of V; hence Uk belongs to the vicinity of 
V. By the choice of <Un: n < w>, Uk = V. The second statement is proved in a 
similar way. 

We prove the third statement. Recall that U = Uj and V = Uj. By Lemma 10.4, 
S(Ui, Uj, ODD) is equivalent to some Uk with k e I. By Lemma 10.3, S'(Ui, Uj, ODD) 
- Uk. Hence K(i, j) e I. By Lemma 10.2, either K(i, j) = i or K(i, j) = j. If K(i, j) =i 

then S(U, V, ODD) U; if K(i, j) = j then S(U, V, ODD) V. E 
LEMMA 10.6. If S(U, V, ODD) U then S(U, V, EVEN) - S(U, V, POS). 
PROOF. If n is positive and even then 

Thdl(D,S(U, V,ODD), U) = Thdl(Dn, U, U) = Thdl(Dn, V, V) 

= Thdl(DnS(U, V, POS), S(U, V, EVEN)). 

If n is odd then 

Thdl(D,S(U, V,ODD), U) = Thd(D, VU) 

= Thdl(Dn, S(U, V, POS), S(U, V, EVEN)). 

Also, 

Thdl(D0,S(U, V,ODD), U) = Thdl(Dn, U, U) 

= Thdl(Dn, S(U, V, POS), S(U, V, EVEN)). 

By the composition theorem, 

Thd'(D, S(U, V, ODD), U) = Thdl(D, S(U, V, POS), S(U, V, EVEN)). 

Now use Lemma 8.3. Cl 
LEMMA 10.7. If S(U, V, ODD) - V then S(U, V, EVEN) - U. 

PROOF. If n is positive and even then 

Thdl(Dn, U, S(U, V, EVEN)) = Thdl(Dn, U, V) 
= Thdl(DS(U, V, ODD), S(U, V, POS)). 

If n is odd then 

Thdl(Dn, U, S(U, V, EVEN)) = Thdl(Dn, U, U) = Thdl(D , V, V) 
= Thdl(D,S(U, V,ODD),S(U, V,POS)). 
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Finally, 

Thd'(Do, U, S(U, V, EVEN)) = Thd'(Do, U, U) = Thd'(Do, V, V) 

= Thdl(Dn, S(U, V, ODD), S(U, V, POS)). 

By the composition theorem, 

Thd'(D, U, S(U, V, EVEN)) = Thd'(D, S(U, V, ODD), S(U, V, POS)). 

By Lemma 8.3, 

U - S(U, V, EVEN) 4-+ S(U, V, ODD) - S(U, V, POS). 

Suppose S(U, V, ODD) - V. Then, by the proof of Lemma 10.5, S(U, V, ODD) - 

S(U, V, POS) and therefore U - S(U, V, EVEN). El 
Now we are ready to finish the proof of the Main Theorem. First suppose that 

S(U, V, ODD) -U. Then, by Lemmas 10.1 and 10.3, U is equivalent to 
S(U, V, EVEN). Then, by Lemma 10.6, U is equivalent to S(U, V, POS). Then, by 
Lemma 10.5, U is equivalent to V, which is impossible. 

In virtue of Lemma 10.5, S(U, V, ODD) - V. Then, by Lemmas 10.1 and 10.3, V is 
equivalent to S(U, V, EVEN). But S(U, V, EVEN) is, by Lemma 10.7, equivalent to 
U. Thus V is equivalent to U, which is impossible. 

The Main Theorem is proved. 
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