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0. Introduction 

    We start with several arguments in favor of operational semantics for imperative 
programming languages. One important purpose of formal semantics is to help a pro-
grammer understand a given language (as opposed to particular programs written in 
that language). We would claim that, when conceiving a program expressed in an 
imperative language, a journeyman programmer has in mind an ideal machine that 
executes the language's commands. That is to say, our fundamental understanding of 
an imperative programming language is behavioral (or operational). 

    A semantic description of a programming language should provide an accessible 
account of  all  of a language's constructs. Languages like Modula-2 that are designed 
for (among other things) the writing of operating systems include facilities for 
multiprocessing and facilities for describing interaction with peripheral devices. 
Specifically, such languages include a means for dealing with hardware interrupts 
which usually involve both these sorts of facility. Consequently, an adequate semantic 
account of a language like Modula must treat interrupts. Now, the very notion of 
interrupt involves the concept of time: an interrupt is an event which occurs at an 
arbitrary  moment  in a computation. The idea that a computation is a sequence of 
states unfolding in time is the basis of operational semantics. Therefore, it seems most 
natural to describe operationally languages which allow one to deal with interrupts. It 
also seems to be true that programming language constructs for expressing 
multiprocessing are most straightforwardly described in terms of the behavior they 
elicit. 

    A formal semantics for a language should also provide a  basis  for proving the cor-
rectness of the language's implementations, for examining the expressive power of the 
language, for reasoning about programs written in the language, etc. We emphasize 
that operational semantics provides only a basis rather than methods for 
accomplishing these tasks. Some of the tasks fall within the purview of a logic or 
proof system using operational semantics as a foundation. We no not consider 
operational semantics as a competitor of other approaches, like axiomatic or 
denotational semantics or temporal logic, but rather as complementing and providing 
a foundation for them. 
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    The starting point for the development of operational semantics is a consideration 
of the important problem of what ideal machines are from a mathematical point of 
view. We do not find the existing solutions (VDL [8], LISP interpreters written in (a 
subset of) LISP [5], the SECD machine [4], and even Plotkin's transition systems [7]) 
satisfactory. The approach we shall describe, algebraic operational semantics, was 
originally proposed in [2]. To assess this new approach, we have worked out an 
algebraic operational semantics for the programming language Modula-2 (referred to 
subsequently as Modula) in its entirety. We have chosen Modula as our example 
because it is, in many ways, a model imperative programming language. It is largely 
free of extraneous constructs and integrates machine-dependent facilities in an elegant 
way. This paper gives a self-contained illustration of our approach using Modula as 
an example. A complete description of Modula is found in the Ph.D. dissertation [6]. 
Semantic accounts of Smalltalk and Occam using algebraic operational semantics are 
in preparation ([1] and [3], respectively). 

    So, what is an abstract machine for a programming language from a mathematical 
point of view? In algebraic operational semantics, it is an  evolving (or  dynamic) 
algebra (or  structure) of a sort, tailored explicitly for the language at hand. What is a 
dynamic structure? Here we restrict ourselves to sequential evolving structures; in 
connection with distributive evolving algebras, see [3]. 

    Each state of an evolving structure is what the logician would call a finite, many-
sorted, first-order structure. It comprises a number of finite sets called  universes  and 
functions on Cartesian products of universes. (The presence of a Boolean universe 
allows one to treat relations as Boolean-valued functions; in that sense the static 
structures are algebras.) In the case of Modula, the signature (also called vocabulary 
or language) of the current state does not change during the structure's evolution, but 
some of the functions and universes may. Accounts of languages other than Modula 
may require a dynamic signature. 

    One distinguishing feature of algebraic operational semantics is that its universes 
are usually (finite and) bounded; in other words, its abstract machines usually have 
bounded resources. We do not view finite machines necessarily as approximations to 
infinite ones. For example, a machine equipped with genuine integers will loop 
forever executing 

n := 1;  WHILE  true  DO  n := 2 � n   END, 

but no machine with bounded resources will. The initial state of a dynamic structure 
should reflect all its resource bounds. Thus, given a particular programming language 
L, algebraic operational semantics defines a family of families of machines. The 
former are determined by programs written in L and, given a particular L-program 
Prog, the latter are determined by (the fragment of L used in Prog and) the resource 
bounds of the dynamic structures for Prog. 

    Transition rules guide the evolution of a dynamic structure from state to state. We 
shall give their syntax in a moment. A structure's transition rules should depend only 
on the language for which the structure provides semantics. Moreover, if the 
components of the structure have been chosen properly, the changes described by its 
transition rules should be slight. 

    For the purposes of this paper, we invoke the principle of separation of concerns 
and restrict our attention to the dynamic semantics of programs. Towards this end, we 
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assume that a program is represented by its parse tree with respect to a given context-
free grammar and that the initial state of an algebra reflects the static semantics of the 
given program. 

1. The Syntax of Transition Rules 

    We begin with transition rules without parameters (free variables). The basic com-
ponent of a transition rule is called an  update. There are three sorts of update. Let  S 
be a state of an evolving algebra  M. 

(i)  Function updates: let  f  be a function symbol in the signature of  M. Suppose that 
the  type of  f  is U1 × . . . × Uk → U0  where each Ui  is a universe name.   Let   
e0, . . . , ek  be closed  (i.e. without free variables)  expressions  (terms)  of  types 
U1, . . . ,Uk .  Then f (e1, . . . , ek) := e0  is a function update.  Its meaning is: first 
compute  e0, . . . , ek  in  S  and let  a0, . . . , ak  be the results, respectively; then 
assign a0 to f (a1, . . . , ak).  Read and write operations are treated as special forms 
of function update. A read operation is of the form   f (e1, . . . , ek) := 
Input(channel), where  f  and the ei  are as before and  channel  is a path over 
which information passes. The meaning of a read operation is: when a value v is 
obtained from outside M over channel (in a given state  S),  evaluate  e1, . . . , ek  in 
S   and let   a1, . . . , ak  be the results, then assign  v  to  f (a1, . . . , ak). A write 
operation  is  of  the  form  Output(channel) := f (e1, . . . , ek)  where  f  and  the  ei 
are again as above. The meaning of a write operation is: compute  e1, . . . , ek  in 
the given state and let  a1, . . . , ak  be the results, then transmit   f (a1, . . . , ak)   
outside M over channel. 

(ii) Contractions of universes: let e be a closed expression, then  Dispose(e)  is a 
universe contraction. Its meaning is: compute e in 5 and let a be the result; then 
delete a from the universe to which it belongs. The deletion of a may make some 
functions undefined on some elements of their domains. The usual trick of using 
dummy elements "undefined", "uninitialized", etc. allows one to deal with total 
functions only. 

(iii) Extensions of universes: let U   be a universe name and  F  be a list of function 
updates some of which mention a variable temp, then 

let   temp  =  New (U)   in   F   endlet 
is a universe extension. Its meaning is: first add a new element to U   and let  temp 
name this element temporarily; then perform the function updates in the list   F. 
The scope of   temp  is delimited by the brackets  let  and  endlet. 

Basically, a transition rule is of the form 

if   e   then   F   endif, 

where  e  is a closed Boolean expression and  F  is a list of updates. The meaning of 
such a transition depends on the value of   e  in the given state. If  e  is false, the rule  
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does not  alter the state of the algebra; if   e   is true, the state of the algebra is altered 
according to the updates in   F. The whole language is described by a finite set of 
transition rules which are executed simultaneously. A priori, different transition rules 
or even different updates of the same transition rule can contradict each other; we 
restrict our attention to (deterministic) consistent evolving algebras. 

    For  brevity  and  convenience, we allow a slightly more complicated syntax.   Let 
r1, . . . , rk   be updates or transition rules and e be a closed Boolean expression, then 

                                         if   e   then 
                                         r1, . . . , rk 
                                     endif 

is a transition rule. Its meaning is: perform  r1, . . . , rk,  if e is true in  S  and do 
nothing, otherwise. 

    There are several, tightly circumscribed, situations in a semantic account of Modula 
where parameterized transition rules are natural. Two such situations occur at block 
entry and block exit, when a relatively large number of locations must be allocated or 
deallocated. Modula specifies no ordering of the allocations or deallocations, hence, 
the natural thing to do is perform them "simultaneously". We express this 
simultaneity, or better, absence of ordering, by a parameterized transition rule. The 
meaning of such a rule is: perform the rule for all possible values of its parameters. 

2. A State of a Modula Evolving Algebra 

    Since an evolving algebra for Modula reflects a given program, we give a sample 
program Prog which will allow us to supply concrete examples of the universes and 
functions comprising an algebra. The sample program appears in Figure 1. 

    We now describe the universes, functions and relations that comprise an evolving 
algebra M(Prog) for Prog. We also mention in passing those components which might 
be present in an  algebra  for a Modula  program different from Prog but which are 
unnecessary to an account of  Prog's ideal machine. We use   evolving algebra   and 
dynamic structure interchangeably in our account. All universes of a dynamic 
structure have the equality relation defined on them. 

2.1. Integers 

    Prog declares a record type, Vertex, that includes a field of type integer. Therefore, 
a dynamic structure M(Prog) will include a universe int consisting of all the integers 
in 
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        MODULE Prog; 
        FROM       Storage    IMPORT ALLOCATE;  
        FROM       InOut    IMPORT ReadInt, Done, WriteInt, WriteLn;  
        TYPE        Link = POINTER TO Vertex;  
                           Vertex = RECORD 
                                               datum: INTEGER;  
                                               left, right: Link  
                                          END; 
        VAR                  r, tree: Link; 

        PROCEDURE Insert(item: Link; VAR subtree: Link);  
        BEGIN 
          IF subtree = NIL THEN  
             subtree := item;  
             subtree ↑.left := NIL;  
             subtree ↑.right := NIL  
          ELSEIF item ↑.datum < subtree ↑.datum THEN 
            Insert(item, subtree ↑.left)  
          ELSE 
            Insert(item, subtree ↑.right)  
          ENDIF  
        END Insert; 

        PROCEDURE Print(subtree: Link);  
        BEGIN 
          IF subtree ↑.left ≠ NIL  THEN Print (subtree ↑.left);  
          WriteInt(subtree ↑.datum,6);Writeln;  
          IF subtree ↑.right ≠ NIL THEN Print(subtree ↑.right)  
        END Print;  

        BEGIN  
          tree := NIL; 
          NEW(r); ReadInt(r ↑.datum);  
          WHILE Done DO  
            Insert(r, tree); 
            NEW(r); ReadInt(r ↑.datum)  
          END; 
          IF tree ≠ NIL THEN Print(tree)  
        END Prog. 

Figure 1. An Example Program 
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the interval [MinInt, MaxInt].   MinInt  and  MaxInt are distinguished elements of   int.  
The universe  int  comes equipped with the usual ordering and the partial arithmetic 
operations  +,  −,  × ,  quotient, and  remainder. 

2.2. Boolean 

    A structure M(Prog) will include a universe  bool = {true, false}  equipped with the 
usual Boolean operations and ordered such that   false < true.   The binary Boolean 
operations are used  only  in transition rules. In Modula, the binary Boolean 
operations appear in a "conditional" form in which both an operation's arguments are 
not always evaluated. Consequently, their semantics are given by the transition rules 
that govern sequencing through the parse trees of Boolean expressions. 

2.3. Other Basic Types 

    The other universes a Modula structure may comprise are a finite ordered set of 
characters  char, an initial segment of the natural numbers  card, and a finite set of 
real numbers  real. In general,  char  and its ordering relation differ among Modula 
structures, but  char  must contain the upper case letters of the Roman alphabet, the 
digits  0, . . . , 9, and certain punctuation marks (cf. The Modula Report [9]). The 
universe  char  is equipped with operations,  Ord  and  Char, which give the position 
in the ordering of one of its elements and the element corresponding to a position in 
the ordering, respectively. The universe  card  includes those natural numbers less 
than or equal to  MaxCard, where  MaxCard  is a constant that differs among Modula 
structures. The usual ordering and (partial) arithmetic operations are defined on  card. 
We omit a description of  real. 

2.4. The Parse Tree 

    The parse tree of Prog is represented by a universe called  parsetree  with a 
relatively rich structure plus some additional functions from and to  parsetree. The 
elements of parsetree  are the nodes of the parse tree. The partial functions  Child1, 
Child2, . . . map an element of parsetree to its first, second, etc. child, if it has one. 
The function Children indicates how many children a node possesses. The function  
Parent  maps an element of  parsetree  to its parent node, if it has one. 



7 

    An auxiliary universe  grammarsymbol  provides labels for parse tree nodes which 
indicate the grammatical category to which the subtree under a node belongs. A 
function  Label : parsetree →  grammarsymbol  represents this correspondence. 

    There is also a function  Sp  (for specification) that is used to simplify the represen-
tation in the parse tree of identifiers and constants. The grammar for Modula includes 
productions which describe the syntax of identifiers and constants. However, it is 
more convenient to deal with the identifiers themselves or the values denoted by the 
constants than with parse sub-trees representing their syntactic analysis. So we allow 
leaf nodes in our parse trees to be labeled by the non-terminal grammatical symbols 
'id'  and  'const' and have  Sp  map such a node to the appropriate identifier or value. 
Nodes  labeled  'id'  are mapped to a finite universe  ident  of identifiers;  ident  is 
equipped with the equality relation only. The values to which  Sp  maps constants are 
taken from universes such as  int. 

    For convenience, a Modula evolving algebra comes equipped with a binary 
relation,  SubTree,  which, for a given parse tree node  n, indicates which nodes are in 
the subtree of which  n  is the root. This relation is useful in certain transition rules, as 
we shall see in section 3. 

     The are two dynamic distinguished elements of  parsetree:  AN  and  XN.   AN,  for 
"active node", indicates at which node control currently resides.  XN   is an "auxiliary" 
active node which is used in the transition rules for declarations and procedure calls 
when there needs to be, in effect, two active nodes because two sub-trees must be 
traversed in synchronized fashion. 

2.5. Raw Variables 

     Modula evolving algebras include a universe  rawvar  whose elements serve as the 
denotations of variable identifiers and, hence, play a central role in our account of 
program variables. However, we must first consider the semantic complication arising 
from the fact that Modula allows identifiers to be re-used. In our example program, 
'subtree' appears in both the procedures Insert and Print. In order to give unique 
names to variables, procedures, etc., we adopt the convention of prefixing identifiers 
with the identifiers of the procedures and modules in which their declarations are 
nested in order from largest to smallest enclosing block. For example, the variable 
identifiers of Prog become InOut.Done,  Prog.r,  Prog.tree,  Prog.Insert.item, 
Prog.Insert.subtree,  and  Prog.Print.subtree. The denotation of each of these extended 
identifiers is a unique element of  rawvar, i.e. a raw variable. The denotations of 
extended identifiers are called raw variables because, in general, a block that is the 
body of a procedure may be activated recursively creating multiple incarnations of its 
variables each of which is a variable in its own right. More about this in a moment. 
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2.6. The Universe of Type Representatives 

     A Modula structure will include a universe  types  whose elements are tokens 
which represent the structure's data types. In particular, elements of  types  serve as 
the denotations of type identifiers. Our example program Prog uses the following 
types; for each of them,  types  contains a distinct element. INTEGER appears as the 
type of one of the fields of the record type Vertex; BOOLEAN appears implicitly as 
the type of the imported variable Done and certain expressions; Vertex is a declared 
record type; Link is declared of type 'POINTER TO Vertex'. Each of the procedures 
InOut.ReadInt, InOut.WriteInt, InOut.WriteLn, Prog.Insert, and Prog.Print is of a 
different procedure type (determined by the types of their parameters and whether 
they're value or variable) and corresponds to an element of  types. 

2.7. Locations 

     Modula structures include a universe  loc  whose elements play a dual role. First, 
they represent the incarnations of raw variables produced by activating the blocks in 
which the raw variables are introduced. Secondly, they represent the elements of 
dynamic data structures created by the procedure NEW. The latter role requires that 
loc  be a dynamic universe, since the number of calls on NEW to be expected during 
the execution of a program cannot, in general, be predicted. Since calls on NEW 
produce locations, it should be apparent that locations are the values which 
incarnations of pointer variables assume. For example, Prog introduces a number of 
raw variables of type 'POINTER TO Vertex'; each of these will be mapped, by 
functions to be described below, to locations which will, in turn, be mapped to values 
of a universe corresponding to Vertex. Note that our locations are more abstract than 
those sometimes appearing in theories of programming language semantics. They are 
not intended to model an ideal computer's "memory": they are not ordered and there 
are no operations other than the equality relation defined on them. There is no notion 
of "re-using" locations in our semantics; new locations are created and old locations 
are dropped, but the story ends there—the new locations created bear no relation to 
the old ones dropped. However, our structures are  finite  and, moreover, bounded, 
therefore every structure places a limit on the size of   loc. 

2.8. Structured Data Types 

     Our example program Prog introduces a record type Vertex. For every record type, 
there exists a dynamic universe which contains an element for every instance of the 
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record type created but not yet deleted at that point. In the case of Prog, let  vertex 
refer to the universe of M(Prog) corresponding to the record type of the same name. 
The denotations of the field names of the record type Vertex will be dynamic 
functions from  vertex → loc:  the function corresponding to 'datum' will map 
elements of  vertex  to locations that assume integer values and the functions 
corresponding to 'left' and 'right' will map elements of  vertex  to locations that assume 
values that are themselves locations. These functions are dynamic because transition 
rules expanding their domains must be applied to them as elements are added to 
vertex.  Note that, for each element added to  vertex,  three elements are added to  loc. 

    We next consider arrays even though our sample program includes no array types. 
To an array type corresponds a universe, initially empty, whose elements represent 
instances of the array type, and an "access" function, which maps pairs consisting of 
an instance of the array type and an index value to a location. To create a new 
instance of an array type, one adds a new element to the appropriate universe of array 
values, one adds new locations to contain the array's components, and one applies a 
transition rule to the array type's access function to cause it to map pairs consisting of 
the new array value and an index value to the corresponding new locations. 

    The components of arrays and records are represented as locations because they 
may be passed as actual parameters to procedures with variable formal parameters. 
This means that an array or record component may become an "incarnation" of the 
raw variable that is the denotation of a variable procedure parameter and the 
incarnation of a raw variable is a location. 

2.9. Command Results and Space 

    Modula dynamic structures include a universe  result  comprised of three elements: 
ok,  error,  and  uneval  (for unevaluated). The elements of  result  are used to signal 
the outcome of sub-computations, such as those specified by Modula commands, that 
don't otherwise produce a result or to indicate that control has yet to visit a sub-parse-
tree. 

    Each dynamic structure will include a universe  space  whose elements are called 
units.  What a unit corresponds to varies among structures. A unit may correspond to 
a bit, a byte of 8 bits, or a word of some number of bits. For each data type a program 
introduces, a function  Size  tells us how many units of  space  correspond to that type. 
A Modula dynamic structure will also include a dynamic function  Avail  that 
indicates, at any given moment, how much space is available. 

2.10. The Static Functions  Intro,  Sig, and  Type 

    Modula allows the reuse of identifiers. However, the declaration or procedure  
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parameter specification introducing the identifier that is in force at any point in the 
program may be determined by examination of the program's text. Therefore, every 
identifier occurring in a Modula program can be uniquely associated with an 
introduction of the identifier. Moreover, this association may be established without 
executing the program. Consequently, we assume that Modula structures come 
equipped with a static function,  Intro,  which maps an identifier node in the parse tree 
to the node representing the same identifier in the appropriate declaration or 
parameter specification subtree introducing the identifier. For example, in the case of 
Prog,  Intro  maps occurrences of  'r'  in the main body to the occurrence of  'r'  in 
Prog's variable declaration list. It maps occurrences of  'subtree' in the body of Insert 
to the occurrences of  'subtree' in Insert's formal parameter list and occurrences of 
'subtree'  in the body of Print to the occurrence of  'subtree' in Print's formal parameter 
list.   Intro  also maps procedure identifier nodes to the root of the procedure's 
declaration subtree. 

    Modula structures also include a static function  Sig  which maps nodes 
representing defining occurrences of identifiers to their significations. In particular, 
Sig  maps identifier nodes in variable declarations or formal parameter specifications 
to the raw variable that is the denotation of the variable or parameter. Hence, given a 
variable identifier node, one obtains that variable's denotation by applying the 
composition of  Intro  and  Sig  to the identifier node. For example, if  n is a node 
labeled  'id' in the subtree for Insert whose specification is the identifier  'subtree', then 
Sig(Intro(n))  is the raw variable  Prog.Insert.subtree.  In principle, the function  Sig  is 
unnecessary  −  raw variables can be identified with the corresponding nodes of the 
parse tree. However, since raw variables play such an important role, we find it 
convenient to distinguish them from the corresponding nodes of the parse tree. 

    Modula structures include a static function  Type  which maps a parse tree node in 
the range of Intro to the element of  types  representing the type of the object 
introduced at the node. 

2.11. The Dynamic Function Top and The Predecessor Relation on  loc 

We have seen how the static functions  Intro  and  Sig  take us from a program 
variable node to the raw variable that is the program variable's denotation. The 
possibility of recursively activating the block in which a program variable is 
introduced means that multiple incarnations of the raw variable may exist in some 
state of a dynamic structure. The problem is to keep track of these incarnations in 
such a manner that the value of the most recently created one is fetched when needed 
and that the previous incarnation is restored when control leaves the block in which 
the program variable was introduced. Consider also the following sort of  "variables" 
which are implicitly part of a Modula structure. In our semantics, a subcomputation 
ideally corresponds to a traversal of a parse tree. During such a traversal partial results 
are produced. These partial results are made available by  "attaching" them to 
appropriate parse tree nodes. In this scheme, a parse tree node may be thought of as  
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corresponding to an implicit variable whose value is the result of performing the sub 
computation represented by the subtree under the node. The possibility of recursion 
means that these implicit variables may have multiple incarnations. Therefore, the 
problems of coping with incarnations mentioned above obtain with them as well. 
Modula structures include two dynamic functions which solve these problems. The 
first is  Top, which maps raw variables and parse tree nodes to locations. Specifically, 
Top  maps a raw variable to the location that represents its most recent incarnation 
and it maps a parse tree node to the most recent incarnation of the implicit variable 
corresponding to the node. Given a parse tree node  n  representing a variable, we 
obtain the most recent incarnation of that variable by applying the composition of 
Intro,  Sig,  and  Top  to  n: Top(Sig(Intro(ri))).  To obtain the most recent incarnation 
of the implicit variable corresponding to a node, one applies  Top  to the node directly. 

    When control leaves the block in which a variable is introduced, a transition rule 
must be applied to  Top  to restore its previous value at the (raw or implicit) variable, 
if it had one. To remember previous incarnations of variables, Modula structures 
include a partial dynamic function  Pred. When applied to a location and raw variable 
or parse tree node,  Pred  yields the location representing the raw or implicit variable's 
previous incarnation, if it has one, and is undefined otherwise.  Pred  takes a raw 
variable as well as a location as argument because it is possible, via aliasing, for a 
single location to represent an incarnation of more than one raw variable and, hence, 
to have different predecessors depending on which raw variable one considers. This 
situation occurs when a program variable is passed as actual parameter in a procedure 
call for a formal variable parameter. 

2.12 The Dynamic Function  Val 

    Modula structures come equipped with a dynamic function  Val  which assigns 
values to locations. The range of  Val  includes those data types used in a program. In 
the case of Prog, we have: 

Val : loc  →  int  �  bool  �  loc  � vertex. 

For convenience, in the transition rules, we let  Nval(n)  abbreviate  Val(Top(n)), 
where  n  is an implicit variable.  Nval(n)  always gives the value of the most recent 
incarnation of the implicit variable. 

2.13 The Procedure Stack 

    The procedure stack consists of a dynamic universe pstack with dynamic distin-
guished element  PSTop, a function  PStack : pstack →  parsetree,  and a relation on 
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pstack,  PSPred (for predecessor).  PSTop is the "top" element of the stack,  PStack 
maps each element of the stack to the root of a procedure call subtree, and  PSPred 
records the history of yet-to-be-completed procedure calls. 

3. Some Representative Transition Rules 

    First, we describe the transition rule for assignment statements.   The grammar 
production describing assignment statement subtrees is 

assignment → desig := exp. 

The semantics of assignments are familiar. Evaluate the designator on the left to 
obtain a  location  l; evaluate the expression on the right to obtain a value v;  make v 
the new value of the dynamic function  Val at  l.   However, the transition rule for 
assignments is somewhat complicated by the requirement that one transition rule 
suffice for all instances, in a parse tree, of a particular grammatical category. 
Specifically, expressions may appear in a number of contexts; among them are 
assignment statements and actual parameter lists of procedure calls. There exists a 
potential conflict between the kind of value required in these two contexts. An 
expression appearing in an assignment statement should always evaluate to an 
expression value (sometimes called an  r-value). An expression appearing in place of 
a variable formal procedure parameter should always evaluate to a location 
(sometimes called an  l-value). Most expressions pose no problem: if the expression 
contains operators (other than array indexing, record field selection, and pointer 
dereferencing) it will always evaluate to an r-value. If the expression consists only of 
a variable, the transition rules must cause it to evalute to a location. Then, if the 
expression's context requires an l-value, a location is available; if the expression's 
context requires an r-value, the location can be coerced to an r-value by an application 
of  Val.  An auxiliary function  Value  performs the coercion: 

                                                                    Val(x),   if   x � loc; 
                                           Value (x) =  {     
                                                                     x,           otherwise. 

The transition rule for assignment statements appears in figure 2. 

    Next, we give the transition rule for procedure call subtrees. The relevant grammar 
production is: 

procall → id (explist). 

When  AN  is labeled  'procall', its first child is the procedure's identifier and its third 
child is the subtree representing the formal parameter list. The transition rule for 'pro-
call' subtrees consists of three inner transition rules. The first transfers control to the 
formal parameter list subtree if it has not been evaluated. The second invokes three 
actions: it updates the procedure stack, it allocates a new location for the implicit vari-
ables corresponding to the nodes of the subtree for the procedure being called, and it 
transfers control to the procedure. The transition rule that creates new incarnations of 
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        if Label(AN) = assignment then  
          if Nval(Child1(AN)) = uneval then 
            AN := Child1 (AN)  
          endif, 
          if Nval(Child1 (AN)) ≠  uneval then  
            if Nval(Child3(AN)) =  uneval then 
              AN := Child3 (AN)  
            endif,  
            if Nval(Child3 (AN)) ≠  uneval  then 
              Val (Nval(Child1(AN))) := Value (Nval(Child3 (AN))),  
              AN := Parent (AN),  
              Nval(AN) := ok,  
              Nval(Child1(AN)) := uneval,  
               Nval(Child3(AN)) := uneval  
             endif  
          endif  
        endif. 

Figure 2. The Transition Rule for Assignment Statements 

the  procedure's  implicit  variables  is  an  example of  a  parameterized transition 
rule.  Its parameter  n  ranges  over the nodes in the  'block'  subtree  that constitutes 
the body of the procedure being called. When the active node is the root of the 
procedure call,  the root of the subtree for the body of the procedure is given by 
'Child3(Intro(Child1(AN)))'.  The transition rule that updates the procedure stack 
extends the universe  PStack. The element added is subsequently removed, by the 
update  Dispose (PSTop),  when the called procedure is exited. The third inner rule 
transfers control to the procedure call's parent after the call has completed. Note here 
that completion of the call is indicated by  'Nval(AN) ≠  uneval'. The value of this 
implicit variable is changed just prior to exiting the body of the procedure. The 
transition rule for  'procall'  nodes is given in Figure 3. 

4 An Application 

    In this section we show how our methods of semantic definition may be extended 
to certain  "low-level"  facilities of Modula and then indicate how the correctness of a 
simple keyboard interrupt handling routine can be proven. In doing so, we shall have 
to incorporate the interrupt mechanism and input/output channels of a hypothetical 
computer into our model. We hope to accomplish two purposes: first, to illustrate how 
connections between semantic models of "official" Modula and its implementations 
can be made and, second, to show how our semantic models may be used to prove 
properties of Modula programs. The keyboard interrupt handler we shall use as an 
example is taken from [9]. It is presented in Figure 4. This program fragment is based 
on a PDP-11 implementation of Modula, although we do not claim to have 
formalized the PDP-11 here. Rather, we formalize those properties of an underlying 
machine required to reason 
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        if Label(AN) = procall then 
          if Nval(AN) = uneval  and  Nval(Child3(AN)) = uneval then 
             AN := Child3(AN)  
          endif, 
          if Nval(AN) = uneval  and  Nval(Child3(AN)) ≠  uneval  then  
            if Subtree(n, Child3(Intro (Child1(AN)))) then  
              let temp = New (loc)  in  
                 Val (temp) := uneval  
                 Top(n) := temp  
                 Pred(temp, n) := Top(n)  
               endlet  
            endif, 
            let temp = New (pstack) in  
               PStack(temp) := AN,  
               PSPred(temp) := PSTop,  
               PSTop := temp  
             endlet, 
             AN := Intro(Child1(AN))  
           endif,  
           if Nval(AN) ≠ uneval  then 
              AN := Parent(AN) 
           endif  
        endif. 

Figure 3. The Transition Rule for Procedure Calls 

about the program Wirth presents in [9]. We have chosen an interrupt handling 
routine as our example program because we believe it demonstrates the utility of our 
approach to semantics most effectively. The very notion of interrupt involves the 
concept of time: an interrupt is an event which occurs at an arbitrary  moment  in the 
evolution of a computation. And the idea that a computation is a sequence of states 
unfolding in time is the basis of operational semantics. Moreover, the state changes 
which an interrupt engenders are not directly connected to any part of a program's 
text. Therefore, a semantic theory which ascribes, for example, mathematical 
functions to components of program text will not deal readily with interrupts. Yet, 
interrupts are fundamental, at the right level of detail, to the function of all modern 
computing machinery. 

We shall now describe those aspects of our example program which are not part of 
"official" Modula, i.e. the low-level facilities of which it makes use. The first is the 
notion of process in general and coroutine in particular. Implementations of Modula 
are free to adopt a concept of process of the designer's choice. Obviously, this choice 
will be largely, but not entirely, determined by the hardware on which the 
implementation is to run. On single processor machines, the coroutine concept is 
attractive. We shall restrict our attention to coroutines. The basic idea of a coroutine is 
the quasi-concurrent execution of a number of sequential processes, i.e. at any given 
moment only one of two or more sequential processes is executing. An executing 
process may suspend itself and transfer control to another, which then resumes 
executing where it last left off. Each process has its own local state information as 
well as (possibly) access to data structures shared 
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        MODULE keyboard[4];  
            EXPORT fetch, n;  
            IMPORT ADR, SIZE, WORD, PROCESS, 
                              NEWPROCESS, TRANSFER, IOTRANSFER; 
            CONST   N = 32; 
            VAR         x[777562B] : CHAR; (* keyboard data *) 
                              s[777560B] : BITSET; (* keyboard status *) 
            VAR         n, in, out : CARDINAL; 
                              buf : ARRAY[0..N - 1] OF CHAR; 
                              PRO, CON : PROCESS; 
                              wsp : ARRAY[0..177B] OF WORD; 

             PROCEDURE  fetch(VAR ch : CHAR);  
                BEGIN (* to be called only if n > 0 *)  
                   IF n > 0 THEN 
                      ch := buf[out]; out := (out + 1) MOD N;  
                      n := n - 1  
                   ELSE ch := 0C  
                   END  
                END fetch; 

             PROCEDURE producer; (* acts as coroutine *)  
                BEGIN  
                   LOOP 
                      IOTRANSFER(PRO, CON, 60B);  
                         IF n < N THEN 
                            buf [in] := x; in := (in + 1) MOD N;  
                            n := n+ 1  
                         END  
                      END  
                   END producer; 

               BEGIN 
                  n := 0; in := 0; out := 0; 
                  NEWPROCESS (producer, ADR(wsp), SIZE(wsp), PRO);  
                  EXCL(s, 6); TRANSFER(CON, PRO)  
               END keyboard. 

Figure 4. A Keyboard Handler Module (from [9]) 
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with its coroutines. Since coroutines are considered low-level facilities, their 
associated data type and its operations are imported from the module SYSTEM; the 
import list in our example program reflects this fact. A process is determined by a 
parameterless procedure which must be declared in the outermost block of a module. 
A process may be thought of as an instantiation, created by the pre-defined procedure 
NEWPROCESS, of the procedure which determines it. This means, among other 
things, that the process will have its own copies of all the procedure's local data 
structures. NEWPROCESS is exported by the SYSTEM module. Control is explicitly 
transferred to and from a process by means of predefined procedures TRANSFER 
and IOTRANSFER which are also exported from the SYSTEM module. The process 
in which a call on NEWPROCESS is executed becomes the parent of the created 
process. 

   Our example program imports the data type PROCESS from the SYSTEM module. 
As its name suggests, elements of this data type represent processes. To provide a 
denotation for this data type, we augment our dynamic structure with a dynamic 
universe  processes.  The universe of processes has a dynamic distinguished element 
AP  (for active process) which indicates which process is currently executing. In the 
initial state of a dynamic structure  processes  will contain a single element. Elements 
are added to and deleted from  processes  as processes are created and deleted. As 
mentioned above, processes are created by calls on the procedure NEWPROCESS. A 
process is deleted when control reaches the end of the procedure which determines it 
or when control reaches the end of the procedure which determines one of its parent 
processes. Since each process must have its own local state space, we must alter the 
dynamic functions  PSTop,  Top,  and  Avail  so that they take as additional argument 
an element of   processes.  Similarly, the dynamic distinguished elements of  
parsetree  − AN and XN  − must now become dynamic functions from  processes  
into  parsetree. 

   The declarations of the variables 'x' and 's' in our example both include an octal 
constant (777562B in the case of  'x' and 777560B in the case of  's'  − the  'B' 
indicates that the preceding digits are to be interpreted as octal digits) which is meant 
to be interpreted as a memory address. This is so because the input/output registers of 
our hypothetical computer are "memory-mapped", i.e. one refers to them as if they 
were memory cells, and, in our example, we wish to use the names  'x' and  's' to refer 
to the keyboard data and status registers, respectively. Thus, the declarations of  'x' 
and 's' must indicate the address of the registers with which they are to be associated. 
In our model 'x' and 's' will be bound to input channels. This is accomplished by 
adding a new symbol 'ioregister' to  grammarsymbol  to represent such variables and 
adding new grammatical productions  'factor → ioregister'  and  'ioregister → id'.  The 
range of  Sig  must be expanded to include input/output channels.  The value of  Sig  
at the 'id' node in the declaration for a variable bound to a channel will be initialized to 
the name of the channel to which the variable is bound. In the case of  'x', for 
example, this name is the octal constant  '777562B'. We give the transition rule for the 
production 'ioregister → id'  when the  'id' node refers to the keyboard data  register 
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of our hypothetical computer: 

      if Label(AN(AP)) =  ioregister and  Sig(Intro(Child1(AN (AP)))) = 777562B  
      then 
         Nval(AN (AP)) := Input (Sig(Intro (Child1 (AN (AP))))), 
         Output(777560B) := Input(777560B) - {6}, 
         AN (AP) := Parent(AN (AP))  
      endif. 

This function update    'Output (777560B) := Input (777560B) - {6}' reflects the fact 
that bit 6 of the keyboard status register of our hypothetical computer is reset when its 
keyboard data register is read. (The keyboard status register is declared to be of type 
BITSET and the operator  '-'  denotes set difference here.) 

    The pre-defined procedure NEWPROCESS has as its heading: 

         PROCEDURE NEWPROCESS (P : PROC, A : ADDRESS, 
                                                                  n : CARDINAL, VAR new : PROCESS). 

In a call on NEWPROCESS, the actual parameter corresponding to  'P' denotes the 
procedure that determines the process to be created, the actual parameter 
corresponding to  'A'  gives the base address of the workspace in which the processes' 
local variables are to allocated, the actual parameter corresponding to 'n' gives the size 
of this workspace, and the actual parameter corresponding to 'new' is a variable of 
type PROCESS in which a reference to the created process is stored.  PROC is a pre-
defined data type "parameter-less procedure".  At the level of abstraction at which we 
are formalizing our example program we will not need the base address of the new 
process' workspace. Therefore, we may omit a discussion of how our hypothetical 
computer's memory is modeled.  Calls on NEWPROCESS are characterized by the 
CFG production 

predefcall → id(explist), 

where  the  specification  of  the  node  labeled   'id'  is  'NEWPROCESS'.  The 
corresponding  transition rule first prescribes evaluation of the actual parameters of 
the call. In what follows let  'P', 'new' and  'n' denote the roots of the subtrees in the 
actual parameter list of a call on NEWPROCESS corresponding to the formal 
parameters of the same names. A suite of function updates is applied to  Val,  Avail, 
and  AN.  A function update  'Val (Nval(new)) := temp'  sets the value of the most 
recent  incarnation  of  the  actual  parameter  corresponding  to  'new'  to  the  newly  
created  element of  processes;  this  makes  this  parameter  into a reference to the 
new process,  as desired.   A  function  update    'Avail(temp) := Value(Nval(P))'     
sets  the amount of available storage  for the new process.   A  function  update  
'AN(temp) := Value(Nval(P))' sets the active node for the new process.   Note that this 
update does not activate the new process, since the current active process (indicated 
by  AP) is the process executing the call on NEWPROCESS;  control remains in this 
latter process and proceeds to the parent node of the call on NEWPROCESS.  The 
root of the procedure call subtree is marked  ok  to signal successful creation of the 
new process. 

    The predefined procedure TRANSFER has the following heading: 

PROCEDURE  TRANSFER (VAR source, destination : PROCESS); 
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In a call on TRANSFER, the actual parameter corresponding to  'source'  will be a 
variable of type PROCESS in which a reference to the process executing  the call, i.e. 
an element of  processes,  will be stored; the actual parameter corresponding to 
'destination' will be a variable of type PROCESS in which a reference to the process 
to be activated is stored. Calls on TRANSFER are described by the same CFG 
production as calls on NEWPROCESS. In the following let  'source' and  'destination' 
denote the roots of the subtrees in the actual parameter list of a call on TRANSFER 
corresponding  to  the formal  parameters  of the same names.  The function update 
'AP := Val(Nval(destination))' activates the process represented by the value stored in 
the variable supplied as second actual parameter of the call on TRANSFER. This 
actual parameter must evaluate to a location (since it corresponds to a VAR formal 
parameter), hence the appearance of  Val  in the function update. The function update 
'Val(Nval(source)) := AP'  stores a reference to the current process in the location to 
which the first actual parameter of the call on TRANSFER evaluated. The two 
remaining function updates advance control in the about-to-be-deactivated current 
process to the parent of the call on TRANSFER and mark the root of procedure call 
subtree  ok. When this process is later reactivated, execution will resume at the parent 
of the call subtree. 

    Before  we  describe  the  semantics of calls  on  the predefined  procedure 
IOTRANSFER,  we must describe our model of interrupts. An interrupt is essentially 
the communication, from outside a dynamic structure, of a value of type 
CARDINAL. This communication takes place over a channel  interrupt.  The specific 
CARDINAL value communicated indicates which agent initiated the interrupt;  the 
assignment of values to agents depends on the configuration of the computing system 
being modeled. Each agent has a priority. Priorities will also be expressed by 
CARDINAL values. For this purpose we add a static function  IntPriority  to our 
dynamic structure.  IntPriority  maps a CARDINAL value representing an 
interrupting agent to the CARDINAL value that expresses its priority: the priority of 
agent  I  is greater than that of agent j, if IntPriority (i) > IntPriority (j). Each 
interrupting agent will have associated with it a process called its  handler,  which is 
activated, in a manner to be described shortly, whenever the agent interrupts. The ele-
ment of  processes  that represents a handler will be stored in a location which is 
obtained by applying a function  IntHandler  to the CARDINAL value representing 
the agent.  For each interrupting agent we must also reserve a location to hold the 
representative of the process that was executing when the agent interrupted. This is so 
that control may be returned to this process when the agent's handler has completed 
its job. We obtain this location by applying a function  IntRetDes t to the CARDINAL 
value representing the agent.  For a particular interrupt  i, the value of  IntPriority (i), 
IntHandler(i), and  IntRetDest(i)  collectively constitute the  interrupt vector for   i. 

    We must extend the notion of priority to the statements of a Modula program. We 
shall do so by adding to our dynamic structure a dynamic function  CurPriority  
which maps elements of  processes  to CARDINAL values: for each process, 
CurPriority  gives the current priority level of the statement executing in that process. 
Now, how is the current priority established? Note that heading of the declaration of 
the module  'keyboard'  in our example program includes the symbol  '[4]'. This 
assigns a priority of 4 to all the executable statements of the module and its 
procedures. Otherwise, the statements of a procedure inherit the priority of the 
program that called the procedure.  We  represent  this  situation as follows.   To deal 
with modules with an explicitly declared priority (like  'keyboard'  in our example), 



19 

we augment our dynamic structure with a static, partial function on  parsetree, 
ModulePriority,  which maps all the nodes of such a module to the CARDINAL 
value that expresses the module's priority. Whenever one of the module's procedures 
is called,  CurPriority  is set to the value obtained by applying  ModulePriority  to the 
root of the procedure's declaration subtree. In order to restore the priority of the 
calling program, we stack the value of  CurPriority  which prevailed during its 
execution. To accomplish this we need a dynamic function  PriorityStack  which 
maps elements of  pstack  to CARDINAL values.  Moreover, for those procedures 
that are not part of modules with an explicit priority,  CurPriority  may be set to 
PriorityStack (PSTop),  i.e. such procedures inherit the calling procedure's priority. 
The transition rules for  'procall'  and  'procdecl' nodes must be modified. The 
interested reader may consult [6] for details. 

    The predefined procedure IOTRANSFER has the following heading  

PROCEDURE  IOTRANSFER(VAR source, dest : PROCESS; va : CARDINAL); 

IOTRANSFER is like TRANSFER in that it activates the process whose 
representative is stored in the actual parameter corresponding to 'dest' and stores the 
current process's representative in the actual parameter corresponding to  'source'.  In 
addition, it sets the interrupt priority, interrupt handler, and interrupt return destination 
attributes of the interrupt designated by the value of the actual parameter 
corresponding to  'va'. In the following let  'source',  'dest' and  'va' denote the nodes of 
the call subtree corresponding to the formal parameters of the same name. The 
semantics of IOTRANSFER are expressed by a number of function updates. In the 
following discussion, we mean by "the interrupt" the interrupt denoted by the value of 
the actual parameter corresponding to 'va'. The function update 

IntPriority(Value (Nval(va))) := ModulePriority (AN (AP)) 

sets the priority of the interrupt to the priority of the call-statement. The function 
update 

IntHandler(Value (Nval(va))) := Nval(source) 

sets the interrupt's handler to process represented by the value in the location to which 
'source' evaluates. The function update 

IntRetDest(Value (Nval(va))) := Nval(dest) 

establishes the contents of the location to which  'dest' evaluates as the process to 
which control returns when the interrupt's handler has finished executing. We shall 
see next how an element of  processes is stored in this location. 

We shall now give the transition rule that describes how our dynamic structure 
changes when an external agent interrupts. When an external agent interrupts, an ap-
propriate CARDINAL value is communicated to our dynamic structure over the 
channel   interrupt.   The interrogation of this value is indicated in a transition rule by 
writing  'Input (interrupt)';  this term is undefined in a particular state of a dynamic 
structure, if no value is present on the channel. Therefore, the occurrence of an 

interrupt causes the guard   'Input (interrupt) ≠ �' to evaluate to true. 



20 

We then have the following transition rule for interrupts: 

                if  Input (interrupt) ≠ ��then 
                   if  IntPriority(Input (interrupt)) > CurPriority(A P)  then  
                     AP := Val(IntHandler(Input(interrupt)))  
                     Val(IntRetDest(Input(interrupt))) := AP, 
                   endif  
                endif. 

Note that an interrupt is ignored if its priority is lower than the priority of the currently 
executing process. When an interrupt of sufficiently high priority occurs, a 
TRANSFER operation is effectively performed. The difference is that, in the case of 
an interrupt, there is no associated program text and, hence, no need to alter the active 
node or  Nval.   In order to make our dynamic structure deterministic, we must embed 
the transition rules we gave in Chapter 4 in an outer transition rule whose guard is 

Input (interrupt) = ���

That is, in the absence of interrupts processing precedes as we have described it in 
previous sections of this paper. 

    Let Prog be a program that includes and uses the module 'keyboard' given above. 
How can one prove that the module 'keyboard' works correctly, i.e. that the characters 
fetched by Prog are exactly the characters entered from the keyboard. Here is one 
way. Define in the natural way 

(a) sequences of characters  deposit-sequence,  fetch-sequence, and  buffer-contents, 
and 

(b) terms  in,  out,  n, and  N  with values of type CARDINAL and establish that in all 
appropriate states 

(1) deposit-sequence  is the concatenation of  fetch-sequence  with  buffer-contents, 
and 

(2) in = out + n Mod N.  

The reader is referred to [6] for details.  
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