
Average Case Completeness∗

Yuri Gurevich†

Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor, MI 48109-2122

1989

Abstract

We explain and advance Levin’s theory of average case completeness. In particular,
we exhibit examples of problems complete in the average case and prove a limitation
on the power of deterministic reductions.

∗J. Computer and System Sciences 42:3, June 1991, 346–398.
†Partially supported by NSF grant DCR 85-03275.

1

Contents

0 Introduction 3

1 Polynomiality on average; Classes AP and RNP 6

2 Standard probability functions and examples of RNP problems 14

3 Ptime reducibility 17

4 Randomized Halting Problem 20

5 Randomized Post Correspondence Problem 23

6 Additional RNP complete problems 30

7 APtime reducibility 32

8 Incompleteness 34

9 Randomizing Reductions 36

10 Sparse problems 40

11 Appendix. Perfect Rounding and Randomized Tiling 41
A Perfect Rounding and Randomized Halting 42
B Randomized Tiling . 46

2

0 Introduction

Many NP hard problems are practically important and have to be solved in one way or
another in spite of NP hardness. There are different approaches in the literature to this
challenge: approximate algorithms, probabilistic algorithms, etc. The approach, adapted in
this paper, is to forget about the worst case and to care about the average case.

For simplicity, we speak about decision problems, rather than search problems, and
restrict attention to algorithms that solve all instances of the problem in question. The
first restriction is completely superfluous: the whole theory is readily generalizable to search
problems. The second restriction may be relaxed as well.

We assume that a decision problem D comes together with a function µ that assigns
probabilities to instances of D; the pair (D,µ) will be called a randomized decision problem.
How can one take advantage of probabilities? One possibility is to seek algorithms that
almost always run in polynomial time. The common formalization of running almost always
in Ptime is that for each n, the probability of hard instances of size n (where the running
time exceeds the given polynomial in n bound) is bounded by an inverse polynomial of n.
Powerful algorithms of that kind were devised for Hamiltonian Circuit Problem; see [BFF]
and references there. Another approach is to seek algorithms whose expected running time
is polynomial. An algorithm of that kind for Hamiltonian Circuit Problem with a fixed edge
probability has been devised in [GS]. Leonid Levin suggested [Le1] a natural liberalization of
the second approach where an algorithm is considered fast if the expectation of some fixed
root of the running time is polynomial. Algorithms that almost always run in Ptime (i.e.
polynomial time) may be and often are slow in Levin’s sense. Levin’s approach allows a nice
reduction theory which is the subject of this paper.

The new reduction theory generalizes the reduction theory for NP problems. The role of
NP is played by a class RNP of randomized decision problems (D,µ) such that D is NP and
the probability function µ satisfies a certain technical condition (see Section 1) that is usually
satisfied in practice. In his exceedingly terse paper [Le1], Levin generalized polynomial time
reductions to fit RNP problems and found a natural RNP complete problem, Randomized
Tiling. To work correctly, a reduction should not diminish too much the probability of a
given instance. As a result, reducing RNP problems is much more difficult than reducing
NP problems. A priori, it is not clear that there exists any complete RNP problems.

Levin’s completeness proof is ingenious and complicated. The main part of the proof
is devoted to establishing the completeness of a randomized (and bounded) version of the
halting problem; the reduction of Randomized Halting to Randomized Tiling is relatively
routine, but also not trivial. One contribution of this paper is a direct and simple proof of
the Ptime completeness of Randomized Halting (Section 4).

David Johnson [Jo] provided some intuition behind Levin’s definitions and proofs; he
challenged readers to find additional complete RNP problems. The first additional Ptime
complete RNP problems are presented in Sections 5 and 6 below. One of them is Randomized
Post Correspondence Problem:

Instance A nonempty list (u1, v1), . . . , (us, vs) of pairs of binary strings, and the unary
notation 1n for a positive integer n.

Question Do there exist a number k ≤ n and a function F from [1..k] to [1..s] such that

3

the concatenation of strings uF (1), . . . , uF (k) coincides with the concatenation of strings
vF (1), . . . , vF (k) ?

Probability The probability function is given by the following experiment: Draw indepen-
dently positive integers n and s with respect to the uniform probability distribution
on positive integers, and then draw independently binary strings u1, v1, . . . , us, vs with
respect to the uniform probability on binary strings.

The uniform (or standard, or default) probabilities on positive integers and binary strings
are described in Section 2.

We have also found that many apparently difficult RNP problems cannot, to all practical
purposes, be proved Ptime complete for RNP. Let us explain this. Call a probability function
µ flat if there exists ε > 0 such that µ(x) ≤ 2−nε

, i.e. − log µ(x) ≥ nε, for all instances x
of sufficiently large size n. Call a randomized decision problem (D,µ) flat if µ is flat. Let
DEXP (resp. NEXP) be the class of decision problems decidable in deterministic (resp.
nondeterministic) exponential time. In Section 8, we prove that if D is DEXP, µ is flat
and (D,µ) is hard for RNP with respect to polynomial time reductions, then DEXP =
NEXP. Thus, a flat problem cannot be proved Ptime complete for RNP unless DEXP =
NEXP. The natural randomizations of usual NP complete problems very often are flat. For
example, every RNP graph problem is flat if the probability distribution on n-vertex graphs
is determined by the edge-probability f(n) with n−2+ε < f(n) < 1−n−2+ε for some constant
ε > 0.

The idea of the incompleteness theorem is as follows. A NEXP problem D0 can be turned
into a very sparse RNP problem (D1, µ1) whose positive instances x have enormous (with
regard to the size) probabilities. Given such an x, a reduction f of (D1, µ1) to a flat problem
(D,µ) produces an instance f(x) of a high probability and therefore a small size. It turns
out that a deterministic exponential time procedure for D together with a polynomial time
procedure for computing f give a deterministic exponential time procedure for D0.

The incompleteness theorem survives the generalization to reductions computable in
average polynomial time; actually, the incompleteness theorem of Section 8 is stated and
proved for average polynomial time reductions. The theorem survives the generalization to
Turing (as opposite to many-one) reductions. However, it does not survive the generalization
to coin-flipping reductions. The proof fails because, instead of producing one instance f(x) of
a high probability and a small size, a randomizing reduction produces a multitude of instances
of a small probability and a large size. Ramarathnam Venkatesan and his advisor Leonid
Levin found [VL] a natural randomized graph-coloring problem, which is flat and complete
with respect to coin-flipping polynomial-time reductions; such reductions are considered in
Section 9. Rich additional information on the theory of average case complexity can be found
in [BCGL]; see also [Gu2].

An important question is whether the current state of RNP theory is sufficient to iden-
tify problems that are difficult on average. Why, in spite of the introduction of randomized
reductions, there are still only a few RNP complete problems known? Is the setting not ex-
actly right or average-case completeness proofs are inherently too difficult? It is possible that
many problems difficult on average are not complete for the whole RNP but are complete for
natural subclasses. In this connection, NP problems with small (log-size or, alternatively,

4

polylog-size) witnesses cry for attention. The worst-case complexity for problems with small
witnesses was a subject of study recently [MV, Me]. But the case of statistically small wit-
nesses is even more interesting. Notice, for example, that in the case of uniform probability
distribution over graphs with n vertices, the expected maximal clique size is about 2 log n.

This article contains a number of additional results and is organized as follows.

Section 1 The notion of polynomiality on average is defined and discussed. Then the
analogs AP and RNP of the classes P and NP are introduced.

Section 2 Default probability functions on numbers and strings are introduced and dis-
cussed. Also, examples of RNP problems are given.

Section 3 Polynomial time reducibility is defined and studied.

Section 4 A direct and simple proof of the polynomial-time completeness of Randomized
Halting for RNP is given.

Section 5 Randomized Post Correspondence Problem is proved polynomial-time complete
for RNP.

Section 6 Some additional RNP complete problems are given.

Section 7 Reducibility in average polynomial time is defined and studied.

Section 8 The incompleteness theorem is proved.

Section 9 Randomizing polynomial-time reductions are defined and studied.

Section 10 Sparse RNP problems are studied.

Appendix The original completeness proof of Levin is reconstructed. (The appendix is a
result of cooperation of the author and his student David McCauley.)

Acknowledgements David McCauley put a lot of work and ingenuity into the recon-
struction of Levin’s ideas on perfect rounding. Leonid Levin generously explained us his
ideas. Numerous discussions with Andreas Blass and Saharon Shelah were very useful as
well as enjoyable; the reader will notice that some results are authored or coauthored by
Andreas Blass or Saharon Shelah. Shai Ben-David and Michael Luby kindly allowed me to
publish here a theorem of theirs. Short discussions with David Harel, Quentin Stout and
Martin Tompa were helpful. The material of this paper was taught at the University of
Michigan in Winter ’87 and at Stanford in Spring ’89; I am grateful to the students and
especially to Tomasz Radzik.

Remark at the time of proof-reading. In the meantime the reduction theory for
average case complexity was substantially advanced and cleaned up somewhat; see [BCGL,
IL] and also [Gu2, BG].

5

1 Polynomiality on average; Classes AP and RNP

The main purpose of this section is to define the analogs for P and NP in the case of
randomized decision problems. Some definitions will be revised later in Section 9.

We start with terminology and notation. As usual, an alphabet is an ordered finite set
of symbols, the letter Σ is reserved to denote alphabets, and Σ∗ is the set of all Σ-strings.
Order Σ∗ first by length and then lexicographically; for brevity, that order will be called
lexicographical. Σ-strings are assigned natural numbers (starting from 0) with respect to
the lexicographical order. The empty string will be denoted e. The successor of a string x
will be denoted x+. The alphabet 〈0, 1〉 will be called the binary alphabet.

It is often assumed that, in principle, any decision problem D is the decision problem for
some language L in some alphabet Σ:

Instance A Σ-string w.

Question Does w belong to L?

In applications, instances may be graphs or whatever, but usually there is no problem in
coding them by strings.

For technical reasons, we need a more general notion of a decision problem over strings
such that the domain (i.e. the set of instances) may be a proper (and not necessarily
recognizable in polynomial time) subset of some Σ∗. We will suppose that, in principal,
every decision problem D is given by an alphabet Σ(D) (or ΣD), the domain dom(D) ⊆ Σ∗

D

and a language L(D) (or LD) over Σ(D):

Instance An element w of dom(D).

Question Does w belong to L(D)?

If D is a decision problem and X ⊆ Σ∗
D, then the restriction D|X of D to X is the decision

problem with alphabet Σ(D), domain D∩X and language L(D). Thus, an arbitrary decision
problem is a restriction of the decision problem for some language. Notice that the decision
problem D for a language L ⊆ Σ∗ is the problem of computing the characteristic function
χ(L) for L, which is a boolean-valued function on Σ∗. The decision problem for the restriction
D|X of D is the problem of computing a partial boolean function χ(L)|X, which coincides
with χ(D) on X and is undefined on Σ∗−X. Thus, the decision problem for a language may
be termed total and its restrictions may be termed partial decision problems. Our primary
concern is with total decision problems, but it will be convenient to allow partial decision
problems as well. A decision algorithm for a partial decision problem D is an algorithm that,
given an element w of dom(D), finds out whether w belongs to L(D); it does not matter
what happens if the input happens to be outside of dom(D).

We will consider only finite or infinite countable sample spaces, i.e., probability spaces.
The function that assigns probabilities to sample points is the probability function. If µ is
a probability function and X is a collection of sample points then the µ-probability of the
event X will be denoted µ(X); in other words, µ(X) =

∑
x∈X µ(x). The letters µ and ν are

reserved for probability functions. If µ(x) is a probability function on an ordered sample
space then µ∗(x) =

∑
y<x µ(y) is the corresponding probability distribution. A probability

6

function µ is positive if every value of µ is positive. The restriction µ|X of a probability
function µ to a set X of sample points with µ(x) > 0 is the probability function proportional
to µ on X and zero outside X.

Definition. A randomized decision problem is a pair (D,µ) where D is a (partial) decision
problem and µ is a probability function on Σ∗

D. The restriction of a randomized decision
problem (D,µ) to a set X of instances with µ(x) > 0 is the randomized decision problem
(D|X,µ|X).

This is the analog of the notion of decision problem in the new setting.

Now let us address the question which functions should we considered polynomial (more
exactly, polynomially bounded) on average. This is an important question, and we will spend
some time discussing it.

Let f be a function from some Σ∗ to nonnegative reals and µ be a probability function
on Σ∗. For each n such that the µ-probability of the event Hn = {x : |x| = n} is positive,
let µn(x) be the conditional probability µ[x | Hn]. We define µn(x) to be identically zero if
µ[Hn] = 0. One is tempted to say that f is polynomial on µ-average if:

(i) There exists a polynomial p such that, for all n, the expectation
∑
|x|=n f(x) · µn(x) is

bounded by p(n).

The problem with condition (i) is that it is not machine-independent: It is easy to find
examples such that f satisfies (i) whereas f 2 does not. This remark gives rise to the following
relaxation of condition (i):

(ii) There exists ε > 0 such that
∑
|x|=n(fx)ε · µn(x) = O(n)

or

(ii′) There exists ε > 0 such that
∑
|x|=n(fx)ε · |x|−1 · µn(x) = O(1).

(For simplicity, we ignore the empty string.) Additional arguments in favor of (ii) vs. (i)
may be found in [Gu2]. Condition (ii) may be too restrictive as well. Consider, for example,
a function f such that f(x) = 2|x| if |x| is even, and f(x) = |x| otherwise. Suppose that,
for each even n, the µ[Hn ≤ 2−2|x|. One would expect that f is linear on µ-average, but
condition (ii) is not satisfied. This leads us to the official definition:

Definition. f is linear on µ-average if the expectation
∑

x 6=e f(x) · |x|−1 · µ(x) converges,
and f is polynomial on µ-average if it is bounded by a polynomial of a function that is linear
on µ-average.

Thus, f is polynomial on µ-average if and only if:

(iii) There exists ε > 0 such that
∑

x 6=e(fx)ε · |x|−1 · µ(x) < ∞,

or

(iii′) There exists an integer k > 0 such that
∑

x 6=e(fx)1/k · |x|−1 · µ(x) < ∞.

7

We will say that ε (resp. k) witnesses the polynomiality of f on µ-average if (iii) (resp.
(iii′) holds.

Condition (ii) has some advantage over condition (iii) because often one knows probability
functions on instances of the same size and does not care about the probabilities of different
sizes. The following proposition shows that, for many usual probability functions, the two
conditions are equivalent.

Proposition 1.1. Let µ be a probability function on some Σ∗ and suppose that there
exists a polynomial p such that, for every n, either µ[Hn] = 0 or µ[Hn] ≥ p(n)−1. Then
conditions (ii) and (iii) are equivalent.

Proof. It is easy to see that (ii) implies (iii). We prove the other implication. Suppose
(iii). Then there exist ε and c such that

∑

n>0

[n−1 · ∑

|x|=n

(fx)εµ(x)] = c < ∞.

We may restrict attention to n > 0 such that µ[|x| = n] > 0. For each such n,

∑

|x|=n

(fx)εµ(x) ≤ cn,

∑

|x|=n

(fx)εµn(x) ≤ cn/µ[|x| = n] ≤ cnp(n).

Set δ = ε/2. We may restrict attention to strings x such that (fx)δ ≥ p(n). Then (fx)δ =
(fx)ε · (fx)−δ ≤ (fx)ε · p(n)−1 and therefore, for every n:

∑

|x|=n

(fx)δµn(x) ≤ [
∑

|x|=n

(fx)εµn(x)] · p(n)−1 ≤ [cn · p(n)] · p(n)−1 = cn. QED

The following sufficient condition for (iii) is useful sometimes:

(iv) There exists an integer k > 0 such that
∑

x 6=e f(x) · |x|−k · µ(x) < ∞.

Condition (iv) implies condition (iii′) with the same witness k. To prove this, notice that
we care only about those nonempty strings x where (fx)1/k · |x|−1 > 1. On those strings
(fx)1/k · |x|−1 < f(x) · |x|−k.

Until now, we looked into sufficient conditions for (iii). Here is a necessary condition:

(v) The expectation
∑
|x|>1 log|x| f(x) · µ(x) converges.

Why do we prefer condition (iii) to condition (v)? This question is related to another
question, addressed in Section 2: Which probability functions on positive integers are nat-
ural? Condition (iii) fits well probability functions on positive integers which are inverse
polynomials. Condition (v) is too liberal in that case. For example, suppose that µ(x) is
proportional to n−32−n where n = |x|, so that µ[Hn] is proportional to the inverse poly-
nomial n−3. Then a fast-growing function f(x) = |x||x| satisfies (v). Also, Proposition 1.1
fails if polynomiality on average is defined with respect to (v). This ends our discussion on
the correct definition of polynomiality on average. A continuation of this discussion may be
found in [Gu2].

8

Next we give a useful criterion of polynomiality on average [VL].

Definition. A function ρ from some Σ∗ to nonnegative reals is a rarity function for a
probability function µ on Σ∗ if the expectation of ρ is finite.

Proposition 1.2. Let f be a function from some Σ∗ to nonnegative reals and µ be a
probability function on Σ∗. The function f is polynomial on µ-average if and only if there
exists a rarity function ρ for µ such that f(x) it is bounded by a polynomial of two arguments:
|x| and ρ(x).

Proof. If k witnesses that f is polynomial on average, define ρ(x) = (fx)1/k · |x|−1, then
f(x) = (ρ(x)|x|)k. If f(x) is bounded by a polynomial of |x| and ρ(x), then there exists
a positive integer k such that, for sufficiently large x, we have f(x) ≤ (|x|ρ(x))k, so that
(fx)1/k · |x|−1 ≤ ρ(x) and therefore k witnesses that f is polynomial on average. QED

Lemma 1.1. Let µ be a probability function on some Σ∗, and f , g be functions from Σ∗

to nonnegative reals, and r be a positive real. If f and g are polynomial on µ-average then
so are max(f, g), f r, f × g and f + g.

Proof. Let L = |x|. We may suppose that, for some ε, both expectations E[f ε/L] and
E[gε/L] are finite. Let h(x) = max(f(x), g(x)).

E[hε/L] =
∑
x

(hx)ε · |x|−1 · µ(x) =

∑

fx≥gx

(hx)ε · |x|−1 · µ(x) +
∑

fx<gx

(hx)ε · |x|−1 · µ(x) =

∑

fx≥gx

(fx)ε · |x|−1 · µ(x) +
∑

fx<gx

(gx)ε · |x|−1 · µ(x) ≤

E[f ε/L] + E[gε/L] < ∞.

The rest of the proof is obvious. QED

Definition. f is polynomial on µ-average on a subset X of Σ∗ if there exists ε > 0 such
that

∑

e6=x∈X

(fx)ε · |x|−1 · µ(x) < ∞.

Definition. A randomized decision problem (D,µ) is decidable in APtime if some Turing
machine decides D within time polynomial on average with respect to µ. AP is the class
of randomized decision problems decidable in APtime. A function f from some Σ∗

1 to some
Σ∗

2 is computable in APtime with respect to a probability function µ1 on Σ∗
1 if some Turing

machine computes f within time polynomial on average with respect to µ1.

AP is the analog for P. The letter A stands for “average”.

Lemma 1.2. Suppose that µ1 is a probability function on some Σ∗
1, f is a function from

Σ∗
1 to some Σ∗

2, and µ2(y) =
∑

fx=y µ1(x) is the induced probability function on Σ∗
2.

9

1. Let T be a function from Σ∗
2 to nonnegative reals. If |fx| is polynomial on µ1-average

and T is polynomial on µ2-average then the composition h = T ◦ f is polynomial on
µ1-average.

2. Let g be a function from Σ∗
2 to some Σ∗

3. If f is computable in APtime wrt µ1 and g
is computable in APtime wrt µ2 then the composition g ◦ f is computable in APtime
wrt µ1.

Proof. (1) Let k witness that T is polynomial on µ2-average. For every positive m ≥ 1,

∑

y 6=e

(Ty)1/k · |y|−1 · µ2(y) < ∞ −→
∑

y 6=e

(Ty)1/km · |y|−1/m · µ2(y) < ∞ −→
∑

fx 6=e

(hx)1/km · |fx|−1/m · µ1(x) < ∞

We can safely ignore strings x such that x = e or fx = e. If |fx| is polynomially
bounded and m is such that |fx|1/m < |x| for sufficiently long x, then km witnesses that h
is polynomial on µ1-average:

∑
(hx)1/km · |x|−1 · µ1(x) < ∞.

In the general case, let m witness that |fx| is polynomial on µ1-average:
∑ |fx|1/m · |x|−1 · µ1(x) < ∞.

Let
α(x) = (hx)1/2km · |fx|−1/2m,

so that the expectation E[α2], with respect to µ1, is finite. Let

β(x) = |fx|1/2m · |x|−1/2,

so that the expectation E[β2], with respect to µ1, is finite. Then the expectations E[α2 +β2]
and E[αβ] are finite. Hence

∑
(hx)1/2km · |x|−1/2 · µ1(x) < ∞,

∑
(hx)1/2km · |x|−1 · µ1(x) < ∞.

(2) The computation of g ◦ f splits into two parts: Computing y = f(x) and then
computing g(y). We need to show only that the second part can be done in APtime with
respect to µ1. We know that g(y) is computable in time T (y) polynomial on µ2-average.
Now use (1). QED

For a technical reason, we will be interested in probability distributions that are Ptime
computable. It is possible, as Levin did in [Le2], to restrict attention to probability distribu-
tions with rational values; such approach will be justified later in this section. But it seems

10

to us more appropriate to extend the notion of Ptime computability to real-valued functions.
For simplicity, we restrict attention to functions with values in the real interval [0,1].

Definition. (cf. [Ko]) A function f from some Σ∗ to the interval [0, 1] of reals is computable
in polynomial time if there exists a polynomial time algorithm A(x, 1k) such that, for every Σ-
string x and every positive integer k, A(x, 1k) is a binary fraction and |f(x)−A(x, 1k)| < 1/2k.

Lemma 1.3. [Blass and Gurevich]

1. If f and g are Ptime computable functions from some Σ∗ to the real interval [0,1], then
f + g, f − g and f × g are Ptime computable as well.

2. Let f be a monotone function from some Σ∗ to the real interval [0,1] and let A(x, 1k)
witness the Ptime computability of f . There exists a witness B(x, 1k) to Ptime com-
putability of f such that, for every k, B is monotone in x.

Proof. (1) is easy.

(2) Without loss of generality, f is increasing. Fix k; to simplify notation, we omit the
argument 1k. View a Σ-string x as a positive integer (say, one plus the number of x in the
lexicographical order of Σ-strings). Here is an algorithm computing the desired B(x):

1. Find the least integer p such that x ≤ 2p.

2. For every q ≤ p, set B(2q) = max{A(2r) : r ≤ q}.
3. Halt if p = 0; otherwise set a = 2p−1 and b = 2p.

4. While B(x) is undefined do:

(a) If B(a) = B(b) then set B(x) = A(x) and halt, else set c = b(b− a)/2c.
(b) If A(c) ≤ B(a) then set B(c) = B(a), else if A(c) > B(b) then set B(c) = B(b),

else set B(c) = A(c).

(c) If x ≤ c then set b = c, else set a = c.

QED

Remark. The Ptime computability of f does not guarantee the computability (let alone
Ptime computability) of the k-th digit of fx. For, let M be a Turing machine that computes
a function b(x) from binary strings to {0, 1} such that the sets {x : b(x) = 0}, {x : b(x) = 1}
are recursively inseparable. Let T (x) be the time that M works on instance x; T (x) is infinite
if M does not halt on x. If M halts on x, let

f(x) = 0.0(01)T (x)1 and g(x) = 0.0(10)T (x)b(x).

Otherwise, let
f(x) = 0.0(01)∞ and g(x) = 0.0(10)∞.

Obviously, f and g are Ptime computable. Let h = f +g. If b(x) = 0 then h(x) = 0.0 . . . and
if b(x) = 1, then h(x) = 0.1. Thus, computing the first digit of h (after the binary point)
would separate the inseparable sets.

11

By Lemma 1.3, a probability function µ is Ptime computable if the corresponding prob-
ability distribution µ∗ is Ptime computable. The converse is not necessarily true:

Lemma 1.4. [Bl] There exists a Ptime computable probability function µ such that the
probability distribution µ∗ is not Ptime computable unless P = NP.

Proof. Construct a Ptime computable binary relation R on binary strings such |x| = |y|
for all (x, y) ∈ R and the language L = {x : ∃y(xRy)} is NP complete. Construct a Ptime
computable probability function ν on binary strings such that every ν(x) is a binary fraction,
and ν(x) = 0 ←→ |x| is odd .

Define a probability function µ on binary strings w as follows. If |w| is even then µ(w) = 0.
Suppose that w = xby where |x| = |y| and b is a binary bit. If b = 0 then µ(w) =
[if xRy then ν(xy) else 0], and if b = 1 then µ(w) = ν(xy)− µ(x0y). Obviously, µ is Ptime
computable and

∑
µ(w) =

∑

|x|=|y|
µ(x0y) + µ(x1y) =

∑

|x|+|y|
ν(xy) = 1.

If µ∗ is Ptime computable then L is in P:

∃y(xRy) ←→ µ∗(x1z)− µ∗(x0z) 6= 0

where z = 0|x|. QED

Definition. Let µ1, µ2 be probability functions on strings in the same alphabet Σ. µ2

dominates (resp. weakly dominates) µ1 if there is a function f from Σ∗ to nonnegative reals
such that µ1(x) ≤ f(x) · µ2(x) and f is polynomially bounded (resp. polynomial on µ1

average). It is possible to require that µ1(x) = f(x) · µ2(x). The probability distribution µ∗2
dominates (resp. weakly dominates) the probability distribution µ∗1 if µ2 dominates (resp.
weakly dominates µ1.

On the first glance, the definition may look a little strange: µ2 needs a factor to be equal
to µ1. But, considering for simplicity positive µ1 and µ2, notice that if µ2 dominates µ1 then
the ratio µ1/µ2 is bounded by f whereas there is no a priori bound on the ratio µ2/µ1.

Lemma 1.5. If µ1 is weakly dominated by µ2 and (D,µ2) is AP then (D,µ1) is AP.

Proof. Since (D,µ2) is AP, D is decidable within time T (x) such that
∑

(Tx)1/k · |x|−1 · µ2(x) < ∞
for some k. We will prove that

∑
(Tx)1/l · |x|−1 · µ1(x) < ∞

for some l that will be chosen later. Let g witness that µ1 is dominated by µ2, and let
X = {x : g(x) · (Tx)1/l ≤ (Tx)1/k}. Then

∑

x∈X

(Tx)1/l · |x|−1 · µ1(x) =

∑

x∈X

(Tx)1/l · g(x) · |x|−1 · µ2(x) ≤
∑

x∈X

(Tx)1/k · |x|−1 · µ2(x) < ∞.

12

Let x range over the complement of X. Then T 1/k < g · T 1/l, T l−k < gkl and T 1/l <
gk/(l−k). Since g is polynomial on µ1-average, there is j such that

∑
(gx)1/j · |x|−1 · µ1(x) < ∞.

Choose l such that k/(l − k) < 1/j. QED

An alternative proof of Lemma 1.5 is given in Section 7.

Definition. RNP is the class of randomized decision problems (D,µ) such that D is NP
and µ is dominated or weakly dominated by a probability function ν with Ptime computable
probability distribution ν∗.

RNP is our analog of NP for randomized decision problems. Actually, the restriction to
NP decision problems in the above definition may be rightfully questioned, but in this paper
we stick to it.

Notice that the Ptime computability of a probability distribution requires the Ptime com-
putability of the probabilities of only very special events {y : y < x}. Levin hypothesizes
[Jo] that any natural probability function either has a polynomial time computable distri-
bution, or else is dominated by a function that does. Johnson writes that it is not difficult
to devise encodings that make “each of the distributions we have discussed in this column”
polynomial time computable. Our experience supports Levin’s hypothesis as well. However,
there exist important probability functions that are not Ptime computable. In particular,
information complexity (i.e., Kolmogorov complexity) gives rise to a recursively enumerable
(in appropriate sense) probability function (say, on binary strings) that dominates any other
recursively enumerable probability function [ZL]. That maximal probability function is not
Ptime computable and is not dominated by any Ptime computable probability function.

An important generalization of Ptime computable probability distributions was intro-
duced recently in [BCGL]; they are so called samplable distributions. See the discussion in
[Gu2] in this connection.

Lemma 1.6. For every probability function µ with a Ptime computable probability
distribution µ∗ there is a positive probability function µ1 such that µ∗1 is Ptime computable
and every value of µ1 is a finite binary fraction and µ(x) = O(µ1(x)).

Proof. To simplify somewhat the exposition, we assume that µ is defined on binary strings
and every µ∗(x) < 1. Let dx = 2−2|x|. By the definition of polynomial time computability
with k = 2|x| + 1, there is a Ptime computable function N ′(x) such that every value of N ′

is a binary function and |µ∗(x)−N ′(x)| < (dx)/2. Round N ′(x) down to 2|x| + 1 digits; if
the last digit is a 1, then add (dx)/2. The result N(x) is a binary fraction with at most 2|x|
digits after the binary point, and |µ∗(x)−N(x)| < dx.

Define

4µ1(x) = [if x 6= e then N(x+)−N(x) + 2dx, else N(e+) + 1].

Then 4µ∗1(x) = 1 + Nx + 2
∑

e<y<x dy if x 6= e, and therefore

lim
|x|⇒∞

2µ∗1(x) = 1 + 1 + 2
∑

n>1

2n/22n = 4.

13

Finally, notice that 4µ1(x) > µ(x). Indeed, 4µ1(e) > µ∗(e+) − de+ + 1 > µ(e), and if
x 6= e then

4µ1(x) = N(x+)−N(x) + 2dx > (µ∗(x+)− dx)− (µ∗(x) + dx) + 2dx = µ(x).

QED
For future references, notice that, for the probability function µ1 constructed in the

proof of Lemma 1.6, each binary fraction µ1(x), written without trailing zeroes, has at most
2 + 2|x+| ≤ 4 + 2|x| digits.

2 Standard probability functions and examples of RNP

problems

In the first part of this section, we define standard (or default) probability functions on finite
sets, the set of natural numbers and the set of strings over a given alphabet. There are two
reasons for us to introduce standard probability functions. One is to use them to define
natural probability functions on more complicated objects; the use of standard probability
functions will hopefully support the claim of naturality. The other reason is brevity. We
can speak simply about a random natural number or a random binary string meaning the
randomness with respect to the corresponding standard probability function.

The uniform probability function, assigning equal probabilities to all sample points, is
our obvious choice for a standard probability function on any (nonempty) finite set. The
choice of a default probability function on positive integers is not so obvious. We follow
Levin [Le1] :

Definition. The standard probability of a positive integer n is proportional to n−2.

Discussion. If the desired standard probability function µ(n) decreases too quickly then
too much weight is given to small instances. For example if µ(n) = 2−n then the expectation
of 2n/2 with respect to µ converges and 2n/2 appears to be bounded on average, which is
undesirable. Proposition 1.1 justifies restricting attention to probability functions satisfying
the assumption of the proposition. Further, it is natural to restrict attention to probability
functions inversely proportional to polynomials. It is easy to check that if µ and ν are inverse
polynomials such that both

∑
µ(n) and

∑
ν(n) converge then any function polynomial on

µ-average is polynomial also on ν-average. Thus, in a sense, it is immaterial, which specific
inverse polynomial to choose. The choice of n−2 is natural.

There are natural probability functions that grow slower than probability functions given
by inverse polynomials. Consider, for example, probability functions proportional to n ·
(log n)2, n · log n · (log log n)2, etc. These functions seem less convenient, but they have
their own advantages. For example, adapt, for a moment, the alternative definition of
polynomiality on average based on condition (v) in Section 1: A function f is polynomial
on µ-average if the µ-expectation of log|x| f(x) converges. Then a relatively fast-growing

function f(x) = |x|log2 |x| is not polynomial on average with respect to any of the probability
functions in question, but it is polynomial on average with respect to, say, the probability
function proportional to n−3.

14

If the uniform probability distribution is an ideal (an unreachable ideal in the case of a
countable infinite set of sample points), then one may be interested in even slower growing
probability function. There is no such thing as the slowest growing probability function.
The situation changes however if one restricts attention to recursively enumerable (in an
appropriate sense [ZL]) probability functions and does not distinguish between probability
function µ and ν such that µ(n) = O(ν(n)) and ν(n) = O(µ(n)). Then there is the slowed
growing probability function; however it is not dominated or weakly dominated by any Ptime
computable probability function. End of discussion.

Definition. In the case of natural numbers, the standard probability of a positive n is
proportional to n−2, and the standard probability of 0 is positive. (The exact value of the
standard probability of 0 will be immaterial.)

Definition. Let Σ be a k-letter alphabet. The standard probability function on Σ∗ assigns
the probability proportional to n−2k−n to any strings of length n. (It corresponds to the
following experiment: choose randomly a natural number n, and then choose randomly a
string of length n.)

An alternative natural approach is to identify strings with natural numbers and use
the standard probability function for natural numbers [Le1]. One should be a little careful
though. Suppose, for example, that the alphabet in question is binary and assign to a binary
string w the probability proportional to the inverse of the square of the number of w in the
lexicographical order of binary strings. Then the probability of the event {w : |w| = n} is
about 2−n which is too little. Assigning the probability proportional to n−1(log2 n)−2 to the
number n and the string of number n results in the probability of the event {w : |w| = n}
being roughly proportional to n−2.

Remark. Sometimes, standard probability functions are called uniform even though they
are not truly uniform.

In the rest of this section, we give some examples of RNP problems. The probability
functions are described by means of appropriate experiments.

Randomized 3-Coloring:

Instance A graph on an initial segment [0..(n− 1)] of natural numbers.

Question Is the graph 3-colorable?

Probability Randomly choose a positive integer n, and then randomly choose a graph on
[0..(n− 1)].

Randomized 3-Coloring Problem happens to be AP. The usual backtracking solves it in
about, surprise!, 197 steps on average [Wi]. The reason is that there are very simple and
probable witnesses to non-colorability, like a clique of 4. The average time can be further
cut down if the algorithm starts with a direct search for such witnesses.

Definition. Consider a sample space of graphs on the segment [0..(n − 1)] of natural
numbers where events “{u, v} is an edge” are independent. Here u and v are distinct vertices.
If each of these n(n − 1)/2 events has the same probability p, we say that the probability

15

function is given by the edge probability p. If p = 1/2 then the probability function is
uniform.

Randomized Cliques:

Instance A graph on an initial segment [0..(n−1)] of natural numbers and a positive integer
k < n.

Question Is there a clique of size > k in the graph?

Probability Randomly choose a positive integer n, and then randomly choose a graph on
[0..(n− 1)].

It is an open problem whether Randomized Clique Problem is AP. See [PLL] in this
connection. It is not difficult to devise a backtracking algorithm that inspects all cliques in
lexicographical order and this way finds a clique of the maximal size. The expected run time
of that algorithm is bounded by

(n · e2/l)(l−r)/2 · π(n)

where e is the basis for natural logarithms, l = log2n, r = log2l and π is a polynomial; a
similar estimation is valid if the probability function on n-vertex graphs is given by a fixed
edge probability p, except the basis for logarithms is 1/p rather than 2.

Randomized Hamiltonian Circuits with edge probability p:

Instance A graph on [0..(n− 1)].

Question Is there a Hamiltonian circuit in the graph?

Probability Randomly choose a positive integer n, and then choose a graph on [0..(n− 1)]
with respect to the given edge probability p.

There is a decision algorithm for Randomized Hamiltonian Circuits with expected run
time O(n) for each fixed edge probability p [GS]. The fact that Randomized Hamiltonian
Circuits with edge probability 1/2 is AP is proved in [BFF].

Randomized Tiling Problem over an alphabet Σ.

Some definitions are needed. A tile is a quadruple

v

u w

x

of Σ-strings. A function τ from the square [0..(n − 1)] × [0..(n − 1)] to a set T of tiles is a
T -tiling of the square if

left[τ(i + 1, j)] = right[τ(i, j)] and bottom[τ(i, j + 1)] = top(τ(i, j)]

for all appropriate i and j. A function ρ from [0..(j − 1)] to T is a T -row of length j if each
left[ρ(i + 1)] = right[ρ(i)]. Now we are ready to formulate the problem.

16

Instance A finite set T of tiles, the unary notation 1n for a positive integer n, a positive
integer k < n, and a T -row ρ of some length j such that either j = k or else j < k and
T has no t with left[t] = right[ρ(j)].

Question Does there exist a T -tiling τ of the square [0..(n− 1)]× [0..(n− 1)] with τ(0, i) =
ρ(i) for all i < j ?

Probability Choose T with respect to your favorite positive probability function. Choose
randomly n, k and ρ(0). If ρ(i) has been chosen, i < k − 1 and the set Ti = {t : t ∈
T and left[t] = right[ρ(i)]} is not empty, then choose ρ(i + 1) randomly from Ti.

Randomized Tiling is complete for RNP in an appropriate sense [Le1]; a reconstruction
of Levin’s proof can be found in the Appendix.

3 Ptime reducibility

If P = NP then AP includes RNP. Hence it is hard to demonstrate an RNP problem which
is not AP. Instead, one can develop a reduction theory for RNP problems and demonstrate
complete RNP problems. RNP completeness of a randomized decision problem witnesses
that the problem is hard in the average case. This section is devoted to polynomial time
reducibility of RNP problems; the existence of a Ptime complete RNP problem will be
established in the next section. It is worth mentioning that the inclusion RNP ⊆ AP is not
very likely either: by a theorem of Ben-David and Luby in Section 8 below, it implies that
every problem decidable in nondeterministic exponential time is decidable in deterministic
exponential time.

As usual, we say that a function f reduces a decision problem D1 to a decision problem
D2 if, for every x ∈ dom(D1), x ∈ L(D1) if and only if f(x) ∈ L(D2).

Definition.

1. A function f transforms a probability function µ1 into a probability function µ2 if
µ2(y) =

∑
fx=y µ1(x) for all sample points y in the domain of µ2.

2. A function f transforms (D1, µ1) into (D2, µ2) if it reduces D1|{x : µ1(x) > 0} to D2

and transforms µ1 into µ2.

Lemma 3.1.

1. Suppose that a function f transforms µ1 into a restriction µ2|Y of µ2, R is the range
of f and R0 = {f(x) : µ1(x) > 0}. Then µ2|R0 = µ2|Y and there exists ν ≥ µ1 such
that f transforms ν into µ2|R.

2. Suppose that a function f transforms (D1, µ1) into a restriction of (D2, µ2) and (D2, µ2)
is AP. If f is computable in polynomial time or in time polynomial on µ1-average then
(D1, µ1) is AP.

17

3. Every RNP problem (D,µ) is Ptime transformable to some RNP problem (D1, µ1) over
the binary alphabet.

Proof. (1) The first claim is obvious. It is not true though that Y necessarily coincides
with R0; it can be a proper extension of R0.

The desired ν is proportional to µ1 on {x : µ1(x) > 0}. For every y ∈ R − R0,
(µ2|R)(y) =

∑
fx=y ν(x).

(2) Every restriction of an AP problem to a set of positive probability is AP. For, suppose
that a decision problem D is decidable in time T (x) polynomial on average with respect to
some probability function µ and let X is a collection of instances of D of some probability
µ(X) > 0. If k witness that T is polynomial on µ-average, then

∑

x∈X

(Tx)1/k · (µ|X)(x) = µ(X)−1 · ∑

x∈X

(Tx)1/k · µ(x) < ∞.

Hence we may assume that f transforms (D1, µ1) to (D2, µ2) itself. Let A be a decision
algorithm for D2 whose run time is polynomial on µ2-average. To decide an instance x of
D1, compute f(x) and then apply A to f(x). By Lemma 1.2, the run time of A on f(x) is
polynomial on µ1-average.

(3) Let Σ be the alphabet of D. If Σ is unary and a is the only letter of Σ, define
f(an) = 1n; otherwise let f take the n-th Σ-string to the n-th binary string. The desired D1 is
the decision problem for the language {f(x) : x ∈ L(D)}, and the desired µ1(y) = µ(f−1(y)).
If µ is dominated by some ν with Ptime computable ν∗ and ν1(y) = ν(f−1(y)), then ν is
dominated by ν1 and ν∗1 is Ptime computable. QED

Let µ1 ≤ µ2 denote that µ1 is dominated by µ2, and let µ1
f−→ µ2 denote that f

transforms µ1 into µ2.

Definition. µ2 dominates µ1 with respect to a function f , symbolically µ1

f

≤ µ2, if there
exists some ν ≥ µ1 such that f transforms ν into a restriction of µ2.

Lemma 3.2. µ2 dominates µ1 with respect to a one-to-one function f if and only if the
probability function ν(x) proportional to µ2(fx) dominates µ1(x).

Proof. Clear. QED

Lemma 3.3. Let f be a Ptime computable function from some Σ∗
1 to some Σ∗

2.

1. If µ1
f−→ ν2 ≤ µ2 for some ν2 then µ1

f

≤ µ2.

2. Suppose that f : Σ∗
1 −→ Σ∗

2 is honest, i.e., |x| is bounded by a polynomial of |fx|. If

µ1

f

≤ µ2 then there is ν2 such that µ1
f−→ ν2 ≤ µ2.

Proof. (1) Without loss of generality, we may suppose that µ2(y) = 0 for every y such that
ν2(y) = 0. For, let µ be the restriction of µ2 to {y : ν2(y) > 0}. Obviously, µ dominates
ν2. Suppose that some ν dominates µ1 and f transforms ν to a restriction of µ. Then f

transforms ν to a restriction of µ2 and therefore µ1

f

≤ µ2.

18

Since µ2 dominates ν2, there exists a polynomially bounded function g such that ν2(y) =
g(y) · µ2(y). Define:

ν1(x) = [if ν2(fx) > 0 then µ1(x) · (g(fx))−1, else 0].

Since |fx| and g(y) are polynomially bounded, g(fx) is polynomially bounded and therefore
µ1 ≤ ν1. We check that f transforms ν1 into µ2. If ν2(y) = 0 then

∑
fx=y ν1(x) = 0 = µ2(y),

and if ν2(y) > 0 then g(y) > 0 and
∑

fx=y ν1(x) = (
∑

fx=y µ1(x)) · (gy)−1 = ν2(y) · (gy)−1 =
µ2(y).

(2) By Lemma 3.1(2), there exists ν1 such that µ1 ≤ ν1
f−→ µ2|Y where Y comprises

points f(x) with µ1(x) > 0. Without loss of generality, µ2|Y = µ2. For, if µ1
f−→ ν2 ≤ µ2|Y

then µ1
f−→ ν2 ≤ µ2. Define:

g(x) = [if µ1(x) > 0 then µ1(x)/ν1(x), else 1]

ν2(y) =
∑

fx=y

µ1(x)

h(y) = [if µ2(y) > 0 then ν2(y)/µ2(y), else 1].

Obviously, g is polynomially bounded, µ1 = g · ν1, f transforms µ1 into ν2, and ν2 = h · µ2.
We need to prove only that h is polynomially bounded. Restrict attention to y ∈ Y . We
have:

∑

fx=y

µ1(y) = ν2(y) = h(y) · µ2(y) = h(y) · ∑

fx=y

ν1(x) = h(y) · ∑

fx=y

(gx)−1 · µ1(x).

Thus, (hy)−1 is the conditional expectation E[(gx)−1| fx = y]. Since g is polynomially
bounded and f is honest, there exists a polynomial q such that g(x) ≤ q(|fx|). Then
(gx)−1 ≥ 1/q(|fx|), and (hy)−1 = E[(gx)−1| fx = y] ≥ 1/q(y), and h(y) ≤ q(y). QED

Remark. The honesty condition cannot be dropped in Lemma 3.3(2). Consider a function
y = f(x) that takes a binary string x into the number |x| written in the binary notation.
For every i > 1, f transforms the probability function αi(x) proportional to |x|−i to the

probability function βi(y) proportional to y−i. Since α2 ≤ α3, α2

f

≤ β3. But f transforms α2

into β2 which is not dominated by β3.

Definition. A Ptime computable function f reduces (D1, µ1) to (D2, µ2) if f reduces

D1| {x : µ1(x) > 0} to D2 and µ1

f

≤ µ2.

Lemma 3.4.

1. If (D1, µ1) Ptime reduces to (D2, µ2) and (D2, µ2) is AP then (D1, µ1) is AP.

2. The Ptime reducibility relation on randomized decision problems is transitive.

Proof. (1) Suppose that a Ptime computable function f reduces (D1, µ1) to (D2, µ2). Then
there exists a probability function ν ≥ µ1 such that f transforms ν into a restriction of µ2.

19

Suppose that (D2, µ2) is AP. By Lemma 3.1(2), (D1, ν) is AP. By Lemma 1.5, (D1, µ1) is
AP.

(2) Suppose that f Ptime reduces (D1, µ1) to (D2, µ2) and g Ptime reduces (D2, µ2)
to (D3, µ3). There exists a probability function ν1 ≥ µ1 such that f transforms ν1 into a
restriction µ′2 of µ2, and there exists a probability function ν2 ≥ µ2 such that g transforms
ν2 to a restriction µ′3 of µ3. If µ1(x) > 0 then ν1(x) > 0, µ′2(fx) > 0 and µ2(fx) > 0; hence
the composition g ◦ f reduces D1| {x : µ1(x) > 0} to D3. We have:

µ1 ≤ ν1
f−→ µ′2 ≤ µ2 ≤ ν2

g−→ µ′3.

By Lemma 3.3(1), there exists ν ≥ ν1 such that f reduces ν to a restriction ν ′2 of ν2. Thus,

µ1 ≤ ν
f−→ ν ′2 ≤ ν2

g−→ µ′3.

Obviously, g transforms ν ′2 to a restriction µ3” of µ′3. Hence g ◦ f reduces µ1 to µ3. QED

Definition. A randomized decision problem (D,µ) is Ptime hard for RNP if every RNP
problem Ptime reduces to (D,µ), and (D,µ) is Ptime complete for RNP if it is RNP and
Ptime hard for RNP.

It is not obvious that there are Ptime complete problems for RNP.

4 Randomized Halting Problem

In this section, we prove that an arbitrary RNP problem reduces to a randomized version of
the bounded halting problem for an appropriate nondeterministic Turing machine (shortly,
NTM); for brevity, the adjective “bounded” will be omitted. We restrict attention to NTMs
with binary input alphabet (unless the contrary is said explicitly).

Randomized Halting Problem RH(M) for an NTM M :

Instance A binary string w01n with n > |w|.
Question Is there a halting computation of M on w with at most n steps?

Probability Proportional to n−32−k where k = |w|.

The probability function of RH(M) corresponds to the following experiment. First,
randomly choose a positive integer n , then randomly choose a natural number k < n , and
then randomly choose a binary string of length k.

Definition. A positive integer n is longevous for an input w of an NTM M if every
halting computation of M on w has ≤ n steps. A function g(w) is a longevity guard for M
if, for every input w, g(w) is a number longevous for w. If g is a longevity guard for M , let
RH(M, g) be the restriction of RH(M) to instances w01g(w).

Theorem 4.1. For every RNP problem (D,µ) there exist an NTM M and a longevity
guard g for M such that (D,µ) Ptime reduces to RH(M, g).

20

Proof. By the definition of RNP problems in Section 1, the probability function µ is
dominated by some probability function µ1 with Ptime computable distribution µ∗1. By the
definition of Ptime reducibility, (D,µ) Ptime reduces to (D,µ1). By Lemma 3.4(2), we may
assume that µ = µ1. By Lemma 3.1(3), we may assume that instances of D are binary
strings. By Lemma 1.6, we may assume that every value of µ is a positive binary fraction.

By the definition of RNP problems, the decision problem D is NP. Therefore there exists
an NTM AD such that:

• AD has a halting computation on an arbitrary input w if and only if w is a positive
instance of D, and

• AD has a polynomially bounded longevity guard.

Let x′ be the shortest binary string with µ∗(x) < 0.x′1 ≤ µ∗(x+). Recall that x+ is the
successor of x in the lexicographical order. Then

0.x′1− 2−|x
′1| ≤ µ∗(x) < µ∗(x+) < 0.x′1 + 2−|x

′1|,

and therefore 2× 2−|x
′1| > µ(x). Set

x′′ = [if 2−|x| > µ(x) then 0x, else 1x′],

so that 2−|x
′′| > µ(x)/2.

The desired reduction is

f(x) = x′′01g(x′′)

where g is a longevity guard for the desired NTM M . Now we describe the desired NTM
M . Given a binary bit b followed by a string w, M executes the following algorithm:

1. If b = 0 then
if 2−|w| ≤ µ(w) then loop forever else simulate AD on w.

2. Find the unique x with µ∗(x) < 0.w1 ≤ µ∗(x+).

3. If 2−|x| > µ(x) or x′ 6= w then loop forever, else simulate AD on x.

M has a halting computation on x′′ if and only if x is a positive instance of D. Ptime
computability of µ∗ is used on step 2. It is easy to see that M has a longevity guard g
such that g(x′′) is bounded by a polynomial of |x| (though not necessarily bounded by a
polynomial of |x′′|).

Finally, the probability function ν of RH(M, g) dominates µ with respect to f . For, ν(fx)
is proportional to g(x′′)−32−|x

′′| which exceeds g(x′′)−3µ(x)/2. QED

Corollaries.

1. There is an NTM M such that RH(M) is Ptime complete for RNP.

2. Let ν be any positive probability function over NTMs. The following randomized
decision problem is Ptime hard for RNP:

21

Instance An NTM M and an instance w01n of RH(M).

Question Is there a halting computation of M on w with at most n steps?

Probability Choose M with respect to ν and then choose an instance of RH(M) as
above.

Proof. (1) Choose M to be a universal NTM. (2) Clear. QED

Remark. Theorem 4.1 implies a similar theorem for the case of, say, ternary input
alphabet. The proof illustrates how reductions of RNP problems differ from reductions of
NP problems. The desired reduction transforms an instance x01m for the given RH(M, g) to
an instance y01n for a new RH(M ′, g′); here x is a binary string and y is a ternary string. Of
course, x is also a ternary string, but y cannot be taken equal to x because the domination
condition will be violated: The probability that a random ternary string happens to be
binary approaches 0 exponentially (in the length of the string) fast. One possibility is to
choose y in such a way that the number of x in the lexicographical order of binary strings
equals the number of y in the lexicographical order of ternary strings.

In the rest of this section, we restrict attention to NTMs with a single tape, that is
bounded on the left and unbounded to the right, and a single head; the input is left-justified
on the tape in the initial moment. Notice that Theorem 4.1 survives the restriction. The
following two lemmas will be useful.

Lemma 4.1. Let F,G be Ptime computable functions from binary strings to binary strings
such that |F (w)| = O(log2 |w|) and |G(w)| = O(log2 |w|). For every RH(M0, g0), there exist
an NTM M and a longevity guard g for M such that RH(M0, g0) Ptime reduces to the
restriction of RH(M, g) to instances w01n where w starts with F (w) and ends with G(w).

Proof. Given an input w, the desired M checks whether w has the form F (w)uG(w). In
the positive case, M simulates M0 on u; otherwise it loops. The desired reduction takes u01m

to F (u)uG(u)01p(m) where p is an appropriate polynomial. The domination requirement is
obviously satisfied. QED

Definition. An input w is stable for an NTM M if, for every natural number n, the
following statements are equivalent:

1. There exists x such that M has a halting computation on wx with at most n steps,
and

2. For every x, M has a halting computation on wx with at most n steps.

Lemma 4.2. For every RH(M0, g0), there exist an NTM M and a longevity guard g for M
such that RH(M0, g0) Ptime reduces to the restriction of RH(M, g) to stable instances (i.e.
to instances w01g(w) where w is stable for M). Moreover, it may be required that 0 and 1
are the only tape symbols of M (with 0 serving also as the blank).

Remark. Notice that a machine with binary input alphabet may have many tape symbols;
in particular, the blank may differ from input symbols. The proof of Lemma 4.2 can be
simplified if the restriction on the tape alphabet is removed.

22

Proof. Code tape symbols of M0 with binary strings of some fixed length l such that the
string 1l, called $ in this proof, is not a code. The desired M works as follows.

1. M verifies that the initial tape has a prefix

$0a1a10a2a2 . . . 0akak$$

for some k and some binary digits a1, . . . , ak with a1 = 1; if not then M loops.

2. Let m be the positive integer with binary notation a1a2 . . . ak, and u be the string
b1b2 . . . bm such that the initial tape has a prefix $0a1a10a2a2 . . . 0akak$$u. Using the
sequence of positions 2, 5, 8, . . . , 3k−1 of the string $. . . $$ as a counter, M transforms

$0a1a10a2a2 . . . 0akak$$u into u$0a1a10a2a2 . . . 0akak$$.

3. Using a counter again, M transforms

u$0a1a10a2a2 . . . 0akak$$ into $03k$v1v2 . . . vm$

where each vi is the code for bi.

4. Using the codes for tape symbols, M simulates M0 pushing the rightmost $ to the right
if necessary.

The desired reduction is

f(u01n) = $0a1a10a2a2 . . . 0akak$$u01p(n)

where a1a2 . . . ak is the binary notation for |u|, and p is an appropriate polynomial. We
ignore the case of u = e. It is obvious that the string v = $0a1a1 . . . 0akak$$u is stable for
M . To check the domination condition, notice that |v| = |u|+ O(log2|u|). QED

5 Randomized Post Correspondence Problem

In this section, a randomized version of the bounded Post Correspondence Problem (PCP)
is defined and proved Ptime complete for RNP. PCP is a well-known undecidable decision
problem [HU]; it can be stated as follows.

Post Correspondence Problem:

Instance A nonempty list L = 〈(u1, v1), . . . , (us, vs)〉 of pairs of strings.

Question Does there exist a function F from some nonempty interval [1..k] of integers to
the interval [1..s] such that the concatenation of strings uF (1), . . . , uF (k) coincides with
the concatenation of strings vF (1), . . . , vF (k)?

23

If uF (1) . . . uF (k) = vF (1) . . . vF (k), and k > 0 then F is called a solution of length k for the
given instance L of PCP. According to Garey and Johnson [G], a bounded version of PCP
has been proved NP complete by Constable, Hunt and Sahni [CHS]. For brevity, we omit
the adjective “bounded” in the following definition.

Randomized Post Correspondence Problem (RPCP):

Instance A nonempty list L = 〈(u1, v1), . . . , (us, vs)〉 of pairs of binary strings, and the
unary notation 1n for a positive integer n.

Question Is there a solution of length at most n for L ?

Probability Randomly and independently choose positive integers n and s, then randomly
and independently choose binary strings u1, v1, . . . , us, vs.

In accordance with Section 2, the random choices are made with respect to the default,
or standard, probability functions on positive integers and binary strings which were defined
in Section 2. It is clear that RPCP is RNP. Call an instance (L, 1n) of RPCP robust if either
L has no solution or it has a solution of length ≤ n. Let RRPCP be the restriction of RPCP
to robust instances.

Theorem 5.1. RRPCP is Ptime hard for RNP.

Proof. The proof is an adaptation of the standard undecidability proof for PCP [HU]; the
difficulty is that the desired reduction should have the domination property.

Suppose that M is an arbitrary Ptime guarded NTM and g is a longevity guard for M .
By Theorem 4.1, it suffices to reduce RH(M, g) to RRPCP. Let (D,µ) be the restriction of
RH(M, g) to instances w01m such that w is not empty and starts with a 1; by Lemma 4.1,
it suffices to reduce (D,µ) to RRPCP. Let σ be the number of control states of M and τ be
the number of tape symbols of M .

Lemma 5.1. Let w be a nonempty binary string and l be the least even integer such that
2(l−6)/2 ≥ |w| + σ + 2τ + 2. There exists a set S of binary strings of length l satisfying the
following requirements.

1. No S-string is a substring of w.

2. If a nonempty suffix z of an S-string x is a prefix of an S-string y, then z = x = y.

3. Every S-string starts with 01.

4. |S| = σ + 2τ + 2.

Proof. Let R be the regular set 0100(00 + 11)∗11. The string w has ≤ |w| substrings of
length l. The definition of l allows us to choose a set S of R-strings of length l that satisfies
requirements (1) and (4). Then requirement (3) is satisfied.

To prove that requirement 2 is satisfied as well, suppose by contradiction that x =
a1 . . . al ∈ S, 1 < i ≤ l, and y = b1 . . . bl = ai . . . al+i−1 ∈ S. Since x, y belong to R, they
satisfy the following: If 1 < j ≤ l and j is odd then j < l, aj = aj+1 and bj = bj+1. If i = l

24

then 0 = b1 = al = 1; hence i < l. Since ai = b1 = 0 and ai+1 = b2 = 1, i is even. Since i + 1
is odd, ai+1 = ai+2 = 1. But ai+2 = b3 = 0. This gives the desired contradiction. QED

Lemma 5.2. Every binary string x that does not start with 01 and is different from 0 is
a concatenation of strings 00, 000, 1 and 10.

Proof. We prove the lemma by induction on |x|. The case |x| ≤ 3 is easy. Suppose that
|x| > 3. It suffices to prove the existence of strings y, z such that x = yz, y is one of the 4
strings 000, 00, 1, 10 and z does not start with 01 and is different from 0.

If x starts with:

0000

0001

001

100

101

11

then the desired y is:

00

000

00

1

10

1

QED

In Section 4 (at the beginning and right before Lemma 4.1) we restricted the class of
NTMs under consideration. Without loss of generality, we may suppose additionally that
our M uses a blank symbol which is different from input symbols and that, on every step,
the head of M prints a non-blank symbol in the currently scanned cell and moves one cell
to the left or right. It follows that the non-blank portion of the tape is always an initial
segment of the tape. In addition, we may suppose that there is only one halting state, and
in any halting configuration the first, i.e. the leftmost, blank is observed.

Let w be an instance of D and let l and S be as in Lemma 5.1. Use σ members of S to
code state symbols of M , and let s, h be the codes for the initial and the halting states of M
respectively. Use 2τ additional members of S to assign two binary codes X ′ and X ′′ to each
tape symbol X of M . In particular, we have 0′, 0′′, 1′, 1′′; let B′ and B′′ be the two codes
for the blank symbol B of M . We will use X+ as a variable over (X ′, X ′′). Finally, let %
and s0 be the two remaining members of S.

For every w, let L = L(w) be an instance of PCP comprising the following pairs of binary
strings:

L0 (%, %ws0).

L1 The four pairs (u, v) such that u ∈ {000, 00, 1, 10} and v is obtained from u by replacing
symbols 0, 1 with strings 0′, 1′ respectively.

L2 The pair (s0, sB
′).

L3 Pairs (X ′, X ′′), (X ′′, X ′) for every tape symbol X of M .

L4.1 Pairs (pX+, Y ′q) for each instruction [pX → qY R] of M .

25

L4.2 Pairs (Z+pX+, qZ ′Y ′) for each instruction [pX → qY L] of M .

L4.3 Pairs (pB+, Y ′qB′) for each instruction [pB → qY R] of M .

L4.4 Pairs (Z+pB+, qZ ′Y ′B′) for each instruction [pB → qY L] of M .

L5 Pairs (X+h, h).

L6 Pairs (hB+B′, B′).

It will be convenient to view the problem of solving L as a derivation problem with pairs
L0–L6 as rules of inference. In this connection, we need a few definitions.

Two binary strings are compatible if one of them is a prefix of the other. Pairs (x1, y1)
and (x2, y2) of strings are equivalent if there exist strings u, v and x3, y3 such that x1 = ux3,
y1 = uy3, x2 = vx3 and y2 = vy3. A pair (x, y) of binary stings is unary if either x or y is
empty. It is easy to see that every pair of compatible strings is equivalent to a unary pair.

A pair (x1, y1) yields a pair (x2, y2) in one step if there is a pair (u, v) in L0–L6 such that
(x1u, y1v) is equivalent to (x2, y2). The yield relation on pairs is the transitive closure of the
yield-in-one-step relation. We identify a string x with the unary pair (e, x). This extends
the yield relation to strings.

Lemma 5.3. L(w) has a solution of length 1 + k if and only if ws0 yields the empty string
e in k steps.

Proof. L has a solution of length 1 + k if and only if e yields e in 1 + k steps. Since
(%, %ws0) is the only compatible pair in L, e yields e in 1 + k steps if and only if ws0 yields
e in k steps. QED

For each binary string x, let x′ (resp. x′′) be the binary string obtained from x by
replacing each 0 with 0′ (resp. 0′′) and each 1 with 1′ (resp. 1′′).

Lemma 5.4.

1. ws0 yields s0w
′ in ≤ |w| steps.

2. Any derivation of e from ws0 splits into two parts: a derivation of s0w
′ and a subsequent

derivation of e from s0w
′.

Proof. (1) Use Lemma 5.2 and rules L2.

(2) Consider the given derivation. First some pair (u,ws0u
′) is derived by means of L1-rules

and then some other rule (x, y) is applied to that pair. Obviously, x belongs to S and ux is
a prefix of ws0u

′.
Recall that S satisfies the 4 requirements of Lemma 5.1. If ux is a prefix of w then x

is a substring of w which contradicts requirement 1. Hence |ux| > |w|. The string u′ is
a concatenation s1 . . . sk where each si is either 0′ or 1′. Let w0 = w and wi+1 = wisi for
0 < i < k, and let i be the least number such that |wi| < |ux| ≤ |wi+1|. Then a nonempty
suffix of x is a prefix of si. Since S satisfies requirement 2 of Lemma 5.1, u = wi.

If i > 0 then (u,ws0u
′) is equivalent to a nonempty concatenation of strings 0′ and 1′.

Only rules L3 are applicable to concatenations of strings 0′ and 1′, and all rules L3 are length

26

preserving. It follows that, in the case i > 0, the pair (u,ws0u
′) does not derive e. Hence

i = 0, u = w and (u,ws0u
′) is equivalent to s0w

′. QED

If x is a string of state or tape symbols of M , let x+ denote any of the binary strings
obtained from x by replacing each occurrence of every symbol by an S-string that codes the
symbol.

Lemma 5.5. There exists exactly one derivation of length |w|+1 from s0w
′, and the result

of that derivation is sw′′B′.

Proof. Apply the L2-rule to derive w′sB′ from s0w
′. Then use |w| applications of L3-rules

to derive sw′′B′ from w′sB′. The uniqueness is obvious. QED

If at moment t (i.e. after t steps of computation), the state of M is q, the head of M
is at cell number i and the first blank is in cell number j, then the configuration of M at
moment t may be represented by a string xqy, called the instantaneous description or ID,
where x and y are the strings in the segments [1..(i− 1)] and [i..j] of the tape respectively.
We identify states of M with their binary codes. Thus, the initial ID of M on input w is
swB.

Lemma 5.6. Let t′ = max(t, |w|).
1. There exists a polynomial p1 such that if an ID xqy is reachable from the initial ID

swB in t steps then every sw+B+ yields some x+qy+ within p1(t
′) steps.

2. There exists a polynomial p2 such that if M has a halting computation of length t then
every sw+B+ yields the empty string within p2(t

′) steps.

Proof. (1) An easy induction on t. The simulation of a step of M from a configuration
x1q1y1 comprises of ≤ |x1| applications of L3-rules, followed by one application of an L4-rule,
followed by |y| − 1 applications of L3-rules. It remains to notice that, the length of the ID
at moment t is bounded by t′ + 1.

(2) If a halting configuration xhB is reachable in t steps, then, by (1), some x+hB+ is
derivable from any sw+B+ in ≤ p1(t) steps. If y = zX where X is a tape symbol of
M , then y+hB+ yields z+hB+ by means of |z| applications of rules L3, followed by one
application of an L5-rule, followed by an additional application of an L3-rule. This shows
that x+hB+ yields hB+ and allows to estimate the derivation length. Finally, hB+ yields e
by means of one application of an L-rule. QED

It is easy to see that any derivation from any sw+B+ can use only rules L3–L6. For,
consider the collection K of strings x and unary pairs (x, e) such that x is a concatenation
of the codes for state and tape symbols. K contains all strings sw+B+, and is closed under
rules L3–L6, and only rules L3–L6 are applicable to members of K.

Lemma 5.7.

1. Every string, derived from any sw+B+ by means of rules L3–L4 has the form x+
2 qy+x+

1 ,
where x1x2qy is a reachable ID of M , or the form y+

2 x+qy+
1 , where xqy1y2 is a reachable

ID of M .

27

2. If some sw+B+ yields e then M halts on w.

Proof. (1) Induction on the length of the derivation.

(2) Suppose that sw+B+ yields e. Since no L3 or L4 rule shortens strings, rules L5 or L6
should be used in the derivation. Hence sw+B+ yields some string x+

2 hy+x+
1 or y+

2 x+hy+
1 .

By (1), there is a halting computation of M on w. QED

Lemma 5.8. There exists a polynomial p such that, for every instance w01m of D, the
following statements are equivalent:

1. M has a halting computation of length ≤ m on w.

2. L(w) has a solution of length ≤ p(m),

3. L(w) has a solution, and

4. M has a halting computation on w.

Proof. First we prove that (1) implies (2) for an appropriate p. Suppose that M has
an m-step halting computation on w. By Lemma 5.3, we need to show that ws0 yields e
in < p(m) steps for some polynomial p. By Lemma 5.4(1), ws0 yields s0w

′ in a number of
steps which is at most |w| and therefore less than m. By Lemma 5.5, s0w

′ yields sw′′B′ in
|w|+ 1 ≤ m steps. Now use Lemma 5.6.

Obviously, (2) implies (3).
To prove that (3) implies (4), suppose that L(w) has a solution. By Lemma 5.3, ws0 yields

e. By Lemma 5.4(2), s0w
′ yields e. By Lemma 5.5, sw′′B′ yields e. Now use Lemma 5.7(2).

Since (D,µ) is a restriction of RH(M, g), m is longevous for w. Hence (4) implies (1).
QED

Let p be as in Lemma 5.8. The desired reduction reduction of (D,µ) to RRPCP is:

f(w01m) = (L(w), 1p(m)).

By Lemma 5.8, w01m is a positive instance of D if and only if f(w01m) is a positive instance
of RRPCP. It remains to check that the probability function ν of RRPCP dominates µ.
Since (D,µ) is a restriction of RH(M, g), µ(w01m) is proportional to m−32−|w|. We have to
prove that, for some polynomial r, r(m)× ν(f(w01m)) exceeds m−32−|w|.

Let δ(x) be proportional to the default probability |x|−22−|w| of a binary string x. Let
u range over the binary strings of L(w) different from %ws0. ν(f(w01m)) is the product of
p(m)−2 and δ(%ws0) and all δ(u). It suffices to prove that:

• There exists a polynomial r1 such that r1(m)× p(m)−2 > m−3,

• There exists a polynomial r2 such that r2(m)× δ(%ws0) > 2−|w|, and

• There exists a polynomial r3 such that r3(m)× δ(u) > 1 for all u.

28

All three claims are easy. Use the fact the length l of S-strings is O(log2 |w|). Theorem 4.1
is proved. QED

Corollary. RPCP is Ptime complete for RNP.

Remark 5.1. The reason for introducing robust instances was to make the completeness
proof a little easier. It is possible also that the robustness may be helpful in reducing RPCP
to other problems. In this connection, let us note that the definition of robust instances
(L, 1n) may be strengthened by requiring that every solution for L should be of length
≤ n. Theorem 5.1 remains true and the particular reduction, described in the proof of
Theorem 5.1, is fine. Lemma 5.7 should be strengthened by asserting that longer derivation
correspond to longer computations.

Remark 5.2. In the classical reduction of the halting problem to PCP [HU], an input w
of the given Turing machine appears in a coded form in the corresponding instance of PCP.
We have to use an essentially uncoded form of w in order to take care about probabilities.
Rules L2 are used to rewrite w in a coded form. The four L2-rules cannot be replaced by
two simpler rules (0, 0′) and (1, 1′) because the new rules may be applicable in inappropriate
situations.

In the rest of this section, we slightly modify the proof of Theorem 5.1 and prove the
RNP hardness of another form of RPCP; that result will be used in the next section. Let
x−1 denote the reverse of binary string x.

Lemma 5.1′. Let w be a nonempty binary string and l be the least even integer such that
2(l−6)/2 ≥ 2|w|+ σ + 2τ + 2. There exists a set S of binary strings of length l satisfying the
four requirements of Lemma 5.1 plus the following two additional requirements:

5. For no S-string x, x−1 is a substring of w.

6. If x, y, z are S-strings then z−1 is not a substring of xy.

Proof. Let R be as in the proof of Lemma 5.1. The number of substrings of w of length l
plus the number of substrings of w−1 of length l is at most 2|w|. The definition of l allows
us to choose a set S of R-strings of length l that satisfies requirements (1), (4) and (5).
Requirement (3) is obviously satisfied. The same proof as before establishes that S satisfies
requirement (2).

By contradiction, suppose that x, y, z witness that S fails to satisfy requirement (6). Let
xy = a1 . . . a2l and z−1 = b1 . . . bl = ai . . . al+i−1. Since z−1 starts with 11 and x starts with
0100, i > 4. If i is odd then xy has a 1 in the odd position l + i − 2 followed by a 0 in the
even position l + i− 1 which is impossible. Hence i is even. By induction on j, i ≤ j ≤ l +1,
we check that aj = 1. If j = i then aj = b1 = 1. If j is odd and aj = 1 then aj+1 = 1 because
x, y ∈ R. If j is even and aj = 1 then j − i + 1 is odd, j − i + 1 < j − 4 + 1 < l − 2 and
bj−i+1 = 1; hence bj−i = 1 because z ∈ R; hence aj+1 = 1. In particular, al+1 = 1 which is
impossible. QED

The proof of Theorem 5.1 remains valid if Lemma 5.1 is replaced with Lemma 5.1‘.

Define the length of a pair (x, y) of binary strings to be the difference |y| − |x|. Call an
instance L of PCP positively biased if |u1 . . . uk| ≤ |v1 . . . vk| whenever u1 . . . uk and v1 . . . vk

are compatible and each (ui, vi) belongs to L.

29

Lemma 5.9. The instances of PCP constructed in the modified proof of Theorem 5.1 are
positively biased.

Proof. By contradiction, suppose that an instance L(w) is not positively biased. Then
e yields a negative pair N . Then ws0 yields N . An argument similar to the proof of
Lemma 5.4(2) establishes that s0w

′ yields N . By Lemma 5.5, sw′′B′ yields N . As it has
been proved, any derivation from sw′′B′ uses only rules L3–l6. Length decreasing rules
should be used in order to derive N . All length decreasing rules involve h. By Lemma 5.7,
some u+hv+ yields N . Here uv is a string of tape symbols. It is easy to see that u+hv+ does
not yield any negative pair. QED

We say that an instance L of PCP is palindrome sensitive if there is no palindrome
u1 . . . ukv

−1
k . . . v−1

1 where each (ui, vi) belongs to L and |u1 . . . uk| 6= |v1 . . . vk|.
Theorem 5.2. The restriction of RPCP to instances (L, 1n) such that L is palindrome
sensitive is hard for RNP.

Proof. It suffices to check that instances L(w) constructed in the modified proof of
Theorem 5.1 are palindrome sensitive. Without loss of generality, we may suppose that
|w| ≥ l. By contradiction suppose that pairs (u1, v1), . . . , (uk, vk) witness the failure of
palindrome sensitivity of some L(w). We know that u1 = % and v1 = %ws0. Let u = u2 . . . uk

and v = v2 . . . vk. By Lemma 5.9, |%u| < |%ws0v|. Hence there exists a palindrome x such
that ux = ws0v and ws0 yields x by means of rules L1–L6. It follows that v is a nonempty
concatenation of S-strings. It is easy to see that x starts with a reverse r1 of an S-string.
By the choice of S, r1 cannot be a substring of w. Hence w is a proper prefix of ur1.

First suppose that u is a proper prefix of w, so that x has a suffix s0v and therefore
it has a prefix r1r2 where r2 is a reverse of an S-string. But then r2 is a substring of the
concatenation s0v of S-strings which contradicts the choice of S.

Thus, w is a prefix of u. Then x is a suffix of s0v. If only L2-rules were used to derive x
then |x| ≥ 2l and x is the concatenation of a suffix of an S-string and at least two s strings.
By the choice of S, such a concatenation cannot be a palindrome. Thus, at least one of the
rules L3–L6 was used to derive x. The left string of any such rule starts with an S string.
By the choice of S (use requirements 1 and 2), x is a concatenation of S-strings. Hence x is
not a palindrome. QED

6 Additional RNP complete problems

Randomized Palindrome Problem:

Instance A context-free grammar with productions

T −→ u1Tv1 | . . . | usTvs | e,

and the unary notation 1n for a positive integer number n. Here ui and vi are binary
strings, and e is the empty string.

Question Is it possible to derive a nonempty palindrome (in terminal symbols 0 and 1) in
at most n steps ?

30

Probability Randomly and independently choose positive integers n and s, then randomly
and independently choose binary strings u1, v1, . . . , us, vs.

Theorem 6.1. Randomized Palindrome Problem is Ptime complete for RNP.

Proof. It is obvious that the problem is RNP. To prove that it is hard for RNP, we
reduce the palindrome sensitive version of PCP (see Theorem 5.2) to Randomized Palindrome
Problem. Given a palindrome sensitive instance L = 〈(u1, v1), . . . , (us, vs)〉 of PCP and some
1n, the desired reduction produces a grammar G with productions

T −→ u1Tv−1
1 | . . . | usTv−1

s | e,

and the unary notation for n+1. The domination requirement is obvious. We have to check
that L has a solution of length ≤ n if and only if G produces a nonempty palindrome in at
most n + 1 steps.

It is clear that every solution

uF (1) . . . uF (k) = vF (1) . . . vF (k)

for L give rise to a (k + 1)-step derivation of the Palindrome

uF (1) . . . uF (k)v
−1
F (k) . . . v−1

F (1).

Suppose that G produces a nonempty Palindrome

uF (1) . . . uF (k)v
−1
F (k) . . . v−1

F (1)

in k + 1 steps. Since L is palindrome sensitive,

uF (1) . . . uF (k) = vF (1) . . . vF (k).

QED
It is easier to find complete RNP problems of logical nature. In this connection, we give

two relatively straightforward theorems.

Let φ be a first order sentence with order relation <, a unary predicate symbol P and a
collection σ of additional predicate symbols. Restrict attention to finite structures S with
order such that the universe of S is an initial segment [0..n− 1] of natural numbers and the
order is standard. Define the randomized satisfiability problem RSAT(φ):

Instance The unary notation for a positive integer n, a natural number k < n and a unary
relation P0 on [0..k − 1].

Question Is there a model for φ on [0..n− 1] such that P coincides with P0 on [0..k − 1]?

Probability The probability of the given instance is proportional to n−32k and corresponds
to the following experiment: Randomly choose n, then randomly choose k, then ran-
domly choose P0.

31

Obviously, RSAT(φ) is RNP.

Theorem 6.2. For every RNP problem (D,µ), there exists a first-order sentence φ(P)
such that (D,µ) reduces to RSAT(φ).

Proof. Use Theorem 4.1. QED

Remark. Utilizing known undecidability proofs, one can put severe syntactical restrictions
on φ.

Let ψ be a sentence in the first-order language of arithmetic enriched with an additional
unary relation P . Define the randomized arithmetical satisfiability problem RAS(ψ):

Instance The unary notation for a positive integer n, a natural number k < n and a unary
relation P0 on [0..k − 1].

Question Is there an extension P of P0 to [0..n− 1] such that ψ(P) holds in the arithmetic
modulo n?

Probability Proportional to n−32k.

Obviously, every RAS(ψ(P)) is RNP.

Theorem 6.2. [Gurevich and Shelah] Every RNP problem Ptime reduces to some RAS(ψ).

Proof. Use Theorem 6.1. QED

7 APtime reducibility

In this section, the expression µ1 ≤ µ2 will denote that µ1 is weakly dominated by µ2. The
notions of weak domination and rarity function were defined in Section 1.

Lemma 7.1. Let µ1 ≤ µ2.

1. If ρ is a rarity function for µ2, then there exists ε > 0 such that ρε is a rarity function
for µ1.

2. Every function polynomial on µ2-average is polynomial on µ1-average.

3. Every function computable in APtime with respect to µ2 is so with respect to µ1.

4. If (D,µ2) is AP then (D,µ1) is AP.

5. If µ2 ≤ µ3 then µ1 ≤ µ3.

Proof. (1) Since µ1 ≤ µ2, there exists a linear on µ1-average function g such that some
gj witnesses that µ1 ≤ µ2. Let ε = 1/(j + 1). We prove that ρε is a rarity function for
µ1. It suffices to prove that

∑
ρ(x)ε>g(x) ρ(x)εµ1(x) is finite. But ρ(x)ε > g(x) if and only

if ρ(x)j/(j+1) > g(x)j if and only if ρ(x)1−1/(j+1) > g(x)j if and only if ρ(x) > ρ(x)εg(x)j.
Further,

∑

ρ(x)ε>g(x)

ρ(x)εµ1(x) ≤ ∑

ρ(x)ε>g(x)

ρ(x)εg(x)jµ2(x) ≤ ∑
x

ρ(x)µ2(x) < ∞.

32

(2) is exactly Lemma 1.5. We give here an alternative proof. Suppose that a function f
is polynomial on µ2-average. By Proposition 1.2, there exists a rarity function ρ for µ2 such
that f(x) is bounded by a polynomial of |x| and ρ(x). By (1), some ρ1/k is a rarity function
for µ1. Obviously, f(x) is bounded by a polynomial of |x| and ρ(x)1/k. By Proposition 1.2,
f is polynomial on µ1-average.

(3) By (2), time polynomial in µ2-average is polynomial in µ1 average.

(4) To decide D means to compute the characteristic function of D. Use (3).

(5) Let f and g witness that µ1 ≤ µ2 and µ2 ≤ µ3 respectively. By (2), g is polynomial
on µ1-average. By Lemma 1.1, the product f(x)g(x) is polynomial on µ1-average. But the
product witnesses that µ1 ≤ µ3:

f(x)g(x)µ3(x) ≤ f(x)µ2(x) ≤ µ1(x). QED

Definition. A randomized decision problem (D1, µ1) is weakly transformable into a ran-
domized decision problem (D2, µ2) if some APtime computable function reduces D1| {x :
µ1(x) > 0} to D2 and transforms µ1 into µ2.

Lemma 7.2. If an APtime function f transforms (D1, µ1) into a restriction of (D2, µ2)
and (D2, µ2) is AP then (D1, µ1) is AP.

Proof. This is Lemma 3.1(2). QED

Lemma 7.3.

1. µ2 dominates µ1 with respect to a one-to-one APtime function f if and only if the
probability function ν(x) proportional to µ2(fx) weakly dominates µ1.

2. Suppose that a function f transforms µ1 into some ν2 which is weakly dominated by
µ2. If f is polynomial on µ1-average then µ2 weakly dominates µ1 with respect to a
function f .

Proof. (1) Similar to the proof of Lemma 3.2.

(2) As in the proof of Lemma 3.3(1), we may assume that µ2(y) = 0 whenever ν2(y) = 0.
Let g witness that ν2 ≤ µ2: g is polynomial on ν2-average and ν2(y) = g(y) · µ2(y). Define
ν1 as in the proof of Lemma 3.3(1). We have µ1(x) = g(f(x)) · ν1(x). By Lemma 1.2(1), the
function g(f(x)) is polynomial on µ1-average, and therefore µ1 ≤ ν1. It remains to check
that f transforms ν1 into µ2; this is done exactly as in the proof of Lemma 3.3(1). QED

Definition. A function f reduces (D1, µ1) to (D2, µ2) in APtime if f reduces D1| {x :
µ1x > 0} to D2, f is computable in time polynomial on µ1-average and µ2 weakly dominates
µ1 with respect to f .

Lemma 7.4.

1. If (D1, µ1) APtime reduces to (D2, µ2) and (D2, µ2) is AP then (D1, µ1) is AP.

2. APtime reducibility is transitive.

33

Proof. (1) Suppose that a function f reduces (D1, µ1) to (D2, µ2) in APtime and (D2, µ2)
is AP. Then there exists a probability function ν ≥ µ1 such that f transforms ν into a
restriction of µ2. Suppose that (D2, µ2) is AP. At this point the similarity to the proof of
Lemma 3.4(1) ends. We cannot use Lemma 7.2 to deduce that (D1, ν) is AP because that
we do not know whether f is polynomial on ν-average; we know only that f is polynomial
on µ1-average.

Define X ′ = {x : µ1(x) ≥ ν(x)}, X” = {x : µ1(x) < ν(x)}, µ′1 = µ1|X ′ and µ1” =
µ1|X”. It suffices to prove that both (D1, µ

′
1) and (D1, µ1”) are AP.

The case of µ′1. Let ν ′ = ν|X ′. We have ν ′ ≤ µ′1 ≤ µ1. By Lemma 7.1, f is polynomial
on ν ′-average. The function f transforms ν ′ to a restriction of µ2. By Lemma 7.2, (D1, ν

′)
is AP. Since µ1 ≤ ν, µ′1 ≤ ν ′. By Lemma 7.1, (D1, µ

′
1) is AP.

The case of µ1”. Define ν2(y) =
∑

fx=y µ1”(x). Then ν2(y) ≤ ∑
fx=y ν(x) and therefore

ν2 ≤ µ2. By Lemma 7.1, (D2, ν2) is AP. By Lemma 7.2, (D1, µ1”) is AP.

(2) The proof is similar to that of Lemma 3.4(2). QED

8 Incompleteness

We give a sufficient condition for a randomized decision problem to be incomplete for RNP
with respect to APtime reductions.

Definition. A probability function µ on some Σ∗ is flat if there exists a real number ε > 0
such that

µ(x) ≤ 2−nε

, i.e., − log2µ(x) ≥ nε

for every Σ-string x of sufficiently big length n. A randomized decision problem (D,µ) is
flat if µ is.

The intuition is that all values of a flat probability function are relatively small; none of
them juts out.

In this section, the term “exponential” is used in a broader sense, and a function f from
some Σ∗ to nonnegative reals is exponential (or exponentially bounded) if there is a polynomial
p with f(x) ≤ 2p(|x|). The decision problem D for a language L(D) over some alphabet
Σ(D) is DEXPtime (resp. NEXPtime) if some exponential-time deterministic (respectively
nondeterministic) Turing machine decides D. Obviously, every NP problem is DEXPtime.

Theorem 8.1. Let (D,µ) be a flat randomized decision problem where D is DEXPtime.
If (D,µ) is APtime hard for RNP then NEXPtime = DEXPtime.

Proof. We assume that (D,µ) is APtime hard for RNP and show that an arbitrary NEX-
Ptime decision problem D0 is DEXPtime decidable. Without loss of generality, instances
of D0 are binary strings. Let x range over binary string and n = |x|. We turn D0 into a
randomized decision problem (D0, µ0) by assigning to each x the default probability µ0(x)
proportional to n−22−n.

Fix a polynomial p(n) > n such that some 2p(n)-time-bounded NTM decides D0. For
every binary string x, let x′ be the binary string of length 2p(n) obtained from x0 by adding
a tail of ones. Let D1 be the decision problem for the language {x′ : x ∈ L(D0)}, and let

34

µ1 be the probability function on binary strings such that µ1(x
′) = µ0(x) and µ1(y) = 0 if

there is no x such that y = x′.

Lemma 8.1. If a function g from binary strings to nonnegative reals is polynomial on
µ1-average then g(x′) is exponential in n.

Proof. It suffices to consider the case when g is linear on average. For some c, we have

c >
∑
y

g(y) · |y|−1 · µ1(y) =
∑
x

g(x′) · |x′|−1 · µ1(x
′).

Hence, for each x, g(x′) < c · 2p(n) · n22n. QED

Since (D1, µ1) is RNP, there is an APtime reduction f of (D1, µ1) to (D,µ). This gives
the following decision algorithm for D0: Given x, compute x′, then compute f(x′), and then
solve the instance f(x′) of D. We need to prove only that the instance f(x′) of D is decidable
in time exponential in n. Since D is DEXPtime, it suffices to show that |f(x′)| is bounded
by a polynomial of n. Since f is APtime, µ weakly dominates µ1 with respect to f , i.e.,
there exist a probability function ν and a polynomial on µ1-average function g such that
g(x′)ν(x′) = µ1(x

′) and f transforms ν into a restriction µ|Z of µ of some probability c.
Then

g(x′) · µ(fx′)/c = g(x‘) · (µ|Z)(fx′) = g(x′) · ∑

ft′=fx′
ν(t′) ≥ g(x′) · ν(x′) = µ1(x

′).

Since g(x′) is exponential in n (Lemma 8.1) and (µ1(x
′))−1 is exponential in n, there

exists some polynomial q(n) such that µ(fx′) > 2−q(n), i.e., −log2µ(fx′) < q(n). Since µ is
flat, there is k such that

|fx′|1/k ≤ −log2µ(fx′) < q(n), i.e., |fx′| < q(n)k.

QED

The following lemma illustrates how prevalent flat probability functions are.

Lemma 8.2. Let µ be any probability function on graphs such that, for each n, the
restriction of µ to graphs with n vertices is determined by edge-probability f(n) such that

n−2+ε < f(n) < 1− n−2+ε

for some fixed ε > 0. Then µ is flat.

Proof. Let r = n2−ε. For every graph G with n vertices,

µ(G) < (1− 1/r)n(n−1)/2 = [(1− 1/r)r]n(n−1)/(2r) ≤ e−n(n−1)/(2r).

Hence
− loge µ(G) > n(n− 1)/(2r) ≈ nε/2. QED

Corollary. Let µ be any probability function on graphs such that, for each n, the re-
striction of µ to graphs with n vertices is determined by an edge-probability f(n). The

35

µ-randomization of Hamiltonian Circuit Problem is not APtime hard for RNP unless NEX-
Ptime = DEXPtime.

Proof sketch. Choose a sufficiently small ε > 0 and design algorithms which solve HCP
in expected polynomial time if the edge probability is at most n−2+ε or at least 1 − n−2+ε.
Use these algorithms to reduce the µ-randomization of HCP to a flat problem. QED

The randomized halting problems RH(M) for an NTM M is not flat because an input w
for M may be very short comparative to the prescribed number n of steps. For every r > 1,
the restriction of RH(M) to inputs w01n such that |w|r > n is flat. Similarly, Randomized
Post Correspondence Problem and Randomized Tiling Problem are not flat, but their natural
restrictions are flat. For example, the restriction of Randomized Tiling to inputs 〈T, 1n, k, ρ〉
such that ρ is of length ≥ n1/r for some fixed r is flat.

The following theorem of Ben-David and Michael Luby [BL] shows that the question
DEXPtime =? NEXPtime is related to the question whether AP includes RNP. See [BCGL]
in this connection.

Theorem 8.2. If AP includes RNP then DEXPtime = NEXPtime.

Proof. Let E be the decision problem for some NEXPtime language L(E). Let x range
over instances of E and n be the number of x in the lexicographical order of instances of
E. Let D be the decision problem for language L(D) = {1n : x ∈ L(E)} over the unary
alphabet, and let µ(1n) be the standard probability of natural number n. Obviously, (D,µ)
is RNP.

Suppose that AP includes RNP. Then some algorithm A decides D in time T polynomial
on µ-average. We prove that E is DEXPtime. It suffices to prove that T (1n) is bounded by
a polynomial of n. For, in this case, the obvious algorithm for E — given x, compute 1n

and then use A to solve 1n — works in time bounded by an exponential function of |x|.
Let k witness that T is polynomial on µ-average:

∑
(T (1n))1/k · |1n|−1 · µ(1n) ≤ ∞.

There is a constant c such that for all n:

(T (1n)1/k · n−1 · n−2 ≤ c, i.e. T (1n) ≤ (cn3)k. QED

9 Randomizing Reductions

The proof of the incompleteness theorem, Theorem 8.1, does not give any indication that flat
RNP problems are easier on average. The incompleteness theorem seems to hint that Ptime
and even APtime reductions are not sufficiently strong. It is natural at this point to raise the
question of polynomial-time (or average polynomial-time) Turing reductions [GJ]. However,
the incompleteness theorem survives the transition from many-one to Turing reductions;
we omit the proof. Levin found a way to deal with the phenomenon of flatness [Le2]. He
proposed the use of randomizing (coin-flipping) Ptime reductions (RPtime reductions). A
flat problem RPtime complete for RNP can be found in [VL].

In this section, we give a possible formalization of a simple version of RPtime reductions
and then prove RPtime completeness of a flat version of Randomized Halting Problem for

36

RNP. For simplicity, we restrict attention to decision problems in the binary alphabet. The
proof of Lemma 3.1(3) shows how strings in larger alphabets can be coded by binary strings
in a manner that respects probabilities.

One may want to use more liberal reductions that are randomized, Turing and APtime
at the same time. Different aspects of coin-flipping may be liberalized as well. Coins may
be biased, the number of coin flips need not necessarily be polynomially bounded, etc. Also,
reductions may be allowed to be incorrect in rare cases. We prefer to use the simplest
reductions sufficient for our purposes.

Definition. A dilator is a Ptime computable function from binary strings to natural
numbers. If p is a dilator then the p-dilation (Dp, µp) of a randomized decision problem
(D,µ) is the following randomized decision problem:

Instance A pair (x, y) of binary strings where |y| = p(x).

Question Is x a positive instance of D?

Probability µp(x, y) = µ(x) · 2−|y|.

In the rest of this section, p, q and r are dilators. Notice that the definition of dilations of
randomized decision problems defines also dilations of decision problems and of probability
functions. To simplify notation, the q-dilation of the p-dilation of a randomized decision
problem (D,µ) will be denoted (Dpq, µpq). The following lemma shows that the effect of
such double dilation can be achieved by a single dilation.

Lemma 9.1. For all dilators p and q, there exist a dilator r and a function f which
transforms (Dr, µr) to (Dpq, µpq).

Proof. Construct a dilator r such that r(x) ≥ p(x) + q(x, y) for all y with |y| = p(x). If
|w| = r(x), set f(x,w) = ((x, u), v) where uv is the initial segment of w such that |u| = p(x)
and |v| = q(x, u). We need to check only that f transforms µr to µpq. Let x, u and v be
binary strings such that |u| = p(x) and |v| = q(x, u), and let k = r(x)−(p(x)+q(x, u)). Every
pre-image of ((x, u), v) with respect to f has the form (x, uvy) where |y| = k. Obviously,

∑

|y|=k

µr(x, uvy) =
∑

|y|=k

µpq(x, uv) · 2−k = µpq((x, u), v). QED

Until now, the analog of P in the average complexity theory was the class AP of ran-
domized decision problems (D,µ) such that some deterministic Turing machine decides D
within time polynomial on µ-average. The use of randomizing algorithms gives rise to a
more liberal analog of P.

Definition. RAP is the class of randomized decision problems (D,µ) such that some
dilation of (D,µ) is AP.

RAP is a class of randomized decision problems (D,µ) such that some randomizing (coin-
flipping) Turing machine decides D within time polynomial on µ-average. For simplicity, we
require that the coin is unbiased, that the number of coin tosses is polynomially bounded,

37

and that all computations on the same input generate the same number of coin tosses. Does
RAP properly include AP? We do not know.

Definition. A randomized decision problem (D,µ) RPtime reduces to a randomized
decision problem (E, ν) if some dilation of (D,µ) Ptime reduces to (E, ν).

An RPtime reduction is a coin-flipping Ptime reduction.

Lemma 9.2.

1. If ν dominates µ then, for every p, νp dominates µp.

2. If a Ptime computable function f transforms (D,µ) to a restriction of (E, ν) then, for
every p, some Ptime computable function g transforms some (Dq, µq) to a restriction
of (Ep, νp).

3. If (D,µ) RPtime reduces to (E, ν) then, for every q, some dilation of (D,µ) Ptime
reduces to (Eq, νq).

4. RPtime reducibility is transitive.

5. If a randomized decision problem RPtime reduces to an RAP problem then it also is
RAP.

Proof. (1) Let f witness that ν dominates µ, so that µ(x) = f(x) · ν(x). Then

µp(x, y) = µ(x) · 2−|y| = f(x) · ν(x) · 2−|y| = f(x) · νp(x, y).

(2) Without loss of generality, f transforms µ to ν itself. For, let ν ′ be the restriction of
ν such that f transforms µ to ν ′. Then ν ′p is a restriction of νp. It follows that, if some g
transforms some (Dq, µq) to (Ep, ν

′
p) or to a restriction of (Ep, ν

′
p) then g transforms (Dq, µq)

to a restriction of (Ep, νp).
Choose the desired q such that q(x) ≥ p(fx). For every instance (x, y) of Dq, let g(x, y) =

(fx, z) where z is the prefix of y of length p(fx). Obviously, g reduces Dq to Ep. We prove
that g transforms µq to νp. Let (u, z) be an instance of Ep. Every pre-image of (u, z) with
respect to g has the form (x, zv) where f(x) = u and |v| = q(x) − p(u). Let x range over
f−1(u), k = q(x)− p(u), and v range over binary strings of length k.

∑
x,v

µq(x, zv) =
∑
x

µ(x) · 2−|z| ·∑
v

2−k = νp(u, z).

(3) Suppose some (Dp, µp) Ptime reduces to (E, ν). Then there exist a probability func-
tion β and a Ptime computable function f such that β dominates µp and f transforms
(Dp, β) to a restriction of (E, ν). By (2), there exist a dilator r and a Ptime computable
transformation of (Dpr, βr) to a restriction of (Eq, νq). It remains to prove that some dilation
of (D,µ) Ptime reduces to (Dpr, βr).

By (1), βr dominates µpr; hence (Dpr, µpr) Ptime reduces to (Dpr, βr). It remains to prove
that some dilation of (D,µ) Ptime reduces to (Dpr, µpr). Now use Lemma 9.1.

38

(4) Suppose some (A,α) RPtime reduces to (B, β) which RPtime reduces to (C, γ).
Then some (Bq, βq) Ptime reduces to (C, γ). By (3), some dilation (Ap, αp) Ptime reduces
to (Bq, βq) and therefore to (C, γ).

(5) Suppose that (D,µ) RPtime reduces to (E, ν) and a q-dilation of (E, ν) is AP. By
(3), some (Dp, µp) Ptime reduces to (Eq, νq) and therefore is AP. QED

RPtime reductions allow us to have prettier versions of randomized halting problems.
Fix any function π(i) from natural numbers to natural numbers such that:

• π is Ptime computable,

• π is nondecreasing, i.e., i ≤ j implies π(i) ≤ π(j),

• the function π−1(n) = mini(π(i) ≥ n is polynomially bounded.

For an NTM M , let RHπ(M) be the following version of the randomized halting problem
for M :

Instance A binary string w of some length l.

Question Is there a halting computation of M on w with at most π(l) steps?

Probability The probability of an instance w is the default probability l−22−l of the binary
string w.

Theorem 9.1. Every RNP problem (D,µ) RPtime reduces to RHπ(M) for some NTM
M .

Proof. Let M be an NTM and g be a longevity guard for M . By Lemma 4.2, we may
suppose that (D,µ) is the restriction of RH(M, g) to stable instances.

Construct a dilator p such that π(|w| + p(w01n)) ≥ n. It suffices to prove that (Dp, µp)
Ptime reduces to RHπ(M). The desired reduction is

f(w01n, y) = wy.

First we check that f takes positive instances to positive instances and negative instances
to negative instances. Let w be a stable input for M , n = g(w) and y be a binary string of
length p(w01n). An instance (w01n, y) of Dp is positive if and only if there exist a halting
computation of M on w of length ≤ n. Since n is longevous for w and π(|wy|) ≥ n, M has
a halting computation on w of length ≤ n if and only if it has a halting computation on w
of length ≤ π(|wy|). Since w is stable, M has a halting computation of length ≤ π(|wy|)
on w if and only if it has a halting computation of length ≤ π(|wy|) on wy if and only if wy
is a positive instance of RHπ(M).

Next we check the domination condition. Let (w01n, y) be an instance of Dp, |w| = l,
|y| = k and m = k + l. Then µp(w01n, y) = n−32−l2−k = n−32−m whereas the probability of
f(w01n, y) is m−22−m, and the domination condition is obvious. QED

Using Theorem 9.1 instead of Theorem 4.1, one can construct prettier versions of Ran-
domized Post Correspondence Problem and Randomized Tiling Problem that are complete
for RNP with respect to RPtime reductions.

39

10 Sparse problems

Definition. A probability function µ on strings in some alphabet is sparse if there is
a polynomial bound p(n) on the number of strings x of length n such that µ(x) > 0. A
randomized decision problem (D,µ) is a sparse RNP problem if µ is weakly dominated by
some sparse probability function ν with a Ptime computable probability distribution ν∗.

In this section, the term “exponential” is used in a more narrow sense. A function T
from some Σ∗ to nonnegative reals is exponentially bounded or, for brevity, exponential if
there is a constant c with T (x) ≤ c|x|. A function f from some Σ∗

1 to some Σ∗
2 is EXPtime

computable if some exponential-time Turing machine computes f . The decision problem D
for some language L(D) is DEXPtime (resp. NEXPtime) if some exponential-time Turing
machine (resp. nondeterministic Turing machine) decides D.

Definition. [Lew] A decision problem D EXPtime reduces to a decision problem E if there
exist an EXPtime computable function f and a constant c such that f reduces D to E and
|fx| ≤ c · |x|.

The bound on |fx| ensures the following desired feature of EXPtime reductions: If a
NEXPtime D EXPtime reduces to a DEXPtime E then D is DEXPtime.

Definition. Let D be a NEXPtime decision problem and c be an integer such that
some NTM accepts L(D) in time B(n) = cn. The companion of D with respect to B is
the randomized decision problem (E, µ) such that L(E) = {w01B(|w|) : w ∈ L(D)} and
µ(w01B(|w|)) is the standard probability of string w (so that µ(y) = 0 if y does not have the
form w01B(|x|)).

Any companion is a sparse RNP problem.

Lemma 10.1. Let (E, µ) be the companion of a NEXPtime decision problem D with
respect to a bound B(n). There is a polynomial p such that p(|y|)µ(y) ≥ 1 for all strings y
of the form w01B(|w|).

Proof. Clear.

Lemma 10.2. If a NEXPtime decision problem D1 EXPtime reduces to a NEXPtime
decision problem D2 then any companion of D1 Ptime reduces to any companion of D2.

Proof. Let f and c witness the EXPtime reducibility, and (Ei, µi) be an RNP companion
of Di. Let x be an instance of D1, x′ be the corresponding instance of E1, y = f(x) and
y′ be the corresponding instance of E2. The function F (x′) = y′ reduces E1 to E2. It is
computable in time exponential in |x| + |y|. Since |y| ≤ c|x|, F (x′) is computable in time
exponential in |x|, hence in time polynomial in |x′|. To prove that µ2 dominates µ1 with
respect to F , use Lemma 10.1. QED

Theorem 10.1. Let E be any decision problem EXPtime complete for NEXPtime. Any
companion E0 of E is APtime complete for the class of sparse RNP problems.

Proof. For every NTM M with binary input alphabet, define the exponential halting
problem EH(M) for M as follows:

Instance A binary string w.

40

Question Is there a halting computation of M on w with at most 2|w| steps ?

Let (D,µ0) be an arbitrary sparse RNP problem. We need to prove that it reduces in
APtime to E0. It suffices to prove that there is some NTM M1 with binary input alphabet
such that (D,µ0) APtime reduces to a companion of EH(M1). For, by Lemma 10.2, this
companion of EH(M1) APtime reduces to E0, and therefore (D,µ0) APtime reduces to E0.

By Lemma 7.4(1), we may suppose that µ∗0 is Ptime computable. By the proof of
Lemma 3.1(3), we may suppose that instances of D are binary strings. By of Lemma 1.6,
there is a positive probability function µ such that µ∗ is Ptime computable and every value
of µ is a binary fraction and µ0(x) = O(µ(x)). Given (D,µ), construct x” and M as in the
proof of Theorem 4.1. M has a longevity guard g, the function f(x) = x”01g(x”) reduces
(D,µ) to RH(M), µ(x)2−|x”| < 2, and g(x”) is bounded by a polynomial of |x|.

Given an input u01i, the desired machine M1 simulates M on u. Let F (x) = x”01i01j

where i = dlog2g(x)e and j = 2|x”|+1+i. We show that F reduces (D,µ0) to the B(n)-
companion (D1, µ1) of EH(M1) where B(n) = 2n. F (x) belongs to L(D1) if and only if x”01i

belongs to EH(M1) if and only if there is a halting computation of M1 on x”01i of length at
most j if and only if there is a halting computation of M on x” of length ≤ j if and only
if there is a halting computation of M on x” of length ≤ g(x) if and only if x belongs to
L(D). Thus, F reduces D to D1.

To show that F is APtime computable, it suffices to check that the function g(x) · 2|x”|

is polynomial on average with respect to µ0. In the discussion on polynomiality on average
in Section 1, we formulated condition (iv) sufficient for polynomiality on average. Thus, is
suffices to prove that, for some k,

∑

µ0(x)>0

µ0(x) · g(x) · 2|x”| · |x|−k < ∞.

We have µ0(x)2|x”| = O(µ(x)2|x”|) = O(1). Hence it suffices to prove that
∑

µ0(x)>0

g(x) · |x|−k < ∞,

which is true for a sufficiently large k depending on g and a polynomial witnessing the
sparsity of µ0.

Finally, use Lemma 10.1 to check that µ1 dominates µ0 with respect to F . QED

Some NEXPtime complete problems can be found in [KV] and [Lew].

11 Appendix. Perfect Rounding and Randomized Tiling

This is a recast of report [GM] with a reconstruction of Levin’s completeness proof [Le1] for
Randomized Tiling. When an undergrad David McCauley asked me for a challenge, he was
invited to share the hard work of deciphering the exceedingly terse paper of Levin. David
worked mostly on perfect rounding which is in the heart of Levin’s original completeness proof
for (a version of) Randomized Halting. Even though the new completeness proof in Section 4
above is short and straightforward, we find the ideas of the original proof very interesting
and potentially useful; a reconstruction of the original proof is presented in Subsection A

41

below. In Subsection B, which is independent from Subsection A, Randomized Halting is
reduced to Randomized Tiling.

A Perfect Rounding and Randomized Halting

Each binary fraction r in the half-open real interval [0,1) has a representation of the form 0.x
where x is a binary string. If x has no trailing zeroes then the representation will be called
standard and |x| will be called the length lh(r) of r. If 0 ≤ a < b < 1 and I is an interval
[a, b], [a, b), (a, b] or (a, b), let Shortest(I) be any binary fraction of the minimal length in I.

Lemma A.1. Shortest(I) is unique, and there are four algorithms, one for each of the four
kinds of intervals, that construct Shortest(I) from the standard representations 0.x and 0.y
for a and b.

Proof. If c < d are two binary fractions of the same length k then a + 2−k is a shorter
binary fraction in (c, d). In the case of (a, b], the desired algorithm works as follows:

1. If x is a prefix of y, find the longest string u of zeroes such that xu is a prefix of y and
set z = xu1.

2. If x is not a prefix of y, find the greatest common prefix u of x and y and set z = u1.

Other cases are similar. QED

Let µ, ν be probability functions over binary strings, and let M , N be the corresponding
probability distributions µ∗ and ν∗. Call µ normalized if µ(e) = 1/2, every µ(x) is a positive
binary fraction of length at most 5 + 2|x|, and M is Ptime computable. The bound 5 + 2|x|
is somewhat accidental.

Lemma A.2. Every µ with a Ptime computable M is dominated by a normalized ν.

Proof. By virtue of Lemma 1.6 and its proof, we may suppose that every µ(x) is a
positive binary fraction of length at most 4+2|x|, and M is Ptime computable. Set N(x) =
1/2 + M(x)/2. QED

Recall that the successor of a string x in the lexicographical order is denoted x+. The
predecessor of a string x 6= e will be denoted x−.

Call µ semirounded if it is normalized and, for every x > e, Shortest[M(x),M(x+)] is
either M(x) or M(x+).

Lemma A.3. Every normalized µ is dominated by some semirounded ν.

Proof. For every nonempty x, let Nx be the shortest binary fraction in the half-open
interval ((Mx−+Mx)/2, (Mx+Mx+)/2]. It is clear that the corresponding ν is a normalized
probability function. We check that ν is semirounded. Let r be a binary fraction in the open
interval (Nx, Nx+). If r > (Mx + Mx+)/2 then lh(r) > lh(Nx+) by the choice of Nx+. If
r ≤ (Mx + Mx+)/2 then lh(r) > lh(Nx) by the choice of Nx.

Finally, we prove that 4ν(x) > µ(x) for all x, and therefore ν dominates µ. This is clear
if Nx ≤ Mx or Nx+ ≥ Mx+. Suppose Mx < Nx < Nx+ < Mx+. Let k = lh(Nx) and
l = lh(Nx+).

42

Case 1: k ≥ l. µ(x) = Mx+ −Mx = 2[(Mx + Mx+)/2 −Mx] < 2(Nx+ −Mx). Further,
Nx+ − Mx = Nx+ − Nx + Nx − Mx = ν(x) + (Nx − Mx). Finally, Nx − Mx < 2−k

because Nx is the shortest binary fraction in [Mx, Nx], and 2−k ≤ ν(x) because ν(x) is the
difference of two distinct binary fractions of length at most k.

Case 2: l ≥ k. µ(x) = Mx+ −Mx = 2[Mx+ − (Mx + Mx+)/2] ≤ 2(Mx+ −Nx). Further,
Mx+−Nx = Mx+−Nx+ +Nx+−Nx = (Mx+−Nx+) +ν(x). Finally, Mx+−Nx+ < 2−l

because Nx+ is the shortest binary fraction in [Nx+,Mx+], and 2−l ≤ ν(x) because ν(x) is
the difference of two distinct binary fractions of length at most l. QED

Call µ perfectly rounded if it is normalized and Mx is the shortest binary fraction in the
open interval (Mx−,Mx+) for all x > e.

Lemma A.4. Every semirounded probability function µ is dominated by a perfectly
rounded one.

Proof. The proof of Lemma A.4 splits into several claims. Define:

[S(M)](x) = [if x > e then Shortest(Mx−,Mx+), else 0],

S(M,x) abbreviates [S(M)](x),

[S(µ)](x) = S(M,x+)− S(M,x),

S(µ, x) abbreviates [S(µ)](x).

Claim 1. S(µ) is a positive probability function.

Proof. We have to check only that F = S(M) is strictly increasing. By contradiction
suppose that Fx+ ≤ Fx for some x. Then Mx < Fx+ ≤ Fx < Mx+. Taking into
account the choice of Fx and the fact that Mx < Fx, we have lh(Fx) < lh(Mx). Similarly,
lh(Fx+) < lh(Mx+). Thus neither Mx nor Mx+ is the shortest binary fraction in [Mx, Mx+]
which contradicts the semiroundedness of µ. QED

Claim 2. S(µ) is semirounded.

Proof. Let ν = S(µ). We check that Shortest[Nx, Nx+] is either Nx or Nx+.

Case Nx ≤ Mx and Mx+ ≤ Nx+. Let r be an arbitrary binary fraction in [Nx, Nx+].
If r is in (Mx, Mx+) then lh(r) ≥ lh(Mx) ≥ lh(Nx) or lh(r) ≥ lh(Mx+) ≥ lh(Nx+). If
r is in [Nx, Mx] then lh(r) ≥ lh(Nx) by the choice of Nx; if r is in [Mx+, Nx+] then
lh(r) ≥ lh(Nx+) by the choice of Nx+.

Case Nx > Mx. The interval [Nx, Nx+] is a part of (Mx, Mx++); hence Nx+ =
Shortest[Nx, Nx+].

Case Nx+ < Mx+. The interval [Nx, Nx+] is a part of (Mx−,Mx+); hence Nx =
Shortest[Nx, Nx+]. QED

Claim 2 justifies the repetitive use of the operator S (the shaking operator). The obvious
abbreviations Sk(M,x) and Sk(µ, x) will be used.

Claim 3. Let r be a binary fraction and k = lh(r).

1. If Sk(M,x) = r then Sl(M,x) = r for all l > k.

43

2. If a = Sk(M,x) < r < Sk(M,x+) = b then both a and b are shorter than r.

Proof by induction on k. If k = 1 then r = 1/2 and the claim is obvious. Suppose that
k > 1. First assume that r = Sk(M,x). By contradiction suppose that Sl(M,x) = q 6= r
for some q and some l > k. Then lh(q) equals some j < k. By the induction hypothesis,
Sk(M,x) = Sj(M,x) = q which is impossible.

Next assume that a = Sk(M,x) < r < Sk(M,x+) = b. Since Sk(M) is semirounded,
either a or b is shorter than r. Without loss of generality, a is shorter than r. By the
induction hypothesis, Sk−1(M,x) = a. Since Sk(M,x+ is the shortest binary fraction in the
interval (Sk−1(M,x), Sk−1(M,x++)), b is the shortest binary fraction in (a, b] and therefore
b is shorter than r. QED

Claim 4. Let x be a string of length l, m = 5+2l, and n ≥ m. Then Sm(M,x) = Sn(M,x).

Proof. Let r = Sm(M,x). Since Sm(M) is normalized, lh(r) ≤ m. Now use Claim 3.
QED

Claim 4 justifies introducing an iterated shaking operator S∞:

[S∞(M)](x) = S∞(M,x) = S5+2|x|(M,x),

[S∞(µ)](x) = S∞(µ, x) = S∞(M,x+)− S∞(M,x).

Claim 5. S∞(µ) is a positive probability function.

Proof. First we check that F = S∞(M)is strictly increasing. Let x < y and m =
max(5 + 2lh(x), 5 + 2lh(y)). Then F (x) = Sm(M,x) < Sm(M, y) = F (y). Next we check
that for every positive real δ there is a binary string x with Fx > 1 − δ. Pick any binary
fraction r > 1− δ and let k = lh(r). Since Sk(M) is a probability function, there is x such
that Sk(M,x) = r or a = Sk(M,x) < r < Sk(M,x+) = b for some a, b. Now use Claim 3.
In the first case, S∞(M,x) = r, and in the second case, S∞(M,x+) = b > r. QED

Claim 6. S∞(M) is Ptime computable.

Proof. The idea of the proof is simple: the shaking operator works locally and every
Sm(M,x) is computable from an appropriate array of M -values for binary strings close to
x in the canonic ordering of binary strings. To implement the idea, we need a couple of
definitions.

Recall that binary strings are numbered by natural numbers with respect to the lexico-
graphical order of strings; in particular, the empty string e is the string of number 0. If x is
the n-th string and m is an arbitrary integer, let x + +m be the string of number n + m if
n + m > 0 and the empty string otherwise. Further, let x−−m = x + +(−m).

A sequence A = [A1, . . . , Ak] of binary fractions will be called an array if A is a strictly
increasing sequence possible augmented with a prefix of zeroes. In other words, A is an
array if and only if, for every i < k, either Ai = 0 or Ai+1 > Ai. If F is a strictly
increasing probability distribution, x is a binary string and m < n then the sequence [F (x+
+m), . . . , F (x + +n)] is an array.

An array A = [A1, . . . , Ak] is semirounded if for every i < k, either Ai or Ai+1 is the
shortest binary fraction in the closed interval [Ai, Ai+1]. If A = [A1, . . . , Ak] is a semirounded

44

array and k ≥ 3, let S(A) be the array B = [B2, . . . , Bk−1] such that each Bi = [if Ai >
0 then Shortest(Ai−1, Ai+1)), else 0]; think about S(A) as the result of shaking A. The proof
of Claim 2 can be easily adapted to show that S(A) is semirounded if A is.

It is easy to see that if F is a semi-rounded probability distribution and A = [F (x−−(l−
1)), . . . , F (x + +(l + 1))] for some x and some l > 0 then S(A) = [S(F, x−−l), ..., S(F, x +
+l)]. Hence the one-element array [Sl(M,x)] is the result of shaking the array [M(x −
−l), . . . , M(x + +l)] l times. This gives a Ptime algorithm for computing Sl(M,x). Now set
l = 5 + 2|x|. QED

Claim 7. S∞(µ) is perfectly rounded.

Proof. Let ν = S∞(µ). Given x, let m = 5 + 2|x+|. By the definition, Sm+1(M,x) is
the shortest binary fraction between Sm(M,x−) and Sm(M,x+). But Sm+1(M,x) = Nx,
Sm(M,x−) = Nx− and Sm(M,x+) = Nx+. Thus, Nx is the shortest binary fraction between
Nx− and Nx+. QED

Claim 8. Let ν = S(µ) and x be a binary string with ν(x) < µ(x). Then ν(x) = 2−m

where m = max(lh(Nx), lh(Nx+)) and 2ν(x) > µ(x).

Proof. Since M is semirounded, either Mx or Mx+ is the unique shortest binary fraction
in [Mx, Mx+]. Let k = lh(Mx) and l = lh(Mx+). By virtue of symmetry, we may suppose
that k < l. Then µ(x) = 2l and Nx ≤ Mx. Moreover, Nx = Mx; for, if Nx < Mx then
ν(x) > Mx−Nx ≥ 2−k ≥ µ(x). Since ν(x) < µ(x), Nx+ < Mx+. Let m = lh(Nx+). Then
Mx+ −Nx+ < 2−m and Nx+ −Mx = 2−m. Hence µ(x) = Mx+ −Mx < 2 · 2−m ≤ 2ν(x).
QED

Claim 9. S∞(µ) dominates µ.

Proof. Let ν = S∞(µ). Given a binary string x, we prove that 2ν(x) ≥ µ(x). Let
µix = Si(M,x+) − Si(M,x). If every µi(x) ≥ µi−1(x), then there is nothing to prove.
Let i be any positive integer with µi(x) < µi−1(x). By Claim 8, µi(x) = 2−m > 2µi−1(x)
where m = max(lh(Si(M,x+)), lh(Si(M,x))). Thus, µi(x) is minimal when i is the minimal
positive integer with µix < µi−1(x). For the minimal i, µix > 2µi−1(x) ≥ µ(x). QED

Thus, S∞(µ) is the desired perfectly rounded probability function, and Lemma A.4 is
proved. QED

Theorem A.1. Every RNP problem reduces to an RNP problem (D,µ) over binary strings
such that µ is perfectly rounded.

Proof. Use Lemmas A.2, A.3 and A.4. QED

Lemma A.5. If µ is a perfectly rounded probability function then for every binary string
x there exists a positive integer j ≤ 5 + 2|x| such that µ(x) = 2−j and 2jM(x) is integer.

Proof. Let a = M(x) and b = M(x+), so that µ(x) = b − a. Since a = Shortest[a, b),
every binary fraction in (a, b) is longer than a. Since b = Shortest(a, b], every binary fraction
in (a, b) is longer than b. If a is shorter than b then the desired j equals lh(b); otherwise
j = lh(a). Since µ is normalized, j ≤ 5 + 2|x|. QED

Theorem A.2. Every RNP problem reduces to the randomized halting problem RH(A)
for some NTM A.

45

Proof. It suffices to prove that every RNP problem (D,µ) over binary strings such that
µ is perfectly rounded reduces to some RH(A). Define m(x) = M(x)/µ(x). By Lemma A.5,
m(x) is a nonnegative integer. Since M(e) = 0 and 1/2 ≤ M(x) < 1 for x 6= e, µ(x) is
easily computable from m(x): If m(x) = 0 then µ(x) = 1/2, and if m(x) > 0 then µ(x) is
the unique positive integer j with 1/2 ≤ m(x)2−j < 1.

Since D is NP, there is a Ptime-bounded nondeterministic Turing machine, called the
D-machine below, that accepts L(D). Given a binary string w representing some m(x), the
desired Turing machine A finds the appropriate x and then simulates the D-machine on x;
if w does not represent any m(x) then A does not halt on w. Specifically, A executes the
following algorithm:

1. If w = e or w starts with a 0 but is different from a 0, then loop. If w = 0 then set
x = e and go to (4).

2. Find the integer k represented by w, the integer j with 1/2 ≤ k2−j < 1, and the
shortest string 1l such that M(1l+1) ≥ k2−j.

3. Use binary search to find the lexicographically maximal binary string x such that
1l < x ≤ 1l+1 and M(x) ≤ k2−j. If M(x) < k2−j then loop.

4. Simulate the D-machine on x; halt only if the D-machine accepts.

A curious thing is that A is not necessarily Ptime bounded because the representation
of m(x) may be much shorter than x. However, there is a polynomial p such that if A has a
halting computation on the representation of m(x) then it has one with at most p(|x|) steps.
The desired reduction is f(x) = w01n where w represents m(x) and n = p(|x|).

We check that the probability function ν of RH(A) dominates µ with respect to f . Since f
is one-to-one, it suffices to check that ν(fx) dominates µ(x). We may restrict attention to the
case m(x) > 0. Let l = |m(x)|. Notice that 2l ≥ m(x). Thus, ν(fx) = (6/π2)·p(|x|)−3 ·2−l ≤
(6/π2) · p(|x|)−3/m(x) ≤ (6/π2) · p(|x|)−3 · 2µ(x). QED

B Randomized Tiling

Definition. An NTM A survives n steps on input w if there exists a computation of A on
w with at least n steps.

Randomized Survival Problem RS(A) for a given NTM A:

Instance A binary string w01n where n > |w|.
Question Does A survive n steps on w?

Probability Choose randomly a positive integer n, a natural number k < n, and a binary
string w of length k.

Recall that a number n is longevous for an input w of an NTM A if every halting
computation of A on n has ≤ n steps. In other words, n is longevous for w with respect to

46

A if and only if every computation of A on w with ≥ n + 1 steps is nonhalting. If g is a
longevity guard for A, let RS(A)|g be the restriction of RH(A) to instances w01g(w)+1.

Lemma B.1. For every NP problem D there exists an NTM BD with a polynomially
bounded longevity guard g such that BD survives g(w) + 1 steps on an input w if and only
if w is a positive instance of D.

Proof. Since D is NP, there exist an NTM AD and a polynomially bounded function g
such that AD has a halting computation on an input w if and only if w is a positive instance
of D. The desired BD simulates AD and keeps track of time; if AD halts after at most g(w)
steps then BD loops forever, otherwise BD halts after g(w) steps. QED

Lemma B.2. For every RNP problem (D,µ) there exist an NTM M and a longevity guard
g for M such that (D,µ) Ptime reduces to RS(M, g).

Proof. Similar to that of Theorem 4.1. Instead of AD, use machine BD of Lemma B.1. In
the description of the algorithm of M , replace “loop forever” by “halt”. QED

We redefine the notion of stability introduced in Section 4. Instead of the stability for
halting, we are interested here in the stability for survival.

Definition. Let A be an NTM. An input w is stable for A if, for every natural number n,
the following statements are equivalent:

1. There exists x such that A survives n steps on wx,

2. For every x, A survives n steps on wx.

The following lemma is the analog of Lemma 4.2.

Lemma B.3. For every RS(M0, g0), there exist an NTM M and a longevity guard g for M
such that RS(M0, g0) Ptime reduces to the restriction of RS(M, g) to stable instances (i.e.
to instances w01g(w)+1 where w is stable for M). Moreover, it may be required that 0 and 1
are the only tape symbols of M (with 0 serving also as the blank).

Proof. Similar to the proof of Theorem 4.2. QED

Theorem B.1. Randomized Tiling is Ptime complete for RNP.

bf Proof. Let A be an NTM such that 0 and 1 are the only tape symbols of A (with 0
serving also as the blank). Let π be a longevity guard for A, and (D,µ) be the restriction
of RS(A)|π to stable instances. By Lemmas B.2 and B.3, it suffices to reduce (D,µ) to
Randomized Tiling.

Let T contain the following tiles (T1)–(T5).

(T1)

$pa

$ 0

$

where p is the initial state of A and a is either 0 or 1.

47

(T2)

a

0 0

$

where a is either 0 or 1.

(T3)
$c

$ 1

$c

c

b b

c

where b is 1 or 2, and c ranges over the tape symbols of A.

(T4) For each instruction [pa → qbR] of A,

$b

$ 2q

$pa

b

1 2q

pa

qc

2q 2

c

where c ranges over the tape symbols of A.

(T5) For each instruction [pa → qbL] of A,

$qc

$ 1q

$c

qc

1 1q

c

b

1q 2

pa

where c ranges over the tape symbols of A.

Lemma B.4. Suppose that τ is a T -tiling of [0..(n− 1)]× [0..(n− 1)] and τ(0, 0) is one of
the two T1-tiles. Then :

1. Every τ(0, j + 1) is in T2. Every τ(i + 1, j) is in T3, T4 or T5.

2. The left string of τ(i, j) is $ if and only if the top string of τ(i, j) contains a proper
prefix $ if and only if j = 0.

3. For every i there is at most one j such that the top string of τ(i, j) has a state symbol.

4. For every i there is j ≤ i such that the top string of τ(i, j) contains a state symbol.

5. For every i, let $wi be the concatenation of the top strings of τ(i, 0), . . . , τ(0, n − 1).
Then each wi is an ID (instantaneous description) of A.

48

Proof. (1) Only T2-tiles have the string 0 on the left. Every tile in T1 or T2 has the string
$ on the bottom, but no T -tile has the string $ on the top.

(2) The first equivalence is proved by direct inspection of T . The second is proved by
induction on i. If i = 0, use (1). If i > 0, use (1) and the fact that for every tile in T3, T4
or T5, the bottom string has a proper prefix $ if and only if the top string does.

(3) Induction on i. The case i = 0 is obvious. Assume i > 0. By contradiction, suppose
that j < k and the top strings of both (i, j) and (i, k) have state symbols. The right string
of (i, j) is either 1q or 2. In either case, top[τ(i, j + 1)] does not contain a state symbol and
right[τ(i, j + 1)] = 2. But for every T -tile, if the left string is 2 then the right string is 2.
Hence (i, k) has 2 on the left which is impossible.

(4) An obvious induction on i.

(5) Use (3) and (4). QED

Given an instance (α0 . . . αk−1, 1
n) of RS(A), the desired reduction f produces an instance

〈T, 1n, k, ρ〉 of Randomized Tiling where ρ(0) is the T1-tile with α0 on the top, and each
ρ(j + 1) is the T2-tile with αj+1 on the top.

Lemma B.5. A survives n steps on a stable input u = α0 . . . αk−1 if and only if 〈T, 1n, k, ρ〉
is a positive instance of Randomized Tiling.

Proof. Let τ be a T -tiling of the square such that τ(0, j) = ρ(j) for j < k, and let strings
wi be as in Lemma B.4(5). Then w0 is the initial configuration of A on some input ux.
Check by induction on i that each wi is the i-th configuration of A on the input wx. Thus, A
survives n steps on ux. Since u is stable, A survives n steps on u. The “only if’ implication
is easy. QED

Lemma B.6. The probability function ν of Randomized Tiling dominates the probability
function µ with respect to f .

Proof. It is easy to see that ν(f(u01n)) is proportional to µ(u01n). (It is important that
there are exactly two choices for each ρ(j).) QED

Theorem B.1 is proved. QED

References

[BCGL] Shai Ben-David, Benny Chor, Oded Goldreich and Michael Luby, On the The-
ory of Average Case Complexity, Proc. 21st Annual ACM Symposium on Theory of
Computing, ACM, 1989, 204–216.

[Bl] Andreas Blass, Private communication.

[BG] Andreas Blass and Yuri Gurevich, “On the reduction theory for average case com-
pleteness”, 4th Workshop on Computer Science Logic, Ed. E. Börger et. al., Springer
Lecture Notes in Computer Science, to appear.

49

[BFF] B. Bollobas, T. I. Fenner, and A. M. Frieze, An Algorithm for Finding Hamilton
Cycles in a Random Graph, Proc. 17th Annual ACM Symposium on Theory of Com-
puting, ACM, 1985, 430–439.

[BL] Shai Ben-David and Michael Luby, Private communication.

[CHS] Robert L. Constable, Harry B. Hunt, III, and Sartaj K. Sahni, On the Computational
Complexity of Scheme Equivalences, Report No. 74–201, 1974, Dept. of Computer
Science, Cornell University, Ithaca, NY.

[GJ] Michael R. Garey and David S. Johnson, Computers and Intractability, W. H. Free-
man and Company, New York, 1979.

[Gu1] Yuri Gurevich, Complete and Incomplete Randomized NP Problems, Proc. 28th An-
nual Symp. on Found. of Computer Science, IEEE, 1987, 111–117.

[Gu2] Yuri Gurevich, The Challenger–Solver game: Variations on the Theme of P=?NP,
Bulletin of European Association for Theoretical Computer Science, Oct. 1989.

[GM] Yuri Gurevich and David McCauley, Average Case Complete Problems, Unpublished
Manuscript, April 1987.

[GS] Y. Gurevich and S. Shelah, Expected Computation Time for Hamiltonian Path Prob-
lem, SIAM J. on Computing 16:3 (1987) 486–502.

[HU] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages
and computation, Addison-Wesley, Reading, MA, 1979.

[IL] Russel Impagliazzo and Leonid Levin, “No better ways to generate hard instances
than picking at random”, FOCS 1990, 812–821.

[Jo] David S. Johnson, ”The NP-Completeness Column”, Journal of Algorithms 5 (1984),
284-299.

[Ko] Ker-I Ko, On the definition of some complexity classes of real numbers, Math. Systems
Theory 16 (1983), 95-109.

[KV] Phokion G. Kolaitis and Moshe Y. Vardi, The Decision Problem for the Probabilities
of Higher-Order Properties, STOC 1987.

[Le1] Leonid Levin, Average Case Complete Problems, SIAM Journal of Computing 15
1986, 285–286.

[Le2] Leonid Levin, Private communication.

[Lew] Harry R. Lewis, Complexity Results for Classes of Quantificational Formulas, J. Com-
puter and System Sciences 21 (1980), 317–353.

[MV] Nimrod Megiddo and Uzi Vishkin, On Finding a Minimum Dominating Set in a
Tournament, IBM Research Report RJ 5745, July, 1987.

50

[Me] Nimrod Megiddo, Are the Vertex Cover and the Dominating Set Problems Equally
Hard? IBM Research Report RJ 5783, August, 1987.

[PLL] Phan Dinh Dieu, Le Cong Thanh and Le Tuan Hoa, Average Polynomial Time Com-
plexity of some NP-Complete Problems, Theoretical Computer Science 46 (1986),
219–237.

[VL] Ramarathnam Venkatesan and Leonid Levin, Random Instances of a Graph Coloring
Problem are Hard, Proc. 20th Symp. on Theory of Computing, ACM, 1988.

[Wi] Herbert S. Wilf, Some Examples of Combinatorial Averaging, American Math.
Monthly 92 (1985), 250–261.

[ZL] A. K. Zvonkin and L. Levin, The Complexity of Finite Objects and the Algorithmic
Concepts of Information and Randomness”, Russian Math. Surveys 25/6 (1970), 83–
124.

51

