
EXISTENTIAL FIXED-POINT LOGIC

Andreas Blass and Yuri Gurevich

Mathematics Department and Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Abstract The purpose of this paper is to draw attention to existential fixed-point
logic. Among other things, we show that: (1) If a structure A satisfies an
existential fixed-point formula φ, then A has a finite subset F such that every
structure B with A |F = B |F satisfies φ. (2) Using existential fixed-point logic
instead of first-order logic removes the expressivity hypothesis in Cook's
completeness theorem for Hoare logic. (3) In the presence of a successor
relation, existential fixed-point logic captures polynomial time.

Introduction

The purpose of this paper is to draw attention to a logic, a fragment of second-
order logic, that enjoys a particularly close connection with certain aspects of
the theory of computation. This logic, which we call existential fixed-point logic,
is stronger than first-order logic in some ways but weaker in other ways. It goes
beyond first-order logic in that it has the "fixed point" operator. On the other
hand, it has only the existential quantifier, not the universal one, and it restricts
the use of propositional connectives in a way that precludes defining ∀ from ∃.

After defining existential fixed-point logic and some related logics in Section 1,
we devote the next two sections to the connections between this logic and
Hoare's logic of asserted programs and polynomial time computability. In
particular, we show in Section 2 that the use of existential fixed-point logic
instead of first-order logic removes the need for an expressivity hypothesis in
Cook's completeness theorem for Hoare logic. In Section 3, we show that, when
we consider only finite structures equipped with a successor relation, then
existential fixed-point logic captures polynomial time computability. Then we
present a model-theoretic property of existential fixed-point logic that helps to
clarify its relationship with first-order logic. In the final section, we show that
the validity problem and the satisfiability problem for existential fixed-point
logic are both complete recursively enumerable problems. Along the way

21

to these results about the decision problem, we also find some more model-
theoretic properties of the logic, including that, whenever an existential fixed-
point formula is true in a structure, then its truth depends on only a finite subset
of the structure and that the iterations that define the fixed points always
terminate at or before the first transfinite ordinal number.

In our discussion of Hoare logic in Section 2, we introduce the profile of a
program. Though closely related to the strongest postcondition and weakest
precondition commonly used in connection with Hoare logic, profiles seem more
intuitive and easier to use, partly because they are associated simply with a
program (rather than a program and a given precondition or postcondition) and
partly because they do not require the use of the same variables in connection
with the program, its input, and its output. We believe that profiles will find
further uses in the logic of programs.

Because of constraints of time and space, this paper does not even approach
completeness. We hope to convince the reader that existential fixed-point logic
is an interesting and useful logic, and we plan to return to it in future
publications.

1. Definitions and conventions

As indicated in the introduction, existential fixed-point logic differs from first-
order logic in two respects, the absence of the universal quantifier and the
presence of the fixed-point operator. Both of these deserve some clarification.

Mere removal of the universal quantifier (∀) has no real effect on first-order
logic, since ∀xφ can be expressed in terms of negation and existential quantifi-
cation as ¬∃x ¬ φ. To correctly define the existential fragment E of first-order
logic, one must prevent such surreptitious reintroduction of the universal quan-
tifier, for example by insisting that all formulas have prenex forms with no uni-
versal quantifiers. For our purposes, however, the convenient way to formalize
E is to allow as prepositional connectives only conjunction (⋀), disjunction (∨),
and negation (¬) and to apply negation only to atomic formulas. Every
quantifier-free formula is equivalent to one satisfying these restrictions, but the
restrictions ensure that all quantifiers in our formulas occur only positively; in
particular, existential quantifiers will remain existential when moved to prenex
form .

We extend first-order logic by adding the iterative fixed point construction,
defined as follows. Let S be any set, P (S) its power set, and Γ an operator on
P (S), i.e., a function from P (S) to itself. Define a (possibly transfinite)

22

sequence of subsets Γα ⊆ S by the recursion

 Γ0
= Ø,

 Γα+1 = Γα ⋃ Γ(Γα),

 Γλ = ⋃α<λ Γα for limit ordinals λ.

The sequence Γα is obviously weakly increasing with respect to C, so (as S is a
set and the ordinals form a proper class) it must be constant from some point on.
The common value of Γα for all sufficiently large α is written Γ∞ and called the
iterative fixed point of Γ. In general, Γ∞ need not be fixed by Γ; we have only

Γ(Γ∞) ⊆ Γ∞. However, if Γ is either inflationary (X ⊆ Γ(X) for all X ⊆ S) or

monotone (Γ(X) ⊆ Γ(Y) whenever X ⊆ Y ⊆ S), then Γα+1 = Γ(Γα) for all α (by
induction on α in the monotone case, and trivially in the inflationary case), so
Γ∞ = Γ(Γ∞); hence the terminology "fixed point".

For monotone Γ, the iterative fixed point is also the least fixed point, a subset of

every X ⊆ S such that Γ(X) = X. Indeed, an equivalent (non-inductive)

definition of Γ∞ is that it is the intersection of all X ⊆ S such that Γ(X) ⊆ X.

Let σ be a signature (sometimes called a first-order language), P an r-place
predicate symbol not in σ, x an r-tuple of distinct variables, and δ a formula of

the signature σ ⋃{ P}. Let A be any structure of signature σ, and let all free

variables of δ other than x be assigned specific values in A . Then δ defines an

operator ∆ on the set P(A r) of r-place relations on A by

 ∆(X) = {a | (A, X) ⊧ δ[a/x]};

here (A, X) is the σ ⋃{ P}-structure obtained from A by interpreting P as X, and
the notation [a/x] means that the variables x are assigned the values a. Let ∆∞ be

the iterative fixed point of this operator ∆. Any σ ⋃{P}-formula φ can be

interpreted in A by letting P denote ∆∞; we write this interpretation as

 LET P(x) ← δ THEN φ .

In other words, this new formula holds in A if and only if φ holds in (A, ∆∞).
More generally, we shall permit simultaneous inductive definitions of several
relations. The general form of the LET. ..THEN... construction is

(*) LET P1(x
1) ← δ1, . . . , Pn(x

n) ← δn THEN φ,

where δ1, . . . , δn, and φ are σ ⋃{ P1, . . . , Pn}-formulas; P1, . . . , Pn are distinct
predicate symbols not in σ; and each xi is a list of distinct variables of the right
length to serve as arguments of Pi. A variable is free in (*) if and only if either it
is free in φ or, for some i, it is free in δi and not in the list xi. The semantics

23

of (*) is defined as follows. Let a σ-structure A and values for the free variables
of (*) be given. Define transfinite sequences ∆i

α for 1 ≤ i ≤ n by

 ∆i
0 = Ø;

 ∆i
α+1 = ∆i

α ⋃ { a | (A, ∆1
α, . . . , ∆n

α) ⊧ δi [a/xi]},

 | ∆i
λ = ⋃α<λ ∆i

α for limit ordinals λ.

For sufficiently large α, ∆i
α is independent of α, and we call it ∆i

∞. Then (*) is
defined to be true in A if and only if φ is true in (A, ∆1

∞, . . . , ∆n
∞).

We use the notations FO, E, U, and QF for first-order logic and its existential,
universal, and quantifier-free fragments, respectively. We write FO+IFP for the
logic obtained by adding the LET. . .THEN. . . construction to FO; similarly for
QF+IFP.

We could similarly define E+IFP or U+IFP, but this would make little sense,
since it would surreptitiously introduce the "unwanted" quantifiers. For example,

LET P(x) ← ∃y ¬Q(x,y) THEN ¬P(x) is equivalent to ∀y Q(x,y). In connection
with E and U, therefore, it is reasonable to require the formulas δ1, . . . , δn, and
φ in (*) to contain P1, . . . , Pn only positively. We shall verify below that this
requirement makes the operator ∆ on n-tuples of relations monotone, so the ∆i

∞

constitute the least fixed point of ∆. Accordingly, we refer to this restricted
version of IFP as LFP.

Since we shall need to keep track of positivity requirements for various
predicate symbols, it will be convenient to build such requirements into the
signatures. Thus, we adopt the convention that a signature consists not only of a
set of predicate symbols and a set of function symbols, each set being equipped
with a number-of-places function, but also of a partition of the set of predicate
symbols (including equality) into two subsets, the negatable and the positive
predicate symbols. With this convention, the various logics described above are
formally defined as follows. The QF formulas of signature a are given by the
inductive clauses

(Atomic) Every atomic formula is a formula.
(¬) If φ is an atomic formula whose predicate is negatable,
 then ¬φ is a formula.

(⋀, ∨) If φ and ψ are formulas, then so are (φ ⋀ ψ) and (φ ∨ ψ).

The formulas of E are produced by adding the clause

(∃) If φ is a formula and x is any variable,

 then ∃xφ is a formula.

The formulas of U are produced by adding to the three clauses defining QF the
clause

24

(∀) If φ is a formula and x is any variable,

 then ∀xφ is a formula.

All five of these clauses together produce the formulas of FO. In each case,
+IFP indicates addition of the clause

(IFP) If σ' = σ ⋃{ P1, . . . , Pn},
 where the Pi are distinct negatable predicate symbols not in σ,
 and each Pi has ri argument places,
 if xi is an ri-tuple of distinct variables (1 ≤ i ≤ n),
 and if δ1, . . . , δn, and φ are σ'-formulas,
 then
 LET P1(x

1) ← δ1, . . . , Pn(x
n) ← δn THEN φ

 is a σ-formula.

(Note that the definition of formulas is done for all signatures simultaneously.)
Finally, +LFP indicates the addition of the clause (LFP) that is exactly like
(IFP) except for having "positive" in place of "negatable" .

2. Preconditions, postconditions, and profiles

In this section, we present the line of thought concerning Hoare's logic of
asserted programs (Hoare 1969) that first led us to investigate existential fixed-
point logic, E+LFP. We assume familiarity with Hoare's logic for while-
programs with recursively defined procedures, as presented in (Apt 1981). We
use the partial correctness interpretation of asserted programs unless the contrary
is explicitly stated. We consider any procedure declarations used in a program to
be part of the program; in particular, when we refer to the variables in a
program, this includes the variables used in these declarations.

We believe that the need for an expressivity hypothesis in Cook's completeness
theorem indicates that first-order logic is not the best logic for dealing with
programs. We set out to find a reasonable logic in which the strongest
postconditions (or weakest preconditions) in Hoare's logic could be expressed
naturally, without special hypotheses.

Instead of working directly with preconditions or postconditions, we find it more
natural to work with what we call the profile of a program. This is essentially a
description of the program's input-output behavior. More precisely, let S be a
program, let v be a list of distinct variables that contains (at least) all the
variables in S, and let x and y be two lists of variables that are all distinct, each
of the same length as v. Then by the profile of S with respect to the lists of
variables v, x, y, we mean the set of all states µ such that, if S is started in a
state where the values of its variables v are µ(x), then the run of S terminates,

25

and the final values of v are µ(y). If this profile is expressible by a formula,
i.e., if there is a formula satisfied by exactly those states µ that belong to the
profile, then we write Profile(S,v; x,y) for such a formula. Notice that every
occurrence of a variable in S or v is bound, and every occurrence of a variable in
x or y is free, in Profile(S,v; x,y). Profiles are related to strongest
postconditions (for which we use the notation Post({φ}, S)) by the equivalences

 Profile(S,v; x,y) Post({ x = y}, S[y/v]),

where [y/v] means substitution of y for v, and

 Post({φ}, S) ∃x (φ [x/v] ⋀ Profile(S,v; x,v))

Profiles are also closely related to weakest preconditions, but it will be conve-
nient for us to formulate this relationship in terms of the dual of the weakest
precondition, i.e., the set of states µ such that S, started in µ, terminates and the
final state satisfies φ. This would be the weakest precondition for a total
correctness interpretation of asserted programs, and it is the complement of the
weakest precondition (in the usual, partial correctness sense) for ¬φ. If it is
expressible by a formula, then we write this formula as Pre(S, {φ}). The
connection with profiles is given by the equivalences

 Profile(S,v; x,y) Pre(S [x/v], { x = y})

and

 Pre(S, {φ}) ∃y (φ [y/x] ⋀ Profile(S,v; v,y)).

Notice that the only logical operations used on the right sides of these equiva-
lences are conjunction and existential quantification. Thus, in any logic having
these operations, all of Post, Pre, and Profile will be expressible if one of them
is.

Theorem 1. For any while-program S with recursively defined procedures, the
profile is expressible by a formula of E + LFP (the same formula for all struc-
tures). If φ is an E + LFP formula, then so are Post({φ}, S) and Pre(S, {φ}).

Proof. In view of the remarks preceding the theorem, it suffices to prove the
first assertion of the theorem. We do this by induction on programs. We need
not consider the while construction since it is subsumed by recursion;
while φ do S od is equivalent to the procedure P recursively declared by

 P <= if φ then (S; P) else x := x fi.

26

(If skip were available in the programming language, we would prefer it to
x := x.) The other types of programs have profiles defined as follows. (Recall
that the if φ then. . . construction is allowed only if φ is quantifier-free.)

 Profile(vi := t,;v; x, y) yi = t[x/v] ⋀ ⋀j ≠ i yj = xj ,

 Profile((S1; S2),v; x, y) ∃z (Profile(S1,v; x, z) ⋀ Profile(S2,v; z, y)),
 Profile(if φ then S1 else S2 f i, v; x, y)

 (φ[x/v] ⋀ Profile(S1,v; x, y)) ∨ (¬[x/v] ⋀ Profile(S2,v; x, y)),

 and, if P has the recursive declaration P <= S, then

 Profile(P,v; x, y) LET R(x,y) ← π THEN R (x,y),

where π is the formula Profile(S,v; x, y) built by means of the preceding
equivalences but using R (x,y) for Profile(P,v; x, y) wherever P occurs in S.

It is easy to verify that all occurrences of R in π are positive, so the formulas

defining profiles are all in E+LFP. This completes the proof of the theorem. ⊣

Recall that the Pre referred to in the theorem is the weakest precondition in the
total correctness interpretation. The theorem immediately implies that the usual
weakest precondition (for the partial correctness interpretation) satisfies a
similar theorem with respect to the language whose formulas are the negations
of those of E+LFP, a language that has universal (but not existential)
quantification and the greatest (rather than least) fixed-point operator.

In the formulas used in the proof of Theorem 1 to express profiles, all the syn-
tactic apparatus of E+LFP was used − connectives, the existential quantifier,
and the least fixed point operator. But disjunction and existential quantification
were used only in a restricted way. Disjunction occurred only with mutually

exclusive disjuncts. Similarly, ∃xφ(x) occurred only in contexts where at most
one x can satisfy φ(x). It might be interesting to weaken E+LFP by building
such restrictions into its syntax. Since two disjuncts might be mutually exclusive
in some structures but not in others, this restriction would, if taken literally,
make the notion of formula dependent on structures. Such a dependence of
syntax on semantics can be avoided by requiring disjuncts to be provably (in
some formal system) incompatible, and similarly for existential quantification,
but the resulting logic would still involve an unorthodox dependence of the
notion of formula on the notion of proof.

Another aspect of the same observations is that E+LFP (without the re-
strictions discussed in the last paragraph) can express profiles not only for
while-programs with recursive procedures but also for certain sorts of non-
deterministic computations. For example, we could allow atomic programs of
the form guess vi, whose effect is to non-deterministically assign a (possibly)

27

new value to the variable vi, and whose profile with respect to v, x, and y is

⋀j ≠ i yj = xj. Then the existential quantifier in the profile of S1; S2 would no

longer have the uniqueness property discussed above. As another example,
Dijkstra's (1975) "alternative command" built from guarded commands
φ1 → S1 , . . . , φn → Sn, with all φi quantifier-free, has a profile defined by

∨i = 1

n
 (φi [x/v] ⋀ Profile(Si,v; x, y)).

3. Capturing polynomial time

One says that a logic captures a complexity class C for a collection K of finite

structures if the subcollections of K definable in the logic are precisely those that

belong to C . That is, a subcollection X of K has the form {A ∊ K | A ⊧ φ} for
some sentence φ of the given logic if and only if the problem "Given a member
of K, decide whether it belongs to X " is in the complexity class C .

It is known, by work of Immerman (1982) and Vardi (1982) that FO+LFP
captures PTIME, the class of problems solvable in polynomial time, for the class
of structures of the form ({0, 1, . . . , n}, <, . . .), where < is the linear ordering
0 < 1 < . . . < n. We shall deal instead with the class K of structures of the form
({0, 1, . . . , n}, 0, n, S, . . .), where the first and last elements, 0 and n, are the
values of constant symbols 0 and End, and where S is the successor relation,
S(x, y) x + 1 = y.

Immerman's and Vardi's result remains true for the class K, since 0, End, and S
are easily definable in FO from < and since < is definable in E+LFP from S
by

 z < y LET P(x, y) ← (S(x, y) ∨ ∃ z(P(x, z) ⋀ S(z, y))) THEN P(x, y).

 In fact, Immerman's proof uses < primarily to define 0, End, and S.

When we deal with systems lacking universal quantification, however, the
equivalence between < on the one hand and 0, End, and S on the other breaks
down. The latter is the more natural set of primitives for describing compu-
tations of Turing machines, since the computation mechanism directly refers to
the next moment of time and adjacent squares on the tape. Thus, it is not
surprising that K . is the appropriate class for extending Immerman's and

Vardi's result to logics without ∀.

Theorem 2. E+LFP captures PTIME for K. If K is modified by taking the
successor as a unary function S (with S (End) = End) rather than a binary
relation, then in fact QF+LFP captures PTIME.

It would be possible to prove this by going through Immerman’s proof and

verifying that ∀ is not needed for K and ∃ is not needed if the successor is
available as a function. We shall, however, use a different approach. In view of
Immerman's and Vardi's theorem, Theorem 2 is an immediate consequence of
the following result.

28

Theorem 3. On structures in K, E+LFP can define ∀ and is therefore equiva-

lent to FO+LFP. When the successor is available as a function, then QF+LFP

can define ∃.

Proof. Both parts are proved by using the least fixed point operator to search
through the structure, thereby simulating a quantifier. For the first part, we have

that ∀xφ(x) is equivalent to

 LET P(x) ← φ(x) ∨ (x = 0 ∨ ∃y(S(y, x) ⋀ P(y))) THEN P (End).

For the second part, we must, for technical reasons, search through the structure

backward; ∃xφ(x) is equivalent to

 LET P(x) ← φ(x) ∨ P(S(x)) THEN P(0). ⊣

We shall see in the next section that the use of S rather than < was essential for
the results of this section; S is not E+LFP-definable in ({0, 1, . . . , n}, <).

4. A preservation theorem

A result of classical model theory (see (Chang &; Keisler 1973) page 34)
characterizes the formulas of E up to logical equivalence as those first-order
formulas φ whose truth is preserved by extensions, i.e., if A is a substructure of

B (written A ⊆ B) and A ⊧ φ[µ] (where µ maps variables to values in A), then

B ⊧ φ[µ]. We shall show that formulas of E+LFP have the same preservation
property. We shall also prove that truth of E+LFP-formulas is preserved when
the relations that interpret positive predicate symbols are increased. It is
convenient to prove these results (and somewhat more) simultaneously; to do
this we introduce the notion of homomorphism that is appropriate for our
signatures that specify negatable and positive predicate symbols.

Let A and B be two structures for the same signature σ. A function h: A →B

is a homomorphism if
(a) h commutes with functions:

 h(fA(a1, . . . , an)) = fB (h(a1), . . . , h(an))

for all function symbols f of σ and all a1, . . . , an ∊ A .
(b) h preserves positive relations:

 RA(a1, . . . , an) => RB(h(a1), . . . , h(an))

for all positive R and all a1, . . . , an ∊ A .
(c) h preserves and reflects negatable relations:

 RA(a1, . . . , an) RB(h(a1), . . . , h(an))

for all negatable R and all a1, . . . , an ∊ A .

29

Two types of homomorphisms will be of particular importance to us. First, if

A ⊆ B, then the identity function on A is a homomorphism from A to B.

Second, if A and B are identical except that, for some positive predicate

symbols, the interpretations in B are supersets of those in A, then again the

identity function is a homomorphism from A to B. If equality is negatable in σ,
then clause (c) requires homomorphisms to be one-to-one, and it follows easily
that every homomorphism is a composite of homomorphisms of these special
types and an isomorphism. If, on the other hand, equality is positive in σ, then
our definition admits homomorphisms that are not one-to-one.

Theorem 4. Let h: A → B be a homomorphism, µ a function assigning values

in A to variables, and φ a formula of E+LFP. If A ⊧ φ[µ], then B ⊧ φ[h⃘µ]

Proof. We first observe that, by induction on terms using clause (a) of the

definition, h(tA[µ]) = tB[h⃘µ] for all terms t. We then prove the theorem by

induction on φ. Clause (b) and the => half of clause (c) give the result for
atomic φ, and the other half of (c) takes care of negations. The cases of
conjunction, disjunction, and existential quantification are easy (just as in
first-order logic). It remains to prove the theorem when φ is obtained by
LET…THEN... from formulas for which the theorem is true. To simplify
notation, we suppose that φ is

 LET P(x) ← δ THEN ψ

where P is unary. (The general case is handled the same way.) Of course, δ and

ψ are formulas of the signature σ ⋃ {P} where P is positive.

Let ∆α (A) ⊆ A and ∆α (B) ⊆ B be as in the definition of the semantics of
LET…THEN... in Section 1. We shall show, by induction on the ordinal a,
that h is a homomorphism from A α = (A , ∆α (A)) to Bα = (B, ∆α (B). In view of

the assumption that h is a homomorphism from A to B, what we must prove is

(since P is positive) that h(∆α (A)) ⊆ ∆α (B). The cases of 0 and limit ordinals

are trivial, so suppose α = β + 1 and h is a homomorphism from A β to B β .

Then, for any a ∊ A ,

 a ∊ ∆α (A) A β ⊧ δ[a/x; otherwise µ]

 => B β ⊧ δ[h(a)/x; otherwise h⃘µ]
 h(a) ∊ ∆α (B),

where the two 's are from the definition of ∆α and the => is from the
hypotheses that the theorem holds for δ and that h is a homomorphism from
A β to B β . This completes the proof that h is a homomorphism from A α to B α.

In particular, taking α large enough, we have that h is a homomorphism from
A ∞ to B ∞. Thus, applying the induction hypothesis that the theorem holds
for ψ, we have

 A ∞ ⊧ ψ[µ] B ∞ ⊧ ψ[h⃘µ],

30

i.e.,

 A ⊧ φ[µ] B ⊧ φ[h⃘µ],
as desired. This completes the proof of the theorem. ⊣

We obtain two corollaries by applying the theorem to homomorphisms of the
special types described above.

Corollary. With A , µ, and φ as in the theorem, if A ⊧ φ[µ] and A ⊆ B,

then B ⊧ φ[µ].
Corollary. With A , µ, and φ as in the theorem, if B is identical with A

except that some positive relations have been enlarged, and if A ⊧ φ[µ], then

B ⊧ φ[µ].

The last corollary says that E+LFP-formulas are monotone with respect to
positive predicate symbols. It justifies the terminology "LFP".

The first corollary shows that, as we claimed earlier, E+LFP cannot in general
express universal quantification. Indeed, in the signature having just one unary

predicate symbol P, the FO-formula ∀xP(x) is not preserved by extensions,
hence is not expressible in E+LFP. The theorem similarly implies that (in the
notation of Section 3) 0, End, and S are not E+LFP-definable on structures of
the form ({0, 1, . . . , n}, <), for there are homomorphisms between such
structures that fail to preserve 0, End, and S; the simplest example is the
function from {0, 1} to {0, 1, 2, 3, 4} that sends 0 to 1 and 1 to 3. Thus, E+LFP
can define < from S but cannot define S from <, the exact opposite of the
situation for FO.

The fact that E+LFP cannot in general express universal quantification should

be contrasted with Theorem 3. The argument for the undefinability of ∀ cannot

be applied within the class K considered in Theorem 3 because there are no non-
trivial homomorphisms between structures in K.

Corollary. If a FO-formula and an E+LFP-formula are logically equivalent,
then they are equivalent to an E-formula.

Proof. Such an FO-formula is, by the first corollary above, preserved by
extensions. By the theorem quoted from (Chang &; Keisler 1973) at the

beginning of this section, it is equivalent to an E-formula. ⊣

5. Decision problems and finiteness

In this section, we treat the decision problems for satisfiability and validity of
E+LFP-sentences. In contrast to languages like FO that are closed under
negation, E+LFP does not have its validity and satisfiability problems dual to

31

each other. In fact, we shall see that for E+LFP both of these problems are
complete recursively enumerable sets.

The proofs of these facts involve two other results that are of some independent
interest. One gives a connection between E+LFP and a certain fragment of
second-order logic. The other shows that, when an E+LFP-formula is satisfied
in a structure, this fact depends on only a finite part of the structure. This also
implies that the iterations involved in the semantics of LET…THEN... always
stabilize at or before stage ω , the first transfinite stage.

We begin by defining the relevant fragment of second-order logic. In analogy
with the terminology "strict Π1

1} " used in admissibility theory (see (Barwise

1975)), we define a second-order formula to be strict ∀1
1 if it consists of a string

of universal (second-order) quantifiers over relations, followed by a string of
existential first-order quantifiers, followed by a quantifier-free formula. We

write such a formula as ∀X∃y φ. The word "strict" refers to the restrictions that
the second-order quantifiers are over relations, not functions, and that the first-
order quantifiers are all existential. If either of these restrictions were removed,
the other would become pointless. (With universal quantifiers over functions,
one could use Skolem functions to achieve the effect of universal first-order
quantification; with universal first-order quantifiers, one could restrict relation
variables to range over functions only.)

Theorem 5. Every formula of E+LFP is logically equivalent to a strict ∀1
1

formula.

Proof. We proceed by induction on E+LFP-formulas. The atomic and
negation cases are trivial, and the conjunction and disjunction cases are handled
by the familiar prenexing operations. The existential quantifier is handled
by a standard technique for moving second-order quantifiers to the left past

first-order ones; specifically, ∃z∀Xθ is equivalent to ∀X'∃zθ', where X' has
one more argument place than X, and where θ' is obtained from θ by replacing
X with X' and inserting z as the extra argument.

Finally, consider (for notational convenience, as in the proof of Theorem 4)
LET P(x) ← δ THEN φ, and let ∆ be as in the definition of the semantics of
this formula. Although the definition says that LET P(x) ← δ THEN φ is true
in A if and only if φ is true in (A, ∆∞), where ∆∞ is the least fixed point of ∆,
the monotonicity result proved in the last section allows us to equivalently

formulate this condition as: φ is true in (A, X) for all X such that ∆(X) ⊆ X, since
∆∞ is the smallest such X. Therefore, LET P(x) ← δ THEN φ is equivalent to

 ∀P (∀x(δ => P(x)) => φ).

If we insert into this formula strict ∀1
1 equivalents for δ and φ, and apply

prenexing operations (including moving second-order quantifiers past first-order

ones as above), we obtain a formula in strict ∀1
1 form. ⊣

32

The converse of Theorem 5 is false, at least if P≠NP. To see this, recall that
any class of finite structures definable in E+LFP (or even FO+IFP) is PTIME
recognizable. On the other hand, it is easy to define the class of non-3-colorable

graphs, a co-NP complete class, by a strict ∀1
1 formula.

As our first application of Theorem 5, we characterize the recursion-theoretic
complexity of the decision problem for validity in E+LFP.

Theorem 6. The set of logically valid E+LFP-sentences is a complete recur-
sively enumerable set. The set of E+LFP-sentences true in all finite structures
is a complete co-r.e. set.

Proof. Notice first that the proof of Theorem 5 gives a recursive translation

from E+LFP-sentences to equivalent strict ∀1
1 sentences. The validity of

∀X∃y φ is equivalent to the validity of ∃y φ. Thus, we have a recursive many-
one reduction of the validity problem for E+LFP to the validity problem for
first-order logic (in fact for E). As the latter is recursively enumerable, by
Gödel’s completeness theorem, so is the former.

To prove completeness, we use the well-known fact that (the duals of) Skolem
normal forms provide a recursive many-one reduction of the validity problem
for FO to that for E. As the former is a complete recursively enumerable set and
E+LFP includes E, this suffices to finish the proof of the first assertion.

The second assertion is proved by a similar reduction to well-known facts about

FO. ⊣

Before considering the satisfiability problem for E+LFP, it will be useful to
obtain a model- theoretic finiteness result as a consequence of Theorem 5. In
formulating this result, we use the notation A |F, where A is a structure and F is

a subset of A, for the set F with the restrictions to F of the relations and

functions of A; if F is not closed under some of these functions, then we

restrict their ranges to F also, so A |F involves partial functions.

Theorem 7. Let φ be an E + LFP -formula (or just a strict ∀1
1 formula), A a

structure, and µ a function assigning values in A to the free variables of φ,

such that A ⊧ φ [µ]. Then A has a finite subset F, containing the (finitely many)

values of µ, such that, if B is any other structure with F ⊆ B and A |F = B |F,

then B ⊧ φ[µ].

This result, for strict ∀1
1 formulas, was known to Mal'cev (1959).

Proof. In view of Theorem 5, it suffices to prove Theorem 7 in the case that φ

is a strict ∀1
1 formula

 ∀X1 . . . ∀Xk ∃y1 . . . ∃ynθ .

33

The assumption that A ⊧ φ [µ] can be reformulated as follows. Consider
instances θ(b) of θ, obtained by replacing the variables y in θ with (names for)
elements b of A . As θ is quantifier-free, these instances can be viewed as for-
mulas of propositional logic, with instances of atomic subformulas of θ as the
prepositional variables. For those atomic formulas that don't involve the pred-
icate variables Xi, a truth value is determined by A and µ, and we think of each
θ(b) as already having these truth values substituted in. So these instances
θ(b) of θ are formulas of propositional logic with propositional variables of the

form Xi (a). Now the assumption that A ⊧ φ [µ] means that, no matter how we
assign truth values to these "propositional variables" Xi (a), at least one of the
instances θ(b) is true. In other words, the negations ¬θ(b) are not simultane-
ously satisfiable. By the compactness theorem of propositional logic, finitely
many of these negations, say ¬θ(b1), . . . , ¬θ(br), are not simultaneously satis-
fiable. Let F be the finite subset of A obtained by evaluating each of the terms
that occurs in θ, with each of the bi as values of y, and with the values of the
other variables given by µ. Then, if B is as in the theorem, exactly the same
unsatisfiable collection {¬θ(b1), . . . , ¬θ(br)} will occur among the negations of
the instances of θ in B . Therefore, every truth assignment must verify at least

one instance of θ in B, i.e., B ⊧ ∀X ∃yθ. ⊣

Corollary. A sentence of E+LFP (or a strict ∀1
1 sentence) is satisfiable if

and only if it is satisfiable in a finite structure.

Proof. If A ⊧ φ and if F is as in Theorem 7, then let B be the finite structure

obtained from A |F by adding one new element *, setting all function values

that were undefined in A |F equal to * in B, and extending the relations of A |F

arbitrarily to B . Then B |F = A |F, so, by the theorem, B ⊧ φ. ⊣

The preceding corollary provides an upper bound for the complexity of the
satisfiability problem.

Theorem 8. The set of satisfiable E+LFP-sentences (or strict ∀1
1 sentences)

is a complete recursively enumerable set.

Proof. Recursive enumerability is easy to prove, in view of the corollary to
Theorem 7. If a sentence is satisfiable, then this fact can be verified by
exhibiting a finite structure that satisfies it.

The proof of completeness is more difficult and requires some preliminary con-
siderations concerning a limited sort of universal quantification that is available
in E+LFP. The idea here is similar to that used in the proof of Theorem 3, but
we can no longer restrict our attention to a class (like K in Theorem 3) of
particularly well-behaved structures.

Consider a signature that contains constant symbols 0 and End and a unary
function symbol S (and possibly other symbols). We would like to consider

34

structures from the class K of Section 3, but, by Theorem 4, no E+LFP-sentence
can characterize this class. Nevertheless, we can easily express in E+LFP that
End can be reached from 0 by finitely many applications of S:

 LET P(x) ← x = End ∨ P(S(x)) THEN P(0).

More importantly, we can express that a formula φ(x) holds at 0 and End and all
the intermediate points in this iteration of S:

 LET P(x) ← φ(x) ⋀ (x = End ∨ P(S(x))) THEN P(0).

Thus, although we cannot quantify universally over the whole universe, we can
quantify universally over the (unique) finite S-chain joining 0 to End.

It is now a routine matter, which we omit, to use this limited sort of universal
quantification to express the halting of a Turing machine computation by an
E+LFP-sentence. That is, for any Turing machine M, there is an E+LFP-
sentence that is satisfied in a structure if and only if the structure has an
S-chain from 0 to End and the other relations of the structure, restricted to
this S-chain, encode (in some standard fashion) a halting computation of M on
a totally blank input tape. The sentence here depends recursively on M, so we
have a many-one reduction of the halting problem to the satisfiability problem
for E+LFP. The completeness of the former therefore implies the completeness

of the latter. ⊣

We conclude this section with another application of Theorem 7. It provides
additional support for the constructive nature of E+LFP. In stating it, we use
the standard notation ω for the first transfinite ordinal.

Theorem 9. Let ∆ be the operator used in the definition of the semantics of an
E+LFP-formula

 LET Pi(x
1) ← δ1, . . . , Pn(x

n) ← δn THEN φ.

Then ∆ω = ∆∞.

Proof. For notational simplicity, we give the proof for LET P(x) ← δ THEN φ.

In view of the definitions of ∆α and ∆∞, it suffices to prove that ∆(∆ω) ⊆ ∆ω.

So suppose that a ∊ ∆(∆ω). By definition of ∆ , we have (A, ∆ω) ⊧ δ [a/x].

Apply Theorem 7 to get a finite subset F of A such that, whenever (B, X) | F =

(A, ∆ω) | F then (B, X) ⊧ δ [a/x]. As ∆ω is the union of ∆n over all finite n, each
element of F ∩ ∆ω is in some ∆n, and, as F is finite, one n works for all
elements of F ∩ ∆ω simultaneously. Fix such an n. Then (A, ∆n) | F =

(A, ∆ω) | F. So (A, ∆n) ⊧ δ [a/x]. But this means that

 a ∊ ∆(∆n) = ∆n+1 ⊆ ∆ω

as desired. ⊣

35

Appendix. U+LFP

For the sake of completeness, we briefly discuss fixed-point logic with the uni-
versal, rather than the existential, quantifier. Notice that, by simply negating

formulas of E+LFP, we get the logic with ∀ and the greatest fixed-point op-

erator. We are interested rather in the logic U+LFP with ∀ and the least fixed-
point operator.

By a weak substructure of a structure A, we mean the result of taking a substruc-

ture of A and then possibly enlarging the relations that interpret some positive
predicate symbols. Then one can show, by induction on U+LFP-formulas, that
any such formula true in A remains true in any weak substructure that contains
the values assigned to the variables. In particular, truth of U+LFP-formulas is

preserved by substructures. It follows, for example, that ∃xP(x) is not equivalent
to any U+LFP-formula. In fact, if a FO-formula and a U+LFP-formula are
equivalent, then they are also equivalent to a U-formula.

By Theorem 3, U+LFP-formulas can define ∃ for structures in the class K,
provided that S is available as a function. In fact, it suffices to have S and

equality as negatable predicate symbols, since ∃xφ(x) is equivalent to

 LET P(x) ← φ(x) ∨ (x ≠ End ⋀ ∀y (P(y) ∨ ¬ S(x, y)) THEN P(0).

(We could also replace the constants 0 and End with negatable predicate
symbols.) Thus, on structures of this sort, U+LFP captures PTIME.

The finiteness properties proved in Section 5 for E+LFP fail badly for U+LFP.
For example, if the structure A is a linearly ordered set, then the formula

 LET P(x) ← ∀y (P(y) ∨ ¬y < x) THEN P(x)

defines the largest well-ordered initial segment of A, and the iteration occurring
in the definition of the meaning of this formula requires an ordinal number of
steps equal to the length of this segment. The same idea shows that, in the
standard model of arithmetic with suitable primitive recursive predicates taken
as atomic formulas, U+LFP can define certain complete Π1

1 sets, the well-
founded parts of recursively enumerable relations. In contrast, by the results of
Section 5, E+LFP can define only recursively enumerable sets.

Bibliography

Apt, K. (1981) Ten years of Hoare's logic: A survey - Part I. ACM Trans.
Program. Lang. Syst. 3 pp. 431-483.

Barwise, K. J. (1975) Admissible Sets and Structures. Springer-Verlag.

Chang, C. C. and Keisler, H. J. (1973) Model Theory. North-Holland.

36

Cook, S. A. (1978) Soundness and completeness of an axiom system for
program verification. SIAM J. Computing 7 pp.70-90.

Dijkstra, E. W. (1975) Guarded commands, nondeterminacy, and the formal
derivation of programs. Cotnm. ACM 18 pp.453-457.

Hoare, C. A. R. (1969) An axiomatic basis for computer programming. Comm.
ACM 12 pp.576-580, 583.

Immerman, N. (1982) Relational queries computable in polynomial time. 14th
ACM STOC pp.U7-152.

Mal’cev, A. I. (1959) Modelniye sootvetstviya (Model correspondences). Izv.
Akad. Nauk SSSR Ser. Mat. 23 pp.313-336 (Russian).

Vardi, M. (1982) Complexity of relational query languages 14th ACM STOC pp.
137-146.

