
EXISTENTIAL FIXED-POINT LOGIC 

Andreas Blass and Yuri Gurevich 

Mathematics Department and Electrical Engineering and Computer Science 
Department, University of Michigan, Ann Arbor, MI 48109, U.S.A. 

 

Abstract The purpose of this paper is to draw attention to existential fixed-point 
logic. Among other things, we show that: (1) If a structure A satisfies an 
existential fixed-point formula φ, then A has a finite subset F such that every 
structure B with A |F = B |F satisfies φ. (2) Using existential fixed-point logic 
instead of first-order logic removes the expressivity hypothesis in Cook's 
completeness theorem for Hoare logic. (3) In the presence of a successor 
relation, existential fixed-point logic captures polynomial time. 

 

Introduction 

The purpose of this paper is to draw attention to a logic, a fragment of second-
order logic, that enjoys a particularly close connection with certain aspects of 
the theory of computation. This logic, which we call existential fixed-point logic, 
is stronger than first-order logic in some ways but weaker in other ways. It goes 
beyond first-order logic in that it has the "fixed point" operator. On the other 
hand, it has only the existential quantifier, not the universal one, and it restricts 
the use of propositional connectives in a way that precludes defining ∀ from ∃. 

After defining existential fixed-point logic and some related logics in Section 1, 
we devote the next two sections to the connections between this logic and 
Hoare's logic of asserted programs and polynomial time computability. In 
particular, we show in Section 2 that the use of existential fixed-point logic 
instead of first-order logic removes the need for an expressivity hypothesis in 
Cook's completeness theorem for Hoare logic. In Section 3, we show that, when 
we consider only finite structures equipped with a successor relation, then 
existential fixed-point logic captures polynomial time computability. Then we 
present a model-theoretic property of existential fixed-point logic that helps to 
clarify its relationship with first-order logic. In the final section, we show that 
the validity problem and the satisfiability problem for existential fixed-point 
logic are both complete recursively enumerable problems. Along the way 
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to these results about the decision problem, we also find some more model-
theoretic properties of the logic, including that, whenever an existential fixed-
point formula is true in a structure, then its truth depends on only a finite subset 
of the structure and that the iterations that define the fixed points always 
terminate at or before the first transfinite ordinal number. 

In our discussion of Hoare logic in Section 2, we introduce the profile of a 
program. Though closely related to the strongest postcondition and weakest 
precondition commonly used in connection with Hoare logic, profiles seem more 
intuitive and easier to use, partly because they are associated simply with a 
program (rather than a program and a given precondition or postcondition) and 
partly because they do not require the use of the same variables in connection 
with the program, its input, and its output. We believe that profiles will find 
further uses in the logic of programs. 

Because of constraints of time and space, this paper does not even approach 
completeness. We hope to convince the reader that existential fixed-point logic 
is an interesting and useful logic, and we plan to return to it in future 
publications. 

1. Definitions and conventions 

As indicated in the introduction, existential fixed-point logic differs from first-
order logic in two respects, the absence of the universal quantifier and the 
presence of the fixed-point operator. Both of these deserve some clarification. 

Mere removal of the universal quantifier (∀) has no real effect on first-order 
logic, since ∀xφ can be expressed in terms of negation and existential quantifi-
cation as ¬∃x ¬ φ.  To correctly define the existential fragment E of first-order 
logic, one must prevent such surreptitious reintroduction of the universal quan-
tifier, for example by insisting that all formulas have prenex forms with no uni-
versal quantifiers. For our purposes, however, the convenient way to formalize 
E is to allow as prepositional connectives only conjunction (⋀), disjunction (∨), 
and negation (¬) and to apply negation only to atomic formulas. Every 
quantifier-free formula is equivalent to one satisfying these restrictions, but the 
restrictions ensure that all quantifiers in our formulas occur only positively; in 
particular, existential quantifiers will remain existential when moved to prenex 
form . 

We extend first-order logic by adding the iterative fixed point construction, 
defined as follows. Let S be any set, P (S) its power set, and Γ an operator on 
P (S), i.e., a function from P (S) to itself.  Define a (possibly transfinite) 
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sequence of subsets Γα ⊆ S by the recursion 

                                   Γ0 
= Ø, 

                          Γα+1 = Γα  ⋃ Γ(Γα), 

                                 Γλ = ⋃α<λ Γα      for limit ordinals λ. 

The sequence Γα is obviously weakly increasing with respect to C, so (as S is a 
set and the ordinals form a proper class) it must be constant from some point on. 
The common value of Γα for all sufficiently large α is written Γ∞ and called the 
iterative fixed point of Γ.  In general, Γ∞ need not be fixed by Γ; we have only 

Γ(Γ∞) ⊆ Γ∞.  However, if Γ is either inflationary (X ⊆ Γ(X) for all X ⊆ S) or 

monotone (Γ(X) ⊆ Γ(Y) whenever X ⊆ Y ⊆ S), then Γα+1 = Γ(Γα) for all α (by 
induction on α in the monotone case, and trivially in the inflationary case), so  
Γ∞ = Γ(Γ∞); hence the terminology "fixed point". 

For monotone Γ, the iterative fixed point is also the least fixed point, a subset of 

every  X ⊆ S such that Γ(X) = X.   Indeed, an equivalent (non-inductive) 

definition of Γ∞ is that it is the intersection of all X ⊆ S such that Γ(X) ⊆ X. 

Let σ be a signature (sometimes called a first-order language), P an r-place 
predicate symbol not in σ, x an r-tuple of distinct variables, and δ a formula of 

the signature σ ⋃{ P}. Let A be any structure of signature σ, and let all free 

variables of δ  other than x be assigned specific values in A . Then δ defines an 

operator ∆  on the set P(A r) of r-place relations on A by 

                                       ∆(X) = {a | (A, X) ⊧ δ[a/x]}; 

here (A, X) is the σ ⋃{ P}-structure obtained from A by interpreting P as X, and 
the notation [a/x] means that the variables x are assigned the values a. Let ∆∞ be 

the iterative fixed point of this operator ∆.  Any σ ⋃{P}-formula φ  can be 

interpreted in A by letting P denote ∆∞; we write this interpretation as 

                                        LET P(x) ← δ  THEN φ . 

In other words, this new formula holds in A if and only if φ  holds in (A, ∆∞). 
More generally, we shall permit simultaneous inductive definitions of several 
relations. The general form of the LET. ..THEN... construction is 

(*)           LET P1(x
1) ← δ1, . . . , Pn(x

n) ←  δn THEN φ, 

where δ1, . . . , δn, and φ are σ ⋃{ P1, . . . , Pn}-formulas;  P1, . . . , Pn  are distinct 
predicate symbols not in σ; and each xi  is a list of distinct variables of the right 
length to serve as arguments of Pi.  A variable is free in (*) if and only if either it 
is free in φ or, for some i, it is free in δi and not in the list xi.  The semantics 
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of (*) is defined as follows. Let a σ-structure A and values for the free variables 
of (*) be given. Define transfinite sequences ∆i

α  for  1 ≤ i ≤  n by 

                             ∆i
0 = Ø; 

                        ∆i
α+1 =  ∆i

α ⋃ {  a | (A, ∆1
α, . . . , ∆n

α) ⊧  δi [a/xi]}, 

 |                          ∆i
λ = ⋃α<λ ∆i

α   for limit ordinals λ. 

For sufficiently large α, ∆i
α is independent of α, and we call it ∆i

∞.  Then (*) is 
defined to be true in A if and only if φ is true in (A, ∆1

∞, . . . , ∆n
∞). 

We use the notations FO, E, U, and QF for first-order logic and its existential, 
universal, and quantifier-free fragments, respectively. We write FO+IFP for the 
logic obtained by adding the LET. . .THEN. . . construction to FO; similarly for 
QF+IFP. 

We could similarly define E+IFP or U+IFP, but this would make little sense, 
since it would surreptitiously introduce the "unwanted" quantifiers. For example, 

LET P(x) ← ∃y ¬Q(x,y)  THEN  ¬P(x) is equivalent to ∀y Q(x,y).  In connection 
with E and U, therefore, it is reasonable to require the formulas δ1, . . . , δn,  and 
φ in (*) to contain P1, . . . , Pn only positively.  We shall verify below that this 
requirement makes the operator ∆ on n-tuples of relations monotone, so the ∆i

∞ 

constitute the least fixed point of ∆.  Accordingly, we refer to this restricted 
version of IFP as LFP. 

Since we shall need to keep track of positivity requirements for various 
predicate symbols, it will be convenient to build such requirements into the 
signatures. Thus, we adopt the convention that a signature consists not only of a 
set of predicate symbols and a set of function symbols, each set being equipped 
with a number-of-places function, but also of a partition of the set of predicate 
symbols (including equality) into two subsets, the negatable and the positive 
predicate symbols.   With this convention, the various logics described above are 
formally defined as follows.   The QF formulas of signature a are given by the 
inductive clauses 

(Atomic)    Every atomic formula is a formula. 
(¬)     If φ is an atomic formula whose predicate is negatable,  
                  then ¬φ   is a formula.  

(⋀, ∨)         If φ and ψ are formulas, then so are (φ ⋀ ψ) and (φ ∨ ψ). 

The formulas of E are produced by adding the clause 

(∃)     If φ is a formula and x is any variable, 

                   then ∃xφ is a formula. 

The formulas of  U are produced by adding to the three clauses defining QF the 
clause 
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(∀)     If φ  is a formula and x is any variable, 

                   then ∀xφ  is a formula. 

All five of these clauses together produce the formulas of  FO.  In each case, 
+IFP indicates addition of the clause  

(IFP)          If σ' = σ ⋃{ P1, . . . , Pn}, 
                   where the Pi  are distinct negatable predicate symbols not in σ, 
                   and each Pi has ri  argument places, 
                   if xi is an ri-tuple of distinct variables (1 ≤  i ≤ n), 
                   and if δ1, . . . , δn, and φ are σ'-formulas, 
                   then 
                            LET P1(x

1) ←  δ1, . . . , Pn(x
n) ←  δn THEN  φ 

                   is a σ-formula. 

(Note that the definition of formulas is done for all signatures simultaneously.) 
Finally, +LFP indicates the addition of the clause (LFP) that is exactly like 
(IFP) except for having "positive" in place of "negatable" . 

2. Preconditions, postconditions, and profiles 

In this section, we present the line of thought concerning Hoare's logic of 
asserted programs (Hoare 1969) that first led us to investigate existential fixed-
point logic, E+LFP. We assume familiarity with Hoare's logic for while-
programs with recursively defined procedures, as presented in (Apt 1981). We 
use the partial correctness interpretation of asserted programs unless the contrary 
is explicitly stated. We consider any procedure declarations used in a program to 
be part of the program; in particular, when we refer to the variables in a 
program, this includes the variables used in these declarations. 

We believe that the need for an expressivity hypothesis in Cook's completeness 
theorem indicates that first-order logic is not the best logic for dealing with 
programs. We set out to find a reasonable logic in which the strongest 
postconditions (or weakest preconditions) in Hoare's logic could be expressed 
naturally, without special hypotheses. 

Instead of working directly with preconditions or postconditions, we find it more 
natural to work with what we call the profile of a program. This is essentially a 
description of the program's input-output behavior. More precisely, let  S  be a 
program, let  v  be a list of distinct variables that contains (at least) all the 
variables in S, and let x and y be two lists of variables that are all distinct, each 
of the same length as v. Then by the profile of  S  with respect to the lists of 
variables  v, x, y,  we mean the set of all states  µ  such that, if  S  is started in a 
state where the values of its variables  v  are  µ(x),  then the run of  S terminates,  
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and the final values of  v are  µ(y).  If this profile is expressible by a formula, 
i.e., if there is a formula satisfied by exactly those states µ that belong to the 
profile, then we write Profile(S,v; x,y) for such a formula.  Notice that every 
occurrence of a variable in S or v is bound, and every occurrence of a variable in 
x or y is free, in Profile(S,v; x,y).   Profiles  are  related to strongest 
postconditions (for which we use the notation Post({φ},  S))  by the equivalences 

                     Profile(S,v; x,y)  Post({ x = y}, S[y/v]),  

where [y/v] means substitution of y for v, and 

                     Post({φ},  S)  ∃x (φ [x/v] ⋀ Profile(S,v; x,v)) 

Profiles are also closely related to weakest preconditions, but it will be conve-
nient for us to formulate this relationship in terms of the dual of the weakest 
precondition, i.e., the set of states µ such that  S, started in µ,  terminates and the 
final state satisfies φ.  This would be the weakest precondition for a total 
correctness interpretation of asserted programs, and it is the complement of the 
weakest precondition (in the usual, partial correctness sense) for ¬φ. If it is 
expressible by a formula, then we write this formula as Pre(S, {φ}).   The 
connection with profiles is given by the equivalences 

                       Profile(S,v; x,y)  Pre(S [x/v], { x = y})  

and 

                       Pre(S, {φ})   ∃y (φ [y/x] ⋀ Profile(S,v; v,y)). 

Notice that the only logical operations used on the right sides of these equiva-
lences are conjunction and existential quantification. Thus, in any logic having 
these operations, all of Post, Pre, and Profile will be expressible if one of them 
is. 

Theorem 1.   For any while-program S with recursively defined procedures, the 
profile is expressible by a formula of  E + LFP (the same formula for all struc-
tures).  If φ  is an E + LFP formula, then so are  Post({φ},  S)   and Pre(S, {φ}).    

Proof.   In view of the remarks preceding the theorem, it suffices to prove the 
first assertion of the theorem. We do this by induction on programs. We need 
not consider the  while  construction  since  it  is  subsumed  by  recursion;  
while φ do S od  is equivalent to the procedure P recursively declared by 

                               P <=  if φ  then (S; P) else x :=  x  fi. 
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(If  skip  were available in the programming language, we would  prefer  it  to     
x :=  x.)   The other types of programs have profiles defined as follows. (Recall 
that the if φ then. . . construction is allowed only if φ is quantifier-free.) 

                  Profile(vi :=  t,;v; x, y)    yi = t[x/v] ⋀ ⋀j ≠ i  yj = xj , 

  Profile((S1; S2),v; x, y)     ∃z (Profile(S1,v; x, z) ⋀ Profile(S2,v; z, y)),  
  Profile( if φ  then  S1  else S2   f i, v; x, y)    

                   (φ[x/v] ⋀ Profile(S1,v; x, y)) ∨ (¬[x/v] ⋀ Profile(S2,v; x, y)), 

 and, if  P has the recursive declaration P <=  S,  then 

                 Profile(P,v; x, y)    LET  R(x,y) ← π  THEN  R (x,y), 

where  π  is the formula  Profile(S,v; x, y)  built  by means of the preceding 
equivalences but using  R (x,y)  for Profile(P,v; x, y)  wherever P occurs in S.     

It is easy to verify that all occurrences of  R  in  π  are positive, so the formulas 

defining profiles are all in E+LFP. This completes the proof of the theorem.   ⊣ 

Recall that the Pre referred to in the theorem is the weakest precondition in the 
total correctness interpretation. The theorem immediately implies that the usual 
weakest precondition (for the partial correctness interpretation) satisfies a 
similar theorem with respect to the language whose formulas are the negations 
of those of  E+LFP, a language that has universal (but not existential) 
quantification and the greatest (rather than least) fixed-point operator. 

In the formulas used in the proof of Theorem 1 to express profiles, all the syn-
tactic apparatus of E+LFP was used  − connectives, the existential quantifier, 
and the least fixed point operator. But disjunction and existential quantification 
were used only in a restricted way. Disjunction occurred only with mutually 

exclusive disjuncts. Similarly, ∃xφ(x) occurred only in contexts where at most 
one x can satisfy  φ(x).  It might be interesting to weaken E+LFP by building 
such restrictions into its syntax. Since two disjuncts might be mutually exclusive 
in some structures but not in others, this restriction would, if taken literally, 
make the notion of formula dependent on structures. Such a dependence of 
syntax on semantics can be avoided by requiring disjuncts to be provably (in 
some formal system) incompatible, and similarly for existential quantification, 
but the resulting logic would still involve an unorthodox dependence of the 
notion of formula on the notion of proof. 

Another  aspect  of the same observations is that E+LFP (without the re-
strictions discussed  in the last  paragraph) can express profiles not only for 
while-programs with recursive procedures but also for certain sorts of non-
deterministic computations.   For example, we could allow atomic programs of 
the form guess vi,  whose effect is to non-deterministically assign a (possibly)   
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new value to the variable  vi, and  whose profile with  respect  to  v, x, and  y  is 

⋀j ≠ i yj = xj.  Then the existential quantifier in the profile of  S1; S2  would no 

longer have the uniqueness property discussed above.  As another example, 
Dijkstra's (1975)  "alternative command"  built  from  guarded  commands          
φ1 → S1 , . . . , φn → Sn,  with all  φi  quantifier-free,  has  a profile defined   by 

∨i = 1

n
 (φi [x/v] ⋀ Profile(Si,v; x, y)). 

3. Capturing polynomial time 

One says that a logic captures a complexity class C for a collection K  of finite 

structures if the subcollections of K definable in the logic are precisely those that 

belong to C .  That is, a subcollection  X  of  K has the form {A ∊ K | A ⊧ φ}  for 
some sentence φ of the given logic if and only if the problem  "Given a member 
of  K, decide whether it belongs to X " is in the complexity class C . 

It is known, by work of Immerman (1982) and Vardi (1982) that FO+LFP 
captures PTIME, the class of problems solvable in polynomial time, for the class 
of structures of  the  form  ({0, 1, . . . , n}, <, . . .), where < is the linear ordering 
0 < 1 < . . . < n.  We shall deal instead with the class K of structures of the form 
({0, 1, . . . , n},  0, n, S, . . .), where the first and last elements, 0 and n, are the 
values of constant symbols 0 and  End, and where S  is  the successor relation, 
S(x, y)   x + 1 = y. 

Immerman's and Vardi's result remains true for the class K,  since 0,  End, and  S  
are easily definable in FO from <  and since <  is definable in E+LFP from  S 
by 

   z < y  LET P(x, y) ←  (S(x, y) ∨ ∃ z(P(x, z) ⋀ S(z, y))) THEN P(x, y). 

 In fact, Immerman's proof uses  <  primarily to define 0,  End, and  S. 

When we deal with systems lacking universal quantification, however, the 
equivalence between  <  on the one hand and 0, End, and S on the other breaks 
down. The latter is the more natural set of primitives for describing compu-
tations of Turing machines, since the computation mechanism directly refers to 
the next moment of time and adjacent squares on the tape. Thus, it is not 
surprising that  K . is the appropriate  class for extending Immerman's  and 

Vardi's result to logics without ∀. 

Theorem 2.  E+LFP captures PTIME for K.  If  K  is modified by taking the 
successor as a unary function  S (with S (End) = End) rather than a binary 
relation, then in fact QF+LFP captures PTIME. 

It would be possible to prove this by going through Immerman’s proof and 

verifying that ∀ is not needed for K and ∃ is not needed if the successor is 
available as a function. We shall, however, use a different approach. In view of 
Immerman's and Vardi's theorem, Theorem 2 is an immediate consequence of 
the following result. 
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Theorem 3.   On structures in K,  E+LFP can define ∀ and is therefore equiva-

lent to FO+LFP.  When the successor is available as a function, then QF+LFP 

can define ∃. 

Proof.   Both parts are proved by using the least fixed point operator to search 
through the structure, thereby simulating a quantifier. For the first part, we have 

that ∀xφ(x) is equivalent to 

         LET P(x) ← φ(x) ∨ (x = 0 ∨ ∃y(S(y, x) ⋀ P(y))) THEN P (End). 

For the second part, we must, for technical reasons, search through the structure 

backward;  ∃xφ(x)  is equivalent to 

         LET P(x) ← φ(x) ∨ P(S(x)) THEN P(0).                                        ⊣ 

We shall see in the next section that the use of  S rather than  <  was essential for 
the results of this section;  S is not E+LFP-definable in ({0, 1, . . . , n},  < ). 

4. A preservation theorem 

A result of classical model theory (see (Chang &; Keisler 1973) page 34) 
characterizes the formulas of  E up to logical equivalence as those first-order 
formulas φ whose truth is preserved by extensions, i.e., if  A is a substructure of 

B  (written A ⊆ B) and   A ⊧ φ[µ]  (where µ  maps variables to values in  A), then 

B ⊧ φ[µ].   We shall show that formulas of E+LFP have the same preservation 
property. We shall also prove that truth of  E+LFP-formulas is preserved when 
the relations that interpret positive predicate symbols are increased. It is 
convenient to prove these results (and somewhat more) simultaneously; to do 
this we introduce the notion of homomorphism that is appropriate for our 
signatures that specify negatable and positive predicate symbols. 

Let A and B be two structures for the same signature σ.  A function  h: A →B 

is a homomorphism if 
(a) h commutes with functions: 

                                 h(fA(a1, . . . , an)) = fB (h(a1), . . . , h(an)) 

for all function symbols f of  σ and all  a1, . . . , an ∊ A . 
(b) h  preserves positive relations: 

                                  RA(a1, . . . , an) => RB(h(a1), . . . , h(an)) 

for all positive R and all  a1, . . . , an ∊ A . 
(c) h  preserves and reflects negatable relations: 

                                 RA(a1, . . . , an)  RB(h(a1), . . . , h(an)) 

for all negatable R and all a1, . . . , an ∊ A .
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Two types of  homomorphisms  will be of particular importance to us.  First,  if 

A ⊆ B, then the identity function on A is a homomorphism from A  to B.  

Second, if  A  and B are identical except that, for some positive predicate 

symbols, the interpretations in  B are supersets of those in A, then again the 

identity function is a homomorphism from A to B. If equality is negatable in σ, 
then clause (c) requires homomorphisms to be one-to-one, and it follows easily 
that every homomorphism is a composite of homomorphisms of these special 
types and an isomorphism. If, on the other hand, equality is positive in σ, then 
our definition admits  homomorphisms  that are not one-to-one. 

Theorem 4.   Let h: A → B be a homomorphism, µ  a  function assigning values 

in A to variables, and φ  a formula of  E+LFP. If  A ⊧ φ[µ],  then B ⊧ φ[h⃘µ] 

Proof.   We first observe that, by induction on terms using clause (a) of the 

definition,  h(tA[µ]) = tB[h⃘µ]  for all terms  t.  We then prove the theorem by 

induction on  φ.   Clause (b) and the  =>  half  of  clause (c) give  the result for 
atomic  φ, and  the other  half of (c) takes care of negations.   The cases of 
conjunction,  disjunction,  and existential quantification are  easy  (just as in 
first-order logic).   It remains to prove the theorem when  φ  is  obtained  by   
LET…THEN...  from formulas for which the theorem is true.   To simplify 
notation, we suppose that  φ  is 

                                        LET P(x) ← δ  THEN ψ  

where P is unary. (The general case is handled the same way.) Of course, δ  and 

ψ  are formulas of the signature σ ⋃ {P}  where P is positive. 

Let ∆α (A) ⊆  A  and  ∆α (B) ⊆  B  be as in the definition of the semantics of 
LET…THEN...  in Section 1.   We shall show, by induction on the ordinal a, 
that h is a homomorphism from A α = (A , ∆α (A)) to Bα = (B, ∆α (B).   In view of 

the assumption that  h is a homomorphism from A to B, what we must prove is 

(since P is positive)  that  h(∆α (A)) ⊆ ∆α (B).  The cases of 0 and limit ordinals 

are trivial,  so suppose α = β + 1 and  h is a homomorphism from  A β  to  B β    . 

Then, for any  a ∊ A , 

                            a ∊ ∆α (A )  A β ⊧  δ[a/x;  otherwise µ] 

                                              =>  B β ⊧  δ[h(a)/x;  otherwise h⃘µ]  
                                               h(a) ∊ ∆α (B), 

where the two  's  are from the definition  of ∆α and the =>  is from the 
hypotheses that the theorem holds for δ and that  h  is  a  homomorphism from 
A β  to  B β  .   This completes the proof that h is a homomorphism from A α to B α. 

In particular, taking  α  large enough, we have that  h  is a homomorphism from 
A ∞  to B ∞.  Thus,  applying  the induction  hypothesis  that  the  theorem holds 
for ψ, we have 

                          A ∞  ⊧ ψ[µ]    B ∞   ⊧ ψ[h⃘µ], 
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i.e., 

                           A   ⊧ φ[µ]    B   ⊧ φ[h⃘µ], 
as desired.   This completes the proof of the theorem.                                        ⊣  

We obtain two corollaries by applying the theorem to homomorphisms of the 
special types described above. 

Corollary.   With  A , µ,  and φ  as in the theorem,  if  A   ⊧ φ[µ]   and  A  ⊆ B,  

then B  ⊧ φ[µ].      
Corollary.   With  A , µ,  and φ  as in the theorem,  if  B is identical with  A   

except that some  positive relations have been enlarged,  and  if  A   ⊧ φ[µ],  then 

B  ⊧ φ[µ].      

The last corollary says that E+LFP-formulas are monotone with respect to 
positive predicate symbols. It justifies the terminology "LFP". 

The first corollary shows that, as we claimed earlier, E+LFP cannot in general 
express universal quantification. Indeed, in the signature having just one unary 

predicate symbol P, the FO-formula ∀xP(x)  is not preserved by extensions, 
hence is not expressible in E+LFP.  The theorem similarly implies that (in the 
notation of Section 3)  0, End,  and  S  are not E+LFP-definable  on structures of 
the form ({0, 1, . . . , n},  <),  for there are homomorphisms between such 
structures that fail to preserve 0,  End, and  S; the simplest example is the 
function from {0, 1} to {0, 1, 2, 3, 4} that sends 0 to 1 and 1 to 3.  Thus, E+LFP 
can define  <  from S but cannot define S from  <,  the exact opposite of the 
situation for FO. 

The fact that E+LFP cannot in general express universal quantification should 

be contrasted with Theorem 3. The argument for the undefinability of ∀ cannot 

be applied within the class K considered in Theorem 3 because there are no non-
trivial homomorphisms between structures in K. 

Corollary. If a  FO-formula and an E+LFP-formula  are logically equivalent, 
then they are equivalent to an E-formula. 

Proof.   Such an FO-formula is,  by the first corollary above,  preserved by 
extensions.  By the theorem quoted from (Chang &; Keisler 1973) at the 

beginning of this section, it is equivalent to an E-formula.                           ⊣  

5. Decision problems and finiteness 

In this section, we treat the decision problems for satisfiability and validity of 
E+LFP-sentences. In contrast to languages like FO that are closed under 
negation, E+LFP does not have its validity and satisfiability problems dual to 
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each other.  In fact, we shall see that for E+LFP both of these problems are 
complete recursively enumerable sets. 

The proofs of these facts involve two other results that are of some independent 
interest. One gives a connection between E+LFP and a certain fragment of 
second-order logic. The other shows that, when an E+LFP-formula is satisfied 
in a structure, this fact depends on only a finite part of the structure. This also 
implies that the iterations involved in the semantics of  LET…THEN... always 
stabilize at or before stage ω , the first transfinite stage. 

We begin by defining the relevant fragment of second-order logic. In analogy 
with the terminology "strict  Π1

1} " used in admissibility theory (see (Barwise 

1975)), we define a second-order formula to be strict ∀1
1 if it consists of a string 

of universal (second-order) quantifiers over relations, followed by a string of 
existential first-order quantifiers, followed by a quantifier-free formula. We 

write such a formula as ∀X∃y φ.  The word "strict" refers to the restrictions that 
the second-order quantifiers are over relations, not functions, and that the first-
order quantifiers are all existential. If either of these restrictions were removed, 
the other would become pointless. (With universal quantifiers over functions, 
one could use Skolem functions to achieve the effect of universal first-order 
quantification; with universal first-order quantifiers, one could restrict relation 
variables to range over functions only.) 

Theorem 5.   Every formula of  E+LFP  is logically equivalent to a strict ∀1
1  

formula. 

Proof.   We proceed by induction on  E+LFP-formulas.  The atomic and 
negation cases are trivial, and the conjunction and disjunction cases are handled 
by  the  familiar  prenexing operations.  The existential quantifier  is  handled  
by  a standard technique for moving second-order quantifiers to the left past 

first-order ones;  specifically, ∃z∀Xθ  is equivalent to  ∀X'∃zθ', where  X'  has 
one more argument place than X,  and where θ'  is obtained from θ  by replacing 
X  with  X' and inserting  z  as the extra argument. 

Finally, consider  (for notational convenience, as in the proof of Theorem 4) 
LET P(x) ← δ   THEN φ,  and let ∆ be as in the definition of the semantics of 
this formula.  Although the definition says that  LET P(x) ← δ   THEN φ is true 
in A if and only if φ  is true in (A, ∆∞),  where ∆∞  is the least fixed point of ∆, 
the monotonicity result proved in the last section allows us to equivalently 

formulate this condition as: φ is true in (A, X) for all X such that ∆(X) ⊆ X, since 
∆∞ is the smallest such X.   Therefore, LET P(x) ← δ   THEN φ  is equivalent to 

                                      ∀P (∀x(δ =>  P(x)) =>  φ). 

If we insert into this formula strict ∀1
1  equivalents for δ and φ,  and apply 

prenexing operations (including moving second-order quantifiers past first-order 

ones as above), we obtain a formula in strict  ∀1
1  form.                                       ⊣  
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The converse of Theorem 5  is false, at least if  P≠NP.  To see this, recall that 
any class of finite structures definable in E+LFP (or even FO+IFP) is PTIME 
recognizable. On the other hand, it is easy to define the class of non-3-colorable 

graphs, a co-NP complete class, by a strict ∀1
1 formula. 

As our first application of Theorem 5, we characterize the recursion-theoretic 
complexity of the decision problem for validity in E+LFP. 

Theorem 6.    The set of logically valid  E+LFP-sentences  is  a complete recur-
sively enumerable set.  The set of  E+LFP-sentences  true in all finite structures 
is a complete co-r.e. set. 

Proof.   Notice first that the proof of Theorem 5 gives a recursive translation 

from   E+LFP-sentences  to  equivalent strict ∀1
1 sentences. The validity of 

∀X∃y φ is equivalent to the validity of  ∃y φ. Thus, we have a recursive many-
one reduction of the validity problem for E+LFP to the validity problem for 
first-order logic (in fact for E). As the latter is recursively enumerable, by 
Gödel’s completeness theorem, so is the former. 

To prove completeness, we use the well-known fact that (the duals of) Skolem 
normal forms provide a recursive many-one reduction of the validity problem 
for FO to that for E. As the former is a complete recursively enumerable set and 
E+LFP includes E, this suffices to finish the proof of the first assertion. 

The second assertion is proved by a similar reduction to well-known facts about 

FO.                                                                                                                 ⊣  

Before considering the satisfiability problem for E+LFP, it will be useful to 
obtain a model- theoretic finiteness result as a consequence of Theorem 5. In 
formulating this result, we use the notation A |F,  where A is a structure and  F is 

a subset of  A, for the set  F with the restrictions to F of the relations and 

functions of A;  if  F is not closed under some of these functions, then we 

restrict their ranges to F also, so  A |F  involves partial functions. 

Theorem 7.   Let φ  be an E + LFP -formula (or just a strict ∀1
1  formula), A  a 

structure, and µ  a  function assigning values in A to the free variables of φ,  

such that A ⊧ φ [µ ].  Then A has a finite subset F, containing the (finitely many) 

values of µ, such that,  if  B is any other structure with F ⊆ B and  A |F = B |F, 

then B ⊧ φ[µ].  

This result, for strict ∀1
1  formulas, was known to Mal'cev (1959). 

Proof.   In view of Theorem 5, it suffices to prove Theorem 7 in the case that  φ  

is a strict ∀1
1  formula 

                          ∀X1 . . . ∀Xk ∃y1 . . . ∃ynθ . 
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The assumption that A ⊧ φ [µ ]  can be reformulated as follows. Consider 
instances θ(b) of θ,  obtained by replacing the variables y in θ  with (names for) 
elements b of A .  As θ  is quantifier-free, these instances can be viewed as for-
mulas of propositional logic, with instances of atomic subformulas of θ  as the 
prepositional variables. For those atomic formulas that don't involve the pred-
icate variables Xi, a truth value is determined by A and µ,  and we think of each 
θ(b)  as already having these truth values substituted in.   So these instances 
θ(b)  of θ are formulas of propositional logic with propositional variables of the 

form Xi (a). Now the assumption that A ⊧ φ [µ]  means that, no matter how we 
assign truth values to these "propositional variables" Xi (a), at least one of the 
instances θ(b)  is true. In other words, the negations ¬θ(b) are not simultane-
ously satisfiable.  By the compactness theorem of propositional logic, finitely 
many of these negations, say ¬θ(b1), . . . , ¬θ(br), are not simultaneously satis-
fiable.  Let F be the finite subset of A obtained by evaluating each of the terms 
that occurs in θ, with each of the bi  as values of y, and with the values of the 
other variables given by µ.  Then, if B is as in the theorem, exactly the same 
unsatisfiable collection {¬θ(b1), . . . , ¬θ(br)}  will occur among the negations of 
the instances of θ in B . Therefore, every truth assignment must verify at least 

one instance of θ in B, i.e., B ⊧ ∀X ∃yθ.                                                        ⊣  

Corollary.   A sentence of  E+LFP  (or a strict ∀1
1 sentence)  is satisfiable if 

and only if it is satisfiable in a finite structure. 

Proof.   If A ⊧ φ  and if  F is as in Theorem 7, then let B  be the finite structure 

obtained from A |F  by adding one new element *, setting all function values 

that were undefined in A |F equal to * in B, and extending the relations of A |F 

arbitrarily to B .  Then B |F = A |F,  so, by the theorem,  B ⊧ φ.                            ⊣  

The preceding corollary provides an upper bound for the complexity of the 
satisfiability problem. 

Theorem 8.   The set of satisfiable  E+LFP-sentences  (or strict ∀1
1 sentences) 

is a complete recursively enumerable set. 

Proof.  Recursive enumerability is easy to prove, in view of the corollary to 
Theorem 7. If a sentence is satisfiable, then this fact can be verified by 
exhibiting a finite structure that satisfies it. 

The proof of completeness is more difficult and requires some preliminary con-
siderations concerning a limited sort of universal quantification that is available 
in E+LFP. The idea here is similar to that used in the proof of Theorem 3, but 
we can no longer restrict our attention to a class (like K  in Theorem 3) of 
particularly well-behaved structures. 

Consider a signature that contains constant symbols 0 and End and a unary 
function symbol  S (and possibly other symbols). We would like to consider 
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structures from the class K of Section 3, but, by Theorem 4, no E+LFP-sentence 
can characterize this class. Nevertheless, we can easily express in E+LFP that 
End  can be reached from 0 by finitely many applications of  S: 

                              LET P(x) ←   x  = End  ∨ P(S(x)) THEN  P(0). 

More importantly, we can express that a formula φ(x)  holds at 0 and End and all 
the intermediate points in this iteration of  S: 

                           LET P(x) ←  φ(x) ⋀ (x = End  ∨ P(S(x)))  THEN  P(0). 

Thus, although we cannot quantify universally over the whole universe, we can 
quantify universally over the (unique) finite S-chain joining 0 to End. 

It is now a routine matter, which we omit, to use this limited sort of universal 
quantification to express the halting of a Turing machine computation by an 
E+LFP-sentence. That is, for any Turing machine M, there is an E+LFP-
sentence  that is satisfied in a structure if and only if the structure has an 
S-chain from 0 to End and the other relations of the structure, restricted to 
this S-chain, encode (in some standard fashion) a halting computation of M on 
a totally blank input tape. The sentence here depends recursively on M, so we 
have a many-one reduction of the halting problem to the satisfiability problem 
for E+LFP. The completeness of the former therefore implies the completeness 

of the latter.                                                                                                   ⊣  

We conclude this section with another application of Theorem 7. It provides 
additional support for the constructive nature of  E+LFP. In stating it, we use 
the standard notation ω   for the first transfinite ordinal. 

Theorem 9.   Let ∆  be the operator used in the definition of the semantics of an 
E+LFP-formula 

                            LET  Pi(x
1) ← δ1, . . . , Pn(x

n) ←  δn  THEN  φ.  

Then ∆ω = ∆∞. 

Proof.  For notational simplicity, we give the proof for LET P(x) ← δ  THEN φ. 

In view of  the definitions of  ∆α  and ∆∞,  it suffices to prove that ∆(∆ω) ⊆ ∆ω.  

So suppose that a ∊ ∆(∆ω).  By definition of ∆ , we have (A, ∆ω) ⊧ δ [a/x].   

Apply  Theorem 7 to get a finite subset F of A such that, whenever (B, X) | F = 

(A, ∆ω) | F then  (B, X) ⊧ δ [a/x].  As ∆ω is the union of ∆n over all finite  n, each 
element of  F ∩ ∆ω  is in some  ∆n, and, as F is finite, one n works for all 
elements of F ∩ ∆ω   simultaneously.   Fix such an n.  Then (A, ∆n) | F =           

(A, ∆ω) | F.   So (A, ∆n) ⊧ δ [a/x].  But this means that 

                                     a ∊ ∆(∆n) = ∆n+1 ⊆ ∆ω 

as desired.                                                                                                   ⊣ 
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Appendix.  U+LFP 

For the sake of completeness, we briefly discuss fixed-point logic with the uni-
versal, rather than the existential, quantifier. Notice that, by simply negating 

formulas of E+LFP, we get the logic with ∀ and the greatest fixed-point op-

erator. We are interested rather in the logic U+LFP with ∀ and the least fixed-
point operator. 

By a weak substructure of a structure A, we mean the result of taking a substruc-

ture of A and then possibly enlarging the relations that interpret some positive 
predicate symbols. Then one can show, by induction on U+LFP-formulas, that 
any such formula true in A remains true in any weak substructure that contains 
the values assigned to the variables. In particular, truth of U+LFP-formulas is 

preserved by substructures. It follows, for example, that ∃xP(x) is not equivalent 
to any U+LFP-formula. In fact, if a FO-formula and a U+LFP-formula are 
equivalent, then they are also equivalent to a U-formula. 

By Theorem 3, U+LFP-formulas can define ∃ for structures in the class K, 
provided that  S is available as a function. In fact, it suffices to have S and 

equality as negatable predicate symbols, since ∃xφ(x) is equivalent to 

   LET P(x) ←  φ(x)  ∨  (x ≠  End ⋀ ∀y (P(y) ∨ ¬ S(x, y)) THEN P(0). 

(We could also replace  the constants  0 and  End  with  negatable predicate 
symbols.)   Thus, on structures of this sort, U+LFP captures PTIME. 

The finiteness properties proved in Section 5 for E+LFP fail badly for U+LFP. 
For example, if the structure A is a linearly ordered set, then the formula 

                       LET P(x) ←  ∀y (P(y) ∨ ¬y < x) THEN P(x) 

defines the largest well-ordered initial segment of A, and the iteration occurring 
in the definition of the meaning of this formula requires an ordinal number of 
steps equal to the length of this segment. The same idea shows that, in the 
standard model of arithmetic with suitable primitive recursive predicates taken 
as atomic formulas, U+LFP can define certain complete  Π1

1 sets, the well-
founded parts of recursively enumerable relations. In contrast, by the results of 
Section 5, E+LFP can define only recursively enumerable sets. 
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