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Abstract The purpose of this paper is to draw attention to existential fixed-point
logic. Among other things, we show that: (1) If a structuresatisfies an
existential fixed-point formula, then A has a finite subset such that every
structureB with A [F = B |F satisfiese. (2) Using existential fixed-point logic
instead of first-order logic removes ethexpressivity hypothesis in Cook's
completeness theorem for Hoare log({8) In the presence of a successor
relation, existential fixed-point logic captures polynomial time.

Introduction

The purpose of this paper is to draw attention to a logic, a fragment of second-
order logic, that enjoys a particulatyose connection witlcertain aspects of

the theory of computation. This logic, which we @alktential fixed-point logic,

is stronger than first-order logic in some ways but weaker in other ways. It goes
beyond first-order logic in that it has the "fixed point" operator. On the other
hand, it has only the existential quantifier, not the universal one, and it restricts
the use of propositional connectiviasa way that precludes definifgfrom 3.

After defining existential fixed-point logic and some related logics in Section 1,
we devote the next two sections to the connections between this logic and
Hoare's logic of asserted prograraad polynomial time computability. In
particular, we show in Section 2 that the use of existential fixed-point logic
instead of first-order logic removes the need for an expressivity hypothesis in
Cook's completeness theorem for Hoaredolyi Section 3, we show that, when
we consider only finite structures equipped with a successor relation, then
existential fixed-point logic captures polynomial time computability. Then we
present a model-theoretic property of éxmial fixed-point logic that helps to
clarify its relationship with first-order logic. In the final section, we show that
the validity problem and the satisfiability problem for existential fixed-point
logic are both complete recursivadpumerable problems. Along the way
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to these results about the decision problem, we also find some more model-
theoretic properties of the logic, including that, whenever an existential fixed-
point formula is true in a structure, then its truth depends on only a finite subset
of the structure and that the iteratiotteat define the fixed points always
terminate at or before the first transfinite ordinal number.

In our discussion of Hoare logic in Section 2, we introduce the profile of a
program. Though closely related toetlstrongest postcondition and weakest
precondition commonly used in connection with Hoare logic, profiles seem more
intuitive and easier to us@artly because they amssociated simply with a
program (rather than a program and a given precondition or postcondition) and
partly because they do not require the o§ the same variables in connection
with the program, its input, and its output. We believe that profiles will find
further uses in the logic of programs.

Because of constraints of time andhep, this paper does not even approach
completeness. We hope to convince the reader that existential fixed-point logic
is an interesting and useful logic, and we plan to return to it in future
publications.

1. Definitionsand conventions

As indicated in the introduction, existential fixed-point logic differs from first-
order logic in two respects, the absenof the universal quantifier and the
presence of the fixed-point operator. Boftthese deserve s clarification.

Mere removal of the universal quantifie¥) (has no real effect on first-order
logic, sinceVxe can be expressed in terms of negation and existential quantifi-
cation as dx~q@ To correctly define the existential fragméntof first-order
logic, one must prevent such surreptitious reintroduction of the universal quan-
tifier, for example by insisting that gbrmulas have prenex forms with no uni-
versal quantifiers. For our purposéswever, the convenient way to formalize

E is to allow as prepositional connectives only conjunctign disjunction ),

and negation (=) and to apply negation only to atomic formulas. Every
guantifier-free formula is equivalent to one satisfying these restrictions, but the
restrictions ensure that all quantifiers in our formulas occur only positively; in
particular, existential quantifiers will main existential when moved to prenex
form .

We extend first-order logic by adding tlieerative fixed point construction,
defined as follows. Le§ be any setP (S its power set, andl an operator on
P (9, i.e., a function fronP () to itself. Define a (possibly transfinite)
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sequence of subsdi$ € Sby the recursion
r'. g,

ru+l - l—u U F(Fu),

r=U,,. 1r* for limit ordinalsa.

The sequencE” is obviously weakly increasing with respect to C, scSi@sa

set and the ordinals form a proper class) it must be constant from some point on.
The common value df* for all sufficiently largen is writtenT™ and called the
iterative fixed point of". In generall"™” need not be fixed bl; we have only

(™) € T”. However, ifT is either inflationaryX € I'(X) for all XS S) or

monotone {'(X) € I'(Y) wheneveiX € Y € 9, then[*"* = I'(I"*) for all a. (by
induction ona in the monotone case, and trivially in the inflationary case), so
I'” =T'(I'"); hence the terminology "fixed point".

For monotond’, the iterative fixed point is also theast fixed point, a subset of
every X € Ssuch thal'(X) = X. Indeed, an equivalent (non-inductive)

definition of I'” is that it is the intersection of all€ Ssuch thal'(X) € X.
Let o be a signature (sometimes called a first-order languBga)r-place
predicate symbol not is, X anr-tuple of distinct variables, arida formula of
the signature U{ P}. Let A be any structure of signatuseand let all free
variables oB other tharx be assigned specific valuesdn Thend defines an
operatorA on the seP(A") of r-place relations ont by

A(X) = {a | (A, X) £ [a/x]};

here (4, X) is thec U{ P}-structure obtained fromt by interpreting? asX, and
the notation §/x] means that the variablasare assigned the valuasLetA™ be
the iterative fixed point of this operatar Any ¢ U{P}-formula ¢ can be
interpreted in4 by lettingP denoteA™; we write this interpretation as

LEF(X) < & THEN ¢ .

In other words, this new formula holds.inf and only ife holds in(A4, A®).

More generally, we shall permit simultaneous inductive definitions of several
relations. The general form ofdlLET. ..THEN... construction is

*) LETPy(xY) <384, . .. ,Pa(X") <« 8, THEN o,

wheredy, . . . ,0n, ande arec U{Py, . . . ,P}-formulas; Py, . . . ,P, are distinct
predicate symbols not isy and eachx' is a list of distinct variables of the right
length to serve as argumentsRaf A variable is free in (*) if and only if either it
is free ing or, for somd, it is free ind; and not in the list'. The semantics
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of (*) is defined as follows. Let é-structured and values for the free variables
of (*) be given. Define transfinite sequenags for 1<i< nby

A= @;

AT = AU{al (A A LAY E 5 [aiXT

| A =U,, A for limit ordinals.

For sufficiently largex, A* is independent af, and we call iN”. Then (*) is
defined to be true int if and only if is true in @, A%, . .. ,Ay").

We use the notatiorf0, E, U, andQF for first-order logic and its existential,
universal, and quantifier-free fragments, respectively. We Ww@tel FP for the
logic obtained by adding the LET.THEN. . . construction tBO; similarly for
QF+IFP.

We could similarly definé&+IFP or U+l FP, but this would make little sense,
since it would surreptitiously introduce the "unwanted" quantifiers. For example,

LET P(X) < 3y -Q(x,y) THEN -P(X) is equivalent to&/y Q(X,y). In connection

with E andU, therefore, it is reasonable to require the forméyas. . ,5,, and
¢ in (*) to containPy, . . . ,P,only positively. We shall verify below that this
requirement makes the operatoonn-tuples of relations monotone, so thé
constitute théeast fixed point of A. Accordingly, we refer to this restricted
version ofl FP asLFP.

Since we shall need to keep track of positivity requirements for various

predicate symbols, it will be convenient to build such requirements into the
signatures. Thus, we adopt the convention that a signature consists not only of a
set of predicate symbols and a sefuofction symbols, each set being equipped
with a number-of-places fution, but also of a partith of the set of predicate
symbols (including equality) into two subsets, tlegatable and thepositive

predicate symbols. With this convention, the various logics described above are
formally defined as follows. Th@F formulas of signatura are given by the
inductive clauses

(Atomic) Every atomic formula is a formula.

(=) If ¢ is an atomic formula whose predicate is negatable,
theng is a formula.
(A, V) If o andy are formulas, then so are £ y) and ( Vv v).

The formulas of are produced by adding the clause
E)) If ¢ is a formula anat is any variable,

thedxo is a formula.

The formulas ofU are produced by adding to the three clauses def@inthe
clause
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v) If ¢ is a formula anc is any variable,

thelxe is a formula.

All five of these clauses totfeer produce the formulas ¢fO. In each case,
+I FP indicates addition of the clause
(IFP) Ife' =c U{Py, ... ,Pi},

where tHe are distinct negatable predicate symbols net in

and eadh hasr; argument places,

il is anr;-tuple of distinct variables @ i <n),

and &y, . . . ,d,, andg arec'-formulas,

then

LEPy(x") «— &y, ... ,Pu(X") «— 8, THEN ¢
is ac-formula.

(Note that the definition of formulas d®ne for all signatures simultaneously.)
Finally, +L FP indicates the addition of the clause (LFP) that is exactly like
(IFP) except for having "posit®/ in place of "negatable" .

2. Preconditions, postconditions, and profiles

In this section, we present the line of thought concerning Hoare's logic of
asserted programs (Hoare 1969) that first led us to investigate existential fixed-
point logic,E+L FP. We assume familiarity with Hoare's logic for while-
programs with recursively defined procedures, as presented in (Apt 1981). We
use the partial correctness interpretatbasserted programs unless the contrary
is explicitly stated. We consider any peolcire declarations used in a program to
be part of the program; in particular, when we refer to the variables in a
program, this includes the varlab used in these declarations.

We believe that the need for an expressivity hypothesis in Cook's completeness
theorem indicates that firerder logic is not the best logic for dealing with
programs. We set out to find a remable logic in which the strongest
postconditions (or weakest preconditiomsHoare's logic could be expressed
naturally, without special hypotheses.

Instead of working directly with preconditions or postconditions, we find it more
natural to work with what we call thgeofile of a program. This is essentially a
description of the program's input-output behavior. More precisel\ le¢ a
program, letv be a list of distinct variablgbat contains (at least) all the
variables inS, and letx andy be two lists of variables that are all distinct, each

of the same length as Then by therofile of S with respect to the lists of
variablesv, X, y, we mean the set of all statgssuch that, ifS is started in a
state where the values of its variablesare p(x), then the run ofSterminates,
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and the final values of are p(y). If this profile is expressible by a formula,
i.e., if there is a formula satisfied by exactly those siatbat belong to the
profile, then we writéProfile(Syv; x,y) for such a formula. Notice that every
occurrence of a variable Bior v is bound, and every oagence of a variable in
x ory is free, inProfile(Syv; x,y). Profiles are related to strongest
postconditions (for which we use the notatiRost({ ¢}, ) by the equivalences

Profile(Syv; x,y) < Post({x =y}, Jy/V]),
where f/v] means substitution of for v, and

Post({ @}, 9 < 3Ix (¢ [x/V] A Profile(Syv; x,v))

Profiles are also closely related toakest preconditions, but it will be conve-
nient for us to formulate this relationship in terms of the dual of the weakest
precondition, i.e., the set of statesuch thatS started iru, terminates and the
final state satisfieg. This would be the weakest precondition for a total
correctness interpretation a$serted programs, and it is the complement of the
weakest precondition (in the usuadyrtial correctness sense) fag. ¥ it is
expressible by a formula, then we write this formul®gS, {¢}). The
connection with profiles is given by the equivalences

Profile(Sv; x,y) < Pre(S[x/v], {x =y})

and

Pre(S {o}) & 3y (¢ [y/X] A Profile(Syv; v,y)).

Notice that the only logical operations used on the right sides of these equiva-
lences are conjunction and existential quantification. Thus, in any logic having
these operations, all ®ost, Pre, andProfile will be expressible if one of them

is.

Theorem 1. For any while-program Swith recursively defined procedures, the
profileis expressible by a formula of E + LFP (the same formula for all struc-
tures). If ¢ isan E + LFP formula, then so are Post({ ¢}, S and Pre(S {o}).

Proof. In view of the remarks precedingettheorem, it suffices to prove the
first assertion of the theorem. We do this by induction on programs. We need
not consider thenhile construction since it is subsumed by recursion;
while ¢ do Sod is equivalent to the proceduPerecursively declared by

P <=if ¢ then (S P) elsex:= x fi.
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(If skip were available in the programming language, we would prefer it to
X := X.) The other types of programs have profiles defined as follows. (Recall
that theif ¢ then. . . construction is allowed only if is quantifier-free.)

Profile(vi:= t.v; X, y) & yi=tIXWI ANy =X,

Profile((S;; S).v; X, y) & 3Tz (Profile(S,v; X, 2) A Profile(S,,v; z,Y)),
Profile(ifo then S, else S, fi, v; X, y) &

@[x/v] A Profile(S,v; X,y)) V (5[x/V] A Profile(S,,v; x,Y)),
and, if P has the recursive declaratiBr<= S, then

Profile(P,v; X,y) & LET R(x)y) < =n THEN R (X)y),

where 7 is the formulaProfile(Sv; x,y) built by means of the preceding
equivalences but using (x,y) for Profile(P,v; x,y) wherevelP occurs inS.

It is easy to verify that all occurrences ®&f in © are positive, so the formulas

defining profiles are all ife+L FP. This completes the proof of the theorem.

Recall that thé’re referred to in the theorem is the weakest precondition in the
total correctness interpretation. The ttean immediately implies that the usual
weakest precondition (for the partialroectness interpretation) satisfies a
similar theorem with respect to the laragie whose formulas are the negations
of those of E+L FP, a language that has universal (but not existential)
guantification and the gresdt (rather than leadixed-point operator.

In the formulas used in the proof of Theorem 1 to express profiles, all the syn-
tactic apparatus &+L FP was used - connectives, the existential quantifier,
and the least fixed point operator. But disjunction and existential quantification
were used only in a restricted wdjisjunction occurred only with mutually

exclusive disjuncts. Similarhgxe(X) occurred only in contexts where at most

onex can satisfyp(x). It might be interesting to weaké&+L FP by building

such restrictions into its syntax. Since two disjuncts might be mutually exclusive
in some structures but not in others, this restriction would, if taken literally,
make the notion of formula dependent on structures. Such a dependence of
syntax on semantics can be avoided by requiring disjuncts to be provably (in
some formal system) incompatible, and similarly for existential quantification,
but the resulting logic would still involvan unorthodox dependence of the

notion of formula on the notion of proof.

Another aspect of the same observations isBkafP (without the re-

strictions discussed in the last paragraph) can express profiles not only for
while-programs with recursive proceésrbut also for cé&in sorts of non-
deterministic computations. For example, we could allow atomic programs of
the formguessv;, whose effect is to non-deterministically assign a (possibly)
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new value to the variablg;, and whose profile with respect WX, andy is

/\j +iY; =%. Then the existential quantifier in the profile 8f S, would no

longer have the uniqueness property discussed above. As another example,
Dijkstra's (1975) "alternative command" built from guarded commands
01— S, ...,0n— S, with all ¢; quantifier-free, has a profile defined by

Vizs (01 [XV] A Profile(S,v; x,y)).

3. Capturing polynomial time

One says that a logmptures a complexity class for a collection of finite
structures if the subcollections iofdefinable in the logic are precisely those that

belong toC . That is, a subcollectior of K has the formf € K | Ak @} for

some sentenag of the given logic if and only if the problem "Given a member
of K, decide whether it belongs &0" is in the complexity class.

It is known, by work of Immerman (1982) and Vardi (1982) #@tL FP
captures PTIME, the class of problembrable in polynomial time, for the class
of structures of the form ({0, 1, ..n}, <,...), where < s the linear ordering
0<1<...<N We shall deal instead with the classf structures of the form
({0,1,...,n}, 0,n, S ...), where the first and last elements, Ograte the
values of constant symbols 0 aktid, and wheres is the successor relation,
Sx,y) @ x+1=y.

Immerman's and Vardi's result remains true for the glassnce 0,End, and S

are easily definable iRO from < and since < is definableiE+L FP from S
by

Z<y <& LETP(XY) « (S )V IZP(X 2 A SzY))) THEN P(x, y).
In fact, Immerman's proof uses < primarily to definé€efid, and S.

When we deal with systems lacking universal quantification, however, the
equivalence between < on the one hand agaid),andSon the other breaks
down. The latter is the more natural set of primitives for describing compu-
tations of Turing machines, since thergautation mechanism directly refers to
the next moment of time and adjacent squares on the tape. Thus, it is not
surprising thatx . is the appropriate class for extending Immerman's and

Vardi's result to logics without.

Theorem 2. E+LFRaptures PTIME for K. If K ismodified by taking the
successor as a unary function S(with S(End) = End) rather than a binary
relation, then in fact QF+LFPcaptures PTIME.

It would be possible to prove this by going through Immerman’s proof and
verifying thatV is not needed foc andd is not needed if the successor is

available as a function. We shall, however, use a different approach. In view of
Immerman's and Vardi's theorem, Thenr2 is an immediate consequence of
the following result.
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Theorem 3. Onstructuresin K, E+LFPcan defineV and is therefore equiva-
lent to FO+L FP. When the successor is available as a function, then QF+LFP
can define 3.

Proof. Both parts are proved by using the least fixed point operator to search
through the structurehereby simulating a quantifier. For the first part, we have

thatVxo(X) is equivalent to

LETP(X) «— ¢(X) V (x=0V Iy(Sy, X) A P(y))) THEN P (End).

For the second part, we must, for technrealsons, search through the structure
backward; Ixe(X) is equivalent to

LETP(X) « ¢(x) v P(S(x)) THEN P(0). -
We shall see in the next section that the us8 ifther than < was essential for
the results of this sectior8is not E+LFP-definable in ({0, 1, .. n}, <).
4. A preservation theorem

A result of classical model theory (see (Chang &; Keisler 1973) page 34)
characterizes the formulas & up to logical equivalence as those first-order
formulasp whose truth is preserved by extensions, i.e4 i§ a substructure of

B (written A € B) and A=o[u] (wherep maps variables to values in), then

BEo[p]. We shall show that formulas &ftL FP have the same preservation

property. We shall also prove that truth &L FP-formulas is preserved when
the relations that interpret positive predicate symbols are increased. It is
convenient to prove these results (and somewhat more) simultaneously; to do
this we introduce the notion of homomorphism that is appropriate for our
signatures that specify negatabted positive predicate symbols.

Let A andB be two structures for the same signaturé\ function h: A —B

is ahomomor phism if
(a) h commutes with functions:

h(fa(@s, . . . ,ay) =fa(h(@), . . . ,h(a))

for all function symbol$ of c and all a, . .. ,a,¢ A.
(b) h preserves positive relations:

Ra(@y, . . . ,a) =Re(h(a), . . . ,h(@y))

for all positiveR and all ay, . . . ,anc A.
(c) h preserves and reflects negatable relations:

Ra(@y, - - - ,an) & Re(h(@), - - . ,h(@n))

for all negatablek and allay, . . . ,a,€ A .
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Two types of homomorphisms will be of particular importance to us. First, if
A € B, then the identity function aa is a homomorphism from to B.

Second, if A andB are identical except that,feome positive predicate
symbols, the interpretations i are supersets of those.dnthen again the
identity function is a homomorphism framto 3. If equality is negatable is,

then clause (c) requires homomorphigmbe one-to-one, and it follows easily
that every homomorphism is a composite of homomorphisms of these special
types and an isomorphism. If, on the other hand, equality is posittyeéhirn

our definition admits homomorphisms that are not one-to-one.

Theorem 4. Let h: A — Bbeahomomorphism, p a function assigning values
in Atovariables, and ¢ aformulaof E+LFP.If Ak o[u], then BEo[hoy]

Proof. We first observe that, by induction on terms using clause (a) of the
definition, h(ta[u]) = tg[hop] for all termst. We then prove the theorem by

induction on¢. Clause (b) and the> half of clause (c) give the result for
atomic ¢, and the other half of (c) takes care of negations. The cases of
conjunction, disjunction, and existemtimantification are easy (just as in
first-order logic). It remains to prove the theorem wheris obtained by
LET...THEN... from formulas for which ththeorem is true. To simplify
notation, we suppose that is

LEA(X) < & THEN y
whereP is unary. (The general case is handled the same way.) Of cdward,
vy are formulas of the signatuseu { P} whereP is positive.

Let A" (4) S A and A* (B) € B be as in the definition of the semantics of
LET...THEN... in Section 1. We shahow, by induction on the ordinal a,
thath is a homomorphism from® = (A, A" (4)) to B* = (B, A" (B). In view of
the assumption that is a homomorphism from to B, what we must prove is
(sinceP is positive) thath(A®" (A4) € A* (B). The cases of 0 and limit ordinals
are trivial, so suppose= B+ 1 andhis a homomorphism from4” to BF.

Then, for anya e A,

ae A" (A) < APe §[alx; otherwise p]
= BPe §[h(a)/x; otherwise hoy]
& h(a) e A* (B),
where the two= 's are from the definition " and the=> is from the

hypotheses that the theorem holdsdfand thath is a homomorphism from
AP to BP. This completes the proof tHats a homomorphism from® to B

In particular, takinga. large enough, we have thatis a homomorphism from
A” to B”. Thus, applying the induction hypothesis that the theorem holds
for y, we have

A"Eylu] < B” Eylhoyl],
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ie.,
Arolu] @ BEo[hey],
as desired. This completes the proof of the theorem. -

We obtain two corollaries by applying the theorem to homomorphisms of the
special types described above.

Corollary. With A, u, and ¢ asinthetheorem, if A ro[u] and A€ B,

then B E o[p].
Corollary. With A, u, and ¢ asinthetheorem, if Bisidentical with A

except that some positive relations have been enlarged, and if A E ¢[p], then
BEo[u].

The last corollary says tht-L FP-formulas are monotone with respect to
positive predicate symbols. Itgtifies the terminology "LFP".

The first corollary shows #t, as we claimed earlidg;+L FP cannot in general
express universal quantification. Indeed, in the signature having just one unary
predicate symbdp, theFO-formulaVxP(x) is not preserved by extensions,

hence is not expressible B¥L FP. The theorem similarly implies that (in the
notation of Section 3) &nd, and S are notE+L FP-definable on structures of
the form ({0, 1, . . . n}, <), for there are homomorphisms between such
structures that fail to preserve Bnd, and S, the simplest example is the
function from {0, 1} to {0, 1, 2, 3, 4} that sends 0 to 1 and 1 to 3. ThukFP
can define < fronsbut cannot defin&from <, the exact opposite of the
situation forFO.

The fact thaE+L FP cannot in general express universal quantification should
be contrasted with Theorem 3. The argument for the undefinabiltycahnot

be applied within the clagsconsidered in Theorem 3 because there are no non-
trivial homomorphisms between structurein

Corollary.If a FO-formula and an E+L FP-formula are logically equivalent,
then they are equivalent to an E-formula.

Proof. Such aRO-formulais, by the first corollary above, preserved by
extensions. By the theorem quoted from (Chang &; Keisler 1973) at the

beginning of this section, it is equivalent toEfiormula. =

5. Decision problems and finiteness

In this section, we treat the decision problems for satisfiability and validity of
E+L FP-sentences. In contrast to languagesHikethat are closed under
negation E+L FP does not have its validity and satisfiability problems dual to



31

each other. In factye shall see that fdg+L FP both of these problems are
complete recursively enumerable sets.

The proofs of these facts involve two other results that are of some independent
interest. One gives a connection betwEeh FP and a certain fragment of
second-order logic. Thetwr shows that, when &L FP-formula is satisfied

in a structure, this fact depends on only a finite part of the structure. This also
implies that the iterations involved in the semantics of LET...THEN... always
stabilize at or before stage, the first transfinite stage.

We begin by defining the relevant fragment of second-order logic. In analogy
with the terminology "strictil;'} " used in admissibility theory (see (Barwise
1975)), we define a second-order formula tastbiet V,* if it consists of a string
of universal (second-order) quantifiers over relations, followed by a string of
existential first-order quantifiers, lfowed by a quantifiefree formula. We

write such a formula aéX3y ¢. The word "strict" refers to the restrictions that

the second-order quantifiers are over relations, not functions, and that the first-
order quantifiers are all existential. If either of these restrictions were removed,
the other would become pointless. (With universal quantifiers over functions,
one could use Skolem functions to aclei¢ie effect of universal first-order
quantification; with universal first-order quantifiers, one could restrict relation
variables to range over functions only.)

Theorem 5. Every formula of E+LFP islogically equivalent to a strict V,*

formula.

Proof. We proceed by induction di&+L FP-formulas. The atomic and

negation cases are trivial, and the conjunction and disjunction cases are handled

by the familiar prenexing operations. The existential quantifier is handled
by a standard technique for moving second-order quantifiers to the left past

first-order ones; specificallzvXo is equivalent tovX 320", where X' has
one more argument place thdnand wherd' is obtained front by replacing
X with X' and insertingz as the extra argument.

Finally, consider (for notational convence, as in the proof of Theorem 4)
LET P(x) «<— & THEN ¢, and letA be as in the definition of the semantics of
this formula. Although the definition says that LE{X) < & THEN ¢ is true
in Aif and only ife is true in (4, A*), whereA” is the least fixed point af,
the monotonicity result proved in the last section allows us to equivalently
formulate this condition asi is true in (4, X) for all X such that\(X) € X, since
A” is the smallest suck Therefore, LETP(x) <— 6 THEN ¢ is equivalent to

VP (VX(8 =>P(X)) => ).

If we insert into this formula stridt,* equivalents fob ande, and apply
prenexing operations (including moving second-order quantifiers past first-order
ones as above), we obtain a formula in st¥i¢t form. -
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The converse of Theorem 5 is false, at leastANI?. To see this, recall that
any class of finite structures definableG#nL FP (or evenFO+IFP) is PTIME
recognizable. On the other hand, it isyetmsdefine the class of non-3-colorable

graphs, a co-NP complete class, by a sttitformula.

As our first application of Theorem We characterize the recursion-theoretic
complexity of the decision problem for validity EL FP.

Theorem 6. The set of logically valid E+L FP-sentences is a complete recur-
sively enumerable set. The set of E+L FP-sentences truein all finite structures
isa complete co-r.e. set.

Proof. Notice first that the proof of Theorem 5 gives a recursive translation
from E+LFP-sentences to equivalent sttt sentences. The validity of
VX3y ¢ is equivalent to the validity oBy ¢. Thus, we have a recursive many-

one reduction of the validity problem farL FP to the validity problem for
first-order logic (in fact foE). As the latter is recursively enumerable, by
Godel's completeness theorem, so is the former.

To prove completeness, we use the well-known fact that (the duals of) Skolem
normal forms provide a recursive many-one reduction of the validity problem
for FO to that forE. As the former is a completecursively enumerable set and
E+L FP includesE, this suffices to finish the proof of the first assertion.

The second assertion is proved by a similar reduction to well-known facts about
FO. -

Before considering the satisfiability problem L FP, it will be useful to
obtain a model- theoretic finiteness result as a consequence of Theorem 5. In
formulating this result, we use the notatiefF, whereA is a structure andr is

a subset of4, for the setF with the restrictions t& of the relations and
functions ofA4; if F is not closed under some of these functions, then we
restrict their ranges t also, soA |[F involves partial functions.

Theorem 7. Let ¢ bean E + LFP-formula (or just astrict V,* formula), 4 a
structure, and p a function assigning valuesin A to the free variables of ¢,

such that Ak ¢ [p]. Then A hasa finite subset F, containing the (finitely many)
values of u, such that, if Bisany other structurewithF <€ Band A |F = B|F,
then B E o[p].

This result, for strict,' formulas, was known to Mal'cev (1959).

Proof. In view of Theorem 5, it sufés to prove Theorem 7 in the case that
is a stricty,! formula

VX1, . . VX, Elyl . Elyne .
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The assumption that = ¢ [n] can be reformulated as follows. Consider
instance®(b) of 6, obtained by replacing the variabies 6 with (names for)
elementd of A. As 6 is quantifier-free, these irstces can be viewed as for-
mulas of propositional logic, with instances of atomic subformulésasf the
prepositional variables. For those atomic formulas that don't involve the pred-
icate variable¥, a truth value is determined byandp, and we think of each
0(b) as already having these truth values substituted in. So these instances
0(b) of 6 are formulas of propositional logic with propositional variables of the
form X (a). Now the assumption thate ¢ [i] means that, no matter how we

assign truth values to these "propositional variabe&), at least one of the
instance®(b) is true. In other words, the negatiortgb) are not simultane-
ously satisfiable. By the compactness theorem of propositional logic, finitely
many of these negations, say(b), . . ., -9(b;), are not simultaneously satis-
fiable. LetF be the finite subset of obtained by evaluating each of the terms
that occurs i), with each of thds; as values of, and with the values of the
other variables given hy. Then, if3is as in the theorem, exactly the same
unsatisfiable collection {8(b,), . . ., 9(b,)} will occur among the negations of
the instances dfin B . Therefore, every truth assignment must verify at least

one instance df in B, i.e., B VX 3y0. =

Corollary. Asentenceof E+LFP (or astrict V,! sentence) is satisfiableif
and only if it is satisfiable in a finite structure.

Proof. If Ak andif Fis asin Theorem 7, then IBtbe the finite structure
obtained from4 |F by adding one new element *, setting all function values
that were undefined iA |F equal to * inB, and extending the relations .af|F

arbitrarily toB. ThenB|F = A |F, so, by the theoremi3 & ¢. -

The preceding corollary provides an upper bound for the complexity of the
satisfiability problem.

Theorem 8. The set of satisfiable E+L FP-sentences (or strict V,* sentences)
isa complete recursively enumerable set.

Proof. Recursive enumerability is easy to prove, in view of the corollary to
Theorem 7. If a sentence is satisfialthen this fact can be verified by
exhibiting a finite structure that satisfies it.

The proof of completeness is more ditfit and requires soe preliminary con-
siderations concerning a lired sort of universal quarittion that is available

in E+LFP. The idea here is similar to that used in the proof of Theorem 3, but
we can no longer restrict pattention to a class (like€ in Theorem 3) of

particularly well-behaved structures.

Consider a signature that caimts constant symbols 0 akdd and a unary
function symbol S (and possibly other symbols). We would like to consider
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structures from the clagsof Section 3, but, by Theorem 4, Ba&L FP-sentence

can characterize this class. Nehetéess, we can easily expres&irl FP that
End can be reached from 0 by finitely many applicationssof

LEP(X) « x =End v P(S(x)) THEN P(0).

More importantly, we can express that a formp(g holds at 0 anénd and all
the intermediate points in this iteration 8f

LEP(X) < o(X) A (x=End v P(Sx))) THEN P(0).

Thus, although we cannot quantify universally over the whole universe, we can
quantify universally over the (unique) finiechain joining O tdEnd.

It is now a routine matter, which we omit, to use this limited sort of universal
guantification to express the halting of a Turing machine computation by an
E+L FP-sentence. That is, for any Turing machingethere is arfE+L FP-

sentence that is satisfied in a stusetif and only if the structure has an

S-chain from 0 tdend and the other relations of the structure, restricted to

this S-chain, encode (in some standard fashion) a halting computatidroof

a totally blank input tape. The sentence here depends recursividlysornwe

have a many-one reduction of the halting problem to the satisfiability problem
for E+LFP. The completeness of the former therefore implies the completeness

of the latter. 4

We conclude this section with another application of Theorem 7. It provides
additional support for the constructive naturekefl FP. In stating it, we use
the standard notation for the first transfinite ordinal.

Theorem 9. Let A be the operator used in the definition of the semantics of an
E+L FP-formula

LETP,(XY) <84, . . . ,Pi(X") «— &, THEN o.
Then A” = A”.
Proof. For notational simplicity, we give the proof for LIP[X) <— & THEN ¢.
In view of the definitions ofA* andA”, it suffices to prove that(A®”) € A®.

So suppose thate A(A”). By definition ofA , we have 4, A®) £ 6 [a/X].
Apply Theorem 7 to get a finite sub$eof A such that, wheneveB(X) |F =

(A, A°) |Fthen B, X) 5 [a/X]. AsA”is the union of\" over all finite n, each
element of F N A is in someA", and, as$ is finite, onen works for alll
elements of N A® simultaneously. Fix such am Then @, A") |F =

(A, A°) |F. So(A, A") k8§ [a/x]. But this means that
ae A(A") =A™ S A®

as desired. —
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Appendix. U+LFP

For the sake of completeness, we briefly discuss fixed-point logic with the uni-
versal, rather than the existential, quantifier. Notice that, by simply negating
formulas ofE+L FP, we get the logic witl and thegreatest fixed-point op-

erator. We are interested rather in the ldgid. FP with V and thdeast fixed-
point operator.

By aweak substructure of a structure4, we mean the result of taking a substruc-
ture of 4 and then possibly enlarging the relations that interpret some positive
predicate symbols. Then one can show, by inductiod-dnFP-formulas, that

any such formula true id remains true in any weak substructure that contains
the values assigned to the variables. In particular, truth-bfP-formulas is
preserved by substructures. It follows, for example,3kB{x) is not equivalent

to anyU+L FP-formula. In fact, if &O-formula and &J+L FP-formula are
equivalent, then they are also equivalent tb-f@rmula.

By Theorem 3U+L FP-formulas can defing for structures in the clags
provided thatSis available as a function. In fact, it suffices to h&ead
equality as negatable predicate symbols, sixg€x) is equivalent to

LETP(X) «— o(X) V (X# End A Vy (P(y) V = SX, y)) THEN P(0).

(We could also replace the constants 0 Bnd with negatable predicate
symbols.) Thus, on structures of this sort| FP captures PTIME.

The finiteness properties proved in Section 556k FP fail badly forU+L FP.
For example, if the structuréis a linearly ordered set, then the formula

LEP(X) «— Vy (P(y) V -y <x) THEN P(x)

defines the largest well-ordered initial segmentipénd the iteration occurring

in the definition of the meaning of this formula requires an ordinal number of
steps equal to the length of this segment. The same idea shows that, in the
standard model of arithmetic with suitalprimitive recursive predicates taken

as atomic formulag)+L FP can define certain completd,’ sets, the well-

founded parts of recursively enumerable relations. In contrast, by the results of
Section 5E+L FP can define only recursively enumerable sets.
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