
SIAM J. COMPUT.
Vol. 16, No. 3, June 1987

1987 Society for Industrial and Applied Mathematics
005

EXPECTED COMPUTATION TIME FOR
HAMILTONIAN PATH PROBLEM*

YURI GUREVICH" AND SAHARON SHELAHt

Abstract. One way to cope with an NP-hard problem is to find an algorithm that is fact on average
with respect to a natural probability distribution on inputs. We consider from that point of view the
Hamiltonian Path Problem. Our algorithm for the Hamiltonian Path Problem constructs or establishes the
nonexistence of a Hamiltonian path. For a fixed probability p, the expected run-time of our algorithm on
a random graph with n vertices and the edge probability p is O(n). The algorithm is adaptable to directed
graphs.

Key words, average case complexity, NP-hard Hamiltonian circuit, Hamiltonian path, probability,
random graphs, expected polynomial time, expected sublinear time

AMS(MOS) subject classifications. 05G35, 60C05, 68A10, 68A20

Introduction. One way to cope with an NP-hard decision problem iyR(x, y) is
to find an algorithm that is fast on average with respect to a natural probability
distribution on inputs. See in this connection Levin (1984) and Johnson (1984). A
similar approach can be taken if one is interested in exhibiting an object y that witnesses
R(x, y), and not only in the existence of a witness. We consider from this point of
view the following version of the Hamiltonian Path Problem: given a graph with
distinguished vertices Start and Finish, construct or establish the nonexistence of a
Hamiltonian path from Start to Finish. A Hamiltonian path from Start to Finish can
be defined as a linear ordering of all vertices such that Start is the first, Finish is the
last, and every pair of neighbors forms an edge. Without loss of generality, we restrict
our attention to the case when the vertices of the given graph form an initial segment
{0, 1,. , n 1} of natural numbers, Start 0 and Finish n- 1.

Let F(n, p) be the popular probability space of graphs with vertices 0, 1, , n 1
and the edge probability p (Erd/Ss and Spencer (1974)). The probability, assigned to
a particular graph G with vertices 0, 1,..., n-1, is the probability that G is the
outcome of the following experiment: For each pair {i,j} of distinct vertices, toss a

coin with the probability p of the head; declare {i,j} an edge if and only if the head
turns up. Let G,,,p be a random member of F(n, p).

In order to deal with instances of an arbitrary size, consider a function p(n) from
positive integers to the real interval [0, 1]. The spaces F(n, p(n)) can be combined into
one probability space S with respect to a probability distribution 8 on positive integers
(the meaning of 8(n) is the probability that a random graph has exactly n vertices);
however, this may not be necessary for the following reason. The expected run-time

* Received by the editors June 27, 1985; accepted for publication July 26, 1986.

" Electrical Engineering and Computer Science Department, The University of Michigan, Ann Arbor,
Michigan 48109-2122. The work of this author was supported in part by National Science Foundation grants
MCS 83-01022 and DCR 85-03275.

Institute of Mathematics and Computer Science, The Hebrew University, 91904 Jerusalem, Israel.
The work of this author was supported in part by National Science Foundation grant MCS 81-01560. This
paper was written in the fall of 1984 when this author was a visiting professor in both the Department of
Electrical Engineering and Computer Science and the Department of Mathematics, The University of
Michigan, Ann Arbor, Michigan 48109-2122.

486

EXPECTED COMPUTATION TIME 487

of an algorithm on a random member of S with n vertices is bounded by some function
t(n) if the expected run-time of the algorithm on each G.,p(. is bounded by t(n).

There are several algorithms for the Hamiltonian Path Problem in the literature
that almost always (with probability 1 minus the reciprocal of a polynomial in n) work
fast on any G.,p(. where p(n) is sufficiently large to ensure a high probability of the
existence of a Hamiltonian path. Angluin and Valiant (1979) survey the previous
algorithms of that sort and give an elegant faster algorithm of their own; almost always,
their algorithm runs in time O(n(log n)2) on their Random Access Computer. Shamir
(1983) gives a further result of that sort; his algorithm is slower but the requirement
on p is weaker: p(n) >-_ n-l(loge n -I- c 1Oge 1Oge n) where c > 3. Bollobas, Fenner and
Frieze (1985) weakened the requirement on p(n) to the limit; almost always, their
algorithm runs in time O(n4/). The expected run-time of all these algorithms is
exponential with one exception, which is the Bollobas, Fenner and Frieze algorithm
in the case p(n)-> 1/2. (In the technical report of Gurevich and Shelah (1984) we wrote
that, to the best of our knowledge, there are no results in the literature on expected
run-time of algorithms for the Hamiltonian Path Problem. The Bollobas, Fenner and
Frieze paper appeared soon after that.)

We present here our algorithm HPA (Hamiltonian Path Algorithm) for the Hamil-
tonian Path Problem and estimate the run-time of HPA on G.,p in the case when p is
fixed and n is varied. The algorithm constructs or establishes the nonexistence of a
Hamiltonian path from Start to Finish. The exact form of input is not important; for
the sake of definiteness, we suppose that graphs are represented by the adjacency
matrices. It is important that a random access computer is used. It could be, for
example, the randomized Random Access Computer of Angluin and Valiant (1979).

THEOREM 1. There is a positive real number c satisfying thefollowing condition. For
any fixed probability p, the expected run-time of HPA on G.,p is chip+ o(n).

COROLLARY. For every p there is a constant d such that the expected run-time of
HPA on G.,p is bounded by dn/p.

The algorithm HPA is composed of three algorithms HPA1, HPA2 and HPA3.
First HPA1 is applied. If HPA1 fails to solve the given instance of the Hamiltonian
Path Problem, then HPA2 is applied. If HPA2 fails, then HPA3 is applied; HPA3
always succeeds. Let us comment briefly on each of the three algorithms.

The algorithm HPA1 is described in 1. It tries to construct a Hamiltonian path,
and definitely fails if the desired path does not exist. For a fixed p, the expected
run-time of HPA1 on G.,p is cn/p+ o(n) where c is an absolute constant. The constant
c is quite a modest number; its exact value depends on the machine model. For a fixed
p, the probability that HPA1 fails on G.,p is 2**(-O(x/-ff)).

The algorithm HPA2 is described in 2. It tries to construct or establish the
nonexistence of a Hamiltonian path. The idea is to take care of the troublesome vertices
(those with relatively small degree) first. The run-time of HPA2 on a graph with n
vertices is O(n2). For a fixed p, the probability that HPA2 fails on HPA1 (G.,p), assuming
that HPA1 has failed on G.,p, is 2 -3"+0(") where HPAI(G.,p) is the output of HPA1
on G.,p in the case that HPA1 fails on

The fastest (in the worst case) known algorithm for the Hamiltonian Path Problem
is the dynamic programming algorithm (Bellman (1960), Held and Karp (1962)) which
solves the Hamiltonian Path Problem in time 2". n (1) where n is the number of
vertices. We could adapt it as our third algorithm HPA3. A negative feature of the
dynamic programming algorithm is that it requires exponential space. Our third
algorithm HPA3, described in 3, solves the Hamiltonian Path Problem for graphs
with n vertices in time 22")< 2(I) and in space O(n); here 1og2 n. (This time bound

488 Y. GUREVICH AND S. SHELAH

is still substantially lower than the time bound for the straightforward exhaustive
search.)

It is easy to see that, for a fixed probability p, the expected run-time of HPA on
Gn,p is the expected run-time of HPA1 on Gn,p plus o(n).

The following claim shows that, in a sense, our algorithm has the best possible
expected run-time.

CLAIM. Let A be any algorithm for the Hamiltonian Path Problem whose input is
provided by an oracle: given a pair of vertices u, v as a query, the oracle answers whether
{u, v} is an edge. For every positive e there is no such that for every n >-no and every
p > (3 loge n)/n, the expected number of queries during the run ofA on G,p is at least
(1-e)n/p.

Proof. Let Q be the number of different queries, and P be the number of different
queries answered positively. The expectation E(P) equals p x E(Q); hence E(Q)-
p-IE(p). If there is a Hamiltonian path (from the designated Start to the designated
Finish) then P>-n-1. Since p>(3 logen)/n, the probability of the existence of a
Hamiltonian path converges to 1 when n grows to infinity (Bollobas (1979), Posa
(1976)). [3

The algorithm HPA can be adapted to directed graphs. For definiteness, we work
with the analogue A(n, p) of F(n, p) which comprises directed graphs D with vertices

0, 1, , n 1 and at most one edge between any two vertices. The probability, assigned
to a particular D, is the probability that D is the result of the following experiment"
Given distinct vertices u and v, toss an unbiased coin to determine which of the two

ordered pairs (u, v), (v, u) is a candidate to be an edge. Having a candidate (x, y),
toss a coin with the probability p of the head; declare (x, y) an edge if and only if the
head turns up. Let On,p be a random member of A(n, p). In 4 we indicate changes
necessary to turn HPA to an algorithm HPAd for solving the Hamiltonian Path Problem

for directed graphs.
THEOREM 2. There is a positive real number c satisfying thefollowing condition. For

a fixed probability p, the expected run-time of HPAd on Dn,p is cHip+ o(n).
The expected run-time of HPA on a G,p<) remains polynomial if p(n) changes

with n but does not decrease too fast. We do not want to state explicitly the rate of

decrease that leaves the expected run-time of HPA on a G.p,) polynomial: the

algorithm HPA and its exposition were designed with the case of a fixed p in mind.

A proper treatment of the case of decreasing p(n) will require a different algorithm.
Conjecture. There is an algorithm for the Hamiltonian Path Problem with poly-

nomial (in n) expected run-time on any Gn,p.
This paper was published first as a technical report (Gurevich and Shelah (1984)).

0. Preliminaries. Consider two coloring algorithms.
The first coloring algorithm. Given a graph do the following. For every pair {u, v}

of distinct vertices, toss an unbiased coin (which will be referred to as the red coin).
If the coin turns up a head and {u, v} is an edge, then declare {u, v} a red edge.

The second coloring algorithm. Given a graph do the following. For every pair
{u, v} of distinct vertices, toss three unbiased coins: an orange coin, a yellow coin,
and a green coin. If the orange (resp. yellow, green) coin turns up a head and {u, v}
is an edge then declare {u, v} an orange (resp. yellow, green) edge.

The first coloring algorithm turns the given adjacency matrix M into a "red"

adjacency matrix M’. For each pair {u, v} of distinct vertices, M’ contains one bit of
information which tells us whether {u, v} is a red edge or not. We introduce a new

probability space F’(n, p). Let G be a graph on {0, 1,. ., n- 1} with adjacency matrix

EXPECTED COMPUTATION TIME 489

M and red adjacency matrix M’. The probability of G in F’(n,p) is the product of
the following:

The probability that M is the adjacency matrix of a random member ofF(n, p), and
The probability that, given M, the first coloring produces M’.
The two coloring algorithms together turn the given adjacency matrix M into an

extended adjacency matrix M*. For each pair {u, v} of distinct vertices, M* contains
five (dependent) bits of information: the original bit saying whether {u, v} is or is not
an edge, the "red bit" saying whether {u, v} is or is not a red edge, and three other
"color bits." We introduce a new probability space F*(n, p). Members are graphs with
vertices 0, 1,. ., n- 1 and both uncolored and colored edges; an edge may have any
subset of the colors red, orange, yellow, green. (Formally, members of F’(n,p) are
extended adjacency matrices.) Let G be a graph on 0, 1,.-., n-1 with adjacency
matrix M and extended adjacency matrix M*. The probability of G in F*(n, p) is the
product of the following:

The probability that M is the adjacency matrix of a random member ofF(n, p), and
The probability that, given M, the two coloring algorithms produce M*.
Given the adjacency matrix of a graph, we would like to apply the two coloring

algorithms first and then to apply the rest of HPA to the resulting extended adjacency
matrix. Unfortunately, coloring takes too much time. To get around this problem, HPA
tosses a C-coin for a pair of different vertices when the pair is examined for being a
C-edge for the first time. Logically, coloring precedes the other parts of the algorithm
HPA, but operationally its work will be divided between HPA1 and HPA2:HPA1 will
do some of the red coloring, and HPA2 will do all orange, yellow and green coloring.

Remark. One may alter the coloring in different ways. Since HPA1 uses only red
edges to construct a Hamiltonian path and since the expected running time of HPA
is defined largely by the expected running time of HPA1, one may like to increase the
probability of red color. Actually, red coloring can be skipped altogether because only
a small fraction of edges is examined by HPA1, but then HPA2 should be substantially
modified.

DEFINITION. A primitive boolean combination of events El, , E,, is the intersec-
tion of events X1,.. , X,, where each Xi is either the event Ei or the complement of
the event E. An event E is realizable if its probability is positive.

The probability that an arbitrary pair { i, j} of distinct vertices is a red (respectively,
orange, yellow, green) edge is p/2.

LEMMA 0.1. For every k { 1, 2, 3} there is a positive real number Ck (not depending
on p or n) which satisfies the following conditions. Suppose that J { red, orange, yellow,
green }, C J, K is a subset ofJ- {C} ofcardinality k, G is a random member of F*(n, p),
{ u, v} is a pair of distinct vertices of G, and E is the event "{ u, v} is an edge of color C."
Then

(a) The probability of E, assuming any primitive boolean combination of the events
"{u, v} is an edge of color D," where D K, is at least Ck’p;

(b) The probability of E, assuming any realizable boolean combination of the events
"{u, v} is an edge of color D," where D K, is at least Ck’p;

(C) Let H be any realizable boolean combination of the events "{x, y} is of color
D" excluding E. Then P[EIH]>-c.p.

Proof (a) An easy and direct computation of conditional probabilities establishes
the statement.

(b) A realizable boolean combination of some events equals a disjoint sum of
primitive boolean combinations of those events. Now use the fact that if Y, Z are
disjoint realizable events and P[X Y]=> r, P[X IZ] > rthen P[X I, Yt.J Z]=> r. We verify

490 Y. GUREVICH AND S. SHELAH

here this simple fact.

P[X YU Z] P[X(Yk.J Z)]" P[Yk.J Z] (P[XY] + P[XZ]) (V[Y] + P[Z])

P[XY] (P[YU Z])+ P[XZ] (P[YU Z])

P[xI Y] P[YI Yt_J z]+P[X IZ] P[zI Yt_J z]_-> r.

(c) Without loss of generality, H is a primitive boolean combination. Therefore
H is the intersection AB where A is an event about {u, v} and B is an event about
other pairs of vertices. Thus,

PIE lAB]= P[EAB]/P[AB]=(by virtue of the independence),

(PLEA] x P[B])/(P[A] x P[B]) PIE IA]-> Ck’p. l-1

The algorithm HPA will use the four colors in the order of spectrum. This motivates
the following definition. Let c, c2 and c3 be the maximal numbers satisfying Lemma
0.1. Then Pred =p/2, Porange--Cl’p, Pyenow--C:z’p, and Pgreen-- C3 P" For each color C,
let qc 1 -pc. It is easy to check that Pred > Porange > Pyellow > Pgreen"

In the rest of this section we prove a couple of auxiliary propositions about

probabilities. The first one helps to deal with families of events that are independent
only to a certain degree.

PROPOSrrON 0.1. Let 0 < r < 1 and 0 <-_ fl <= 1.
(a) Consider m Bernoulli trials with the probability r ofsuccess in a single trial Then

Plat most (1-fl)mr successes]<= e**(-fl 2mr/2

P[at least (1 + fl)mp successes] <= e**(-2mr/3).

(b) Let El," ,Em be events in a probability space. Suppose that the probability of
each Ej, assuming any primitive boolean combination of the events Ej with j < i, is at

least r. Then

Plat most (1- fl)mr events Ei happen]’<- e**(-fl2mr/2).

Proof. (a) We borrow the two inequalities from Angluin and Valiant (1979). They
follow from Chernoff’s bound (Chernoff (1952)).

(b) Let D,k, be the collection of sample points s such that s belongs to at most

k among events E/, ., E+. In virtue of (a), it suffices to prove that for all j, k.
and H, if 1 <= _-< m, O_-<j -<_ m I, 0 <= k _-< and H is realizable then P[Dj,k, II H] <-

,{b,l" O<-i <- k} where b, is the probability of successes in L Bernoulli trials with

probability r of success in a single trial.
The proof is by induction on I. Basis of induction:

P[D,o,1 In] P[/j+l HI -< 1 r bo,1; P[D,I,1 H] =< 1 bo,1 + b1,1.

Induction step. Let Ho H, Hi+ H ’] /j+i+l for </. if D,o, is realizable then
all Hi are realizable and P[D,oa H] 1-I{P[/+i+l Hi" < 1} <= (1 r)1= bo,l; otherwise
P[Dj,o,llH] 0 <-_ bo, t. It remains to prove that P[D,k+,t+ H] -<_ E{bi,+" 0 -<_ -<_ k + 1 }.
If a P[Ej+I H] < 1 then H1 is realizable and

P[Dj,k+l,l+ HI x P[Dj+I,k, H Ej+I]

+ (1 c P[D+1,k+ 1,1 H1 (by the induction hypothesis)

EXPECTED COMPUTATION TIME 491

--< a xX{b,,/’O_-< <- k}+(1-a) xX{b,,t’O_-< i_-< k+l}

(which decreases with a and therefore)

<= r x E{b,l "0 <- <-- k}+ (1 r) x E{b, "0_-< -< k + 1}
(as in the case when the events E are truly independent)

E{b,/+l "0_-< k / 1}.
If a 1 skip the second expression in the above computation. D
Note. One of the referees suggested as reference (Graham (1983)) in connection

to the proof of Proposition 0.1.
The next proposition is generalization of the Bottleneck Lemma of Angluin and

Valiant (1979). It can be used often as an alternative to Proposition 0.1. If S is a set
of strings, let Pref (S)= {s’: s’ is a prefix of some string s S}. A prefix s’ of a string
s is proper if Is’l < Isl.

PROPOSiTiON 0.2. Let
S be a set of strings over some finite alphabet A,
k be a natural number and 0 <-Pl, ",Pk <- 1,
E be an arbitrary realizable event,
at l, a2, a3, be random variables taking values in A.
Suppose that for each s S there are proper substrings Sl,’", Sk of S such that

< and for each si, if l-Is, l/ 1 then P[Sial Pref (S)lE]<--p,.
Then EssP[al eels slE]<-p p.
Proof. The proof follows by induction on k. The case k 0 is trivial: the product

of zero factors is supposed to be equal to 1.
Suppose k > 0 and the proposition is proved for k-1. For each s S fix some

appropriate substrings Sl,... Sk" let T {Sk’S S. If T then there are proper
substrings tl,..., tk- of such that It, <’" < It-l, and for each t,, if It,[+ then
P[tia Pref T) IE <-_ Pi. If T then P[taltl+l Pref (S) IE <= Pk. Thus,

XsP[a cll slE]<=X,(P[a al,l= tlE]P[tal,l+ Pref (S) El)

=<(XtrP[a"" al,l=tlE])Xpk <--_pl "" Pk-l "Pk. [3

Following Angluin and Valiant, we explain the intuition behind Proposition 0.2.
Ignore event E and suppose that p Pk P. Think about Pref (S) as the set of,
say, violet nodes on the tree of strings over A. Say that a violet node is a bottleneck
if the probability of drawing a violet successor of is at most p. The proposition says
that if there are at least k bottlenecks on the way to each S-node then the probability
to arrive from the root to S is at most p k.

1. Algorithm HPAI. The algorithm HPA1, described in this section, attempts to
construct an (all-red) Hamiltonian path in a given graph from one distinguished vertex
Start to another distinguished vertex Finish. HPA1 does not attempt to establish the
nonexistence of a Hamiltonian path.

To simplify the exposition, we assume that the given graph is colored red and the
red adjacency matrix is given. The assumption will be removed at the end ofthe section.

The description of HPA1 is interleaved with some analysis. We fix a probability
p and analyse the run of HPA1 on a random member of some F’(n, p). We will prove
that the expected run-time is cn/p+ o(n) for some absolute (i.e. not depending on p)
constant c, and that, almost surely, HPA1 succeeds in constructing an all-red Hamil-
tonian path. In this section, an event E(n) will be called negligible if its probability
is 2**(-O/(x/-ff)), and almost sure if its complement/(n) is negligible.

492 . GUREVICH AND S. SHELAH

Remark. The bound 2**(-O(x/-ff)) is chosen somewhat arbitrarily. One can play
with this bound. For example, v/-ff can be replaced by (log2 n)2 or any n with e < 1;
HPA1 is easily adjustable. However, the algorithm HPA1 definitely fails if G does not
have a Hamiltonian path from Start to Finish. Thus the probability of failure is not
less than the probability (l-p)"-1 of a vertex to be isolated.

The algorithm HPA1 works in several stages.

Stage O. Create four lists:
Even, consisting of only one vertex, namely the vertex Start;
Odd, consisting of only one vertex, namely the vertex Finish;
Even Outback, consisting of all remaining even vertices; and
Odd Outback, consisting of all remaining odd vertices.

To simplify exposition, we ignore rounding reals (i.e. we ignore necessary applica-
tions of the floor and ceiling functions [...J and [...]).

Stage 1. Extend Even by means of sweeps through Even Outback. During one
sweep, for each Even Outback vertex v in turn, try to extend Even by means of v: if
the pair {Last (Even), v} is a red edge then remove v from Even Outback and make
it the new Last (Even). Halt when an idle sweep (a sweep that does not extend Even)
is discovered or Even Outback is emptied. If Even Outback contains _>-V vertices
then go to HPA2.

LEMMA 1.1. The expected time of Stage 1 is cn/p+o(n) for some c, and almost
surely HPA1 succeeds on Stage 1, i.e. almost surely <x/-ff vertices are left in Even Outback.

Proof. On stage 1, HPA1 repeatedly makes attempts to extend Even by an Even
Outback vertex. The total number of attempts is bounded by n2. The expected number
of attempts is n/pred+O(n). For, if an idle sweep is not discovered within n/pred
attempts, then almost surely Even acquires all even vertices: use Proposition 0.1 with
m n/prod, fl =1/2 and r=prd. Since every attempt takes only bounded many steps,
the expected time of Stage 1 is chip+ o(n) for some c.

Suppose that _>-v/-ff vertices are left in Even Outback after Stage 1. It means that
there is a vertex x (the final Last (Even)) such that examining =>v/-ff different pairs
{x, v}, not examined earlier, reveals that none of them is a red edge. The probability
of such an event is _-< n x (qred**X/rff) SO that the event is negligible.

Stage 1’. Extend Odd similarly, but place Odd Outback vertices at the beginning
of Odd rather than at the end. In particular, Finish remains the last member of Odd.

Stage 2. Concatenate an initial segment of the current list Even with a final
segment of the current list Odd into one path P. Let x be the ith element of Even
from the end, and let yg be the jth element of Odd (from the beginning). Try pairs
{Xo, Yo}, {Xo, Yl}, {Xl, Yo}, etc. one after another to find one that is a red edge. The
order is first by the sum of indices and then lexicographically. Halt when a red edge
{xi, yj} comes along or when i+j reaches x/. If a red edge {xi, yj} is discovered, then
use the edge to concatenate the initial segment [Start, x] of Even and the final segment
[y, Finish] of Odd into one Path P, then return x,..., xi_ to Even Outback, and
return y,..., y)_ to Odd Outback. If i+j reaches v/-ff go to HPA2.

LEMMA 1.2. Almost surely, HPA1 succeeds on Stage 2 (if it arrives there). The
expected time of Stage 2 is bounded by a constant (which depends on p).

Proof. The proof is clear.
Stage 3. Insert Even Outback vertices to P, one by one, by means of one sweep

through P. In the following procedure, Pred is the predecessor function defined by P.
1. Set x := Last (P);
2. If Even Outback is empty then halt else set v := First (Even Outback);

EXPECTED COMPUTATION TIME 493

3. If x is one of the first 4 vertices in P then go to HPA2;
4. If both (Pred (x), v and {v, x) are red edges

then place v into P between Pred (x) and x, set x :- Pred (x),
drop v from Even Outback, go to 2

else if (Pred (x), v) is a red edge then set x :- Pred (x), go to 3
else set x :- Pred (Pred (x)), go to 3.

LEMMA 1.3. The run-time ofStage 3 is bounded by some cn where c does not depend
on p. Almost surely, HPA1 succeeds on Stage 3 (if it arrives there).

Proof. The first statement is obvious. We prove the second.
First let us review the situation at the beginning of Stage 3. The Even Outback

contains less than 2v/-ff vertices which are all even. P has a tail of at odd vertices plus
Finish, the length of the tail is at least (n/2)- 2x/-ff. If v is an Even Outback vertex
and x belongs to the tail of P then the pair (v, x was not looked at earlier, hence
a[{v, x} is a red edge] =Pred. Let m=(1/2)x((n/2)-2x/-ff).

On Stage 3, HPA1 repeatedly makes attempts to insert an Even Outback vertex
into P. Let Ei be the event that either HPA1 does not make the ith attempt (i.e. Even
Outback was emptied during previous attempts) or HPA1 makes the ith attempt and
the ith attempt is successful. Obviously, the probability of Ei, assuming any primitive

2boolean combination of the previous events, is at least r=Pred. By Proposition 0.1,
almost surely more than mr/2 events E happen. Hence, almost surely HPA1 succeeds
on Stage 3.

Stage 3’. Similarly insert the Odd Outback vertices in P.
Let us summarize the analysis of HPA1 in the following theorem.
THEOREM 1.1. There is a positive real number c satisfying the following condition:

Fix a probability p. Let G be a random member of the probability space F’(n, p) for some
n. The expected run-time of HPA1 on G is cn/p + o(n), and the probability that HPA1
fails on G is 2**(-O(v/-ff)).

Proofi The proof is clear, fl
To simplify the exposition, we have supposed above that the input to HPA1 is a

colored graph whereas in effect the input is an ordinary graph and HPA1 should
perform the red coloring.

THEOREM 1.2. There is a positive real number c satisfying the following condition.
Fix a probability p. Let G be a random member of the probability space F(n, p) for some
n. The expected run-time of HPA1 on G is cn/p/ o(n), and the probability that HPA1
fails on G is 2**(-O(v/-ff)).

Proofi It is easy to see that our analysis of HPA1 remains valid; in particular the
three lemmas remain valid. The only difference is that the minimal appropriate constant
c should be a bit larger to account for time spent for red coloring.

2. Algorithm HPA2. The polynomial time algorithm HPA2, described in this
section, attempts to construct or to establish the nonexistence of a Hamiltonian path
in a given graph from one distinguished vertex Start to another distinguished vertex
Finish.

To simplify the exposition, we suppose that the given graph is colored and is
given by means of the extended adjacency matrix. The assumption will be removed at
the end of this section. Our estimations of the run-time of HPA2 and the chances of
HPA2 to succeed will remain true under the assumption of any realizable boolean
combination of the events "{u, v} is a red edge." In particular, they will remain true
under the assumption that HPA1 fails on G, which is a boolean combination of the
events "{u, v} is a red edge" because HPA1 works only with red edges.

494 Y. GUREVICH AND S. SHELAH

Again, the description of the algorithm is interleaved with some analysis. We fix
a probability p and analyse the run of HPA2 on a random member G of the probability
space F*(n, p) where n is arbitrary but not too small; we will take for granted, for
example, that n > 2 + 3/(-log2 qgreen)"

HPA2 uses orange, yellow and green colors to construct a Hamiltonian path, and
works in several stages. As in 1, we will often ignore rounding reals in order to
simplify exposition. Let V be the set of vertices of G and log2 n.

Stage 1. Compute the set T (for "troublesome") of vertices with small orange,
yellow or green fan. For each vertex v, let M(v) min {the number of C-edges incident
to v: C is orange, yellow or green}. Compute T’={v’M(v)<nl-2}. If IT’I-_>
3/(-log2 qgreen) then go to HPA3, else set T:= T’U {Start, Finish} and output T.

LEMMA 2.1. The time of Stage 1 is O(n2). The probability that HPA2 fails on
Stage 1 (i.e. IT’l-_>3/(-log qgreen)) is bounded by 2-3"+{".

Proof. The first statement is obvious; we prove the second.
Let E be any event "(u, v} is a C-edge" where u, v are distinct vertices and

C e {orange, yellow, green}, and let q qgn. By Lemma 0.1 and the definition of
qg, the probability of E (which is the complement of E), assuming any realizable
boolean combination of the events "(x, y} is a D-edge" different from E, is at most q.

Let m tl1-2. For each vertex v T’, there are a color C {orange, yellow, green}
and a set S c__ V-{v} of at most m- 1 vertices such that there are no C’-edges between
v and (V-{v})-S. Hence,

and

log2 P[I T’I >- k]<_ k[log2 3+ ml-(n- m)(-log2 q)].

Hence log2 a[IT’l->3/(-log2 q)]<--3n+o(n). [3

Stage 1 of HPA2 is a special procedure which outputs the set T of troublesome
vertices. The extended adjacency matrix and the set T constitute the input for the rest
of HPA2. Let F*r(n, p) be the subspace of F*(n, p) defined bythe given set T; a member
A of F*(n, p) belongs to F*r(n, p) if and only if the given T is the output of Stage 1
applied to A. In the rest of this section, we work with a random member G of F*(n, p).

PROPOSITION 2.1. Let numbers cl, c2 and c3 satisfy Lemma 0.1. Suppose that
J {red, orange, yellow, green} and C {orange, yellow, green},
K is a subset ofJ-{C} and k= [K[,
{ u, v} is a pair of distinct vertices in V- T,
E is the event "{u, v} is an edge of color C,"
H is a realizable boolean combination of events "{x, y} is of color D" excluding E.
Then PIE H] => c. p.
Proof. Without loss of generality, we may assume that H is a primitive boolean

combination: see the proof of statement (b) of Lemma 0.1. Let a be the cardinality of
the set {x V-{u, v}: {u, x} is an edge of color C with respect to H}, and b be the
cardinality of the set {x V-{u, v}: {v, x} is an edge of color C with respect to H}.
Let tn n1-2. If a < m 1 then u T which is impossible; hence a _-> m 1. Similarly,
b_->m-1. If a=m-1 or b-m-1 then P[EIH]=I. Suppose a_->m and b_->m.

Without loss of generality, in the probability space F*(n, p), hypothesis H implies the

EXPECTED COMPUTATION TIME 495

event GF*r(n,p). Therefore the desired conditional probability P[E[H] can be
computed in F*(n, p). Now use statement (c) of Lemma 1 in 0. l-]

In order to motivate the next definition, let us notice that any Hamiltonian path
P and any set U of vertices give rise to a family {Pu: u U}, where Pu is the maximal
segment of P such that u P and U contains at least one of any two neighboring
elements of P.

DEFINITION. Let U be a set of vertices. A family F of disjoint (having no common
vertices) paths is an envelope for U if

(a) U U F;
(b) Every U-vertex, different from Start and Finish, is an internal vertex of some

F-path;
(c) If Start belongs to U then it is the first element of some F-path, if Finish

belongs to U then it is the last element of some F-path, and if both Start and Finish
belong to U then they belong to different F-paths unless U V and [FI 1;

(d) If u, v are neighbors in some F-path then u U or v U.
Stage 2. Construct an envelope F for T, or establish the nonexistence of such an

envelope. The desired envelope is constructed by brute force but we should be a little
careful: even though T is small, there may be relatively many vertices adjacent to
T-vertices. For each vertex v, let Fan (v) be the number of all edges incident to v.

1. Set X := T and List := Empty.
2. While there is v X with Fan (v)=>31xl do the following:

Make one such v the head of List and set X := X-{v}.
3. Find an envelope F for X or the nonexistence of such an envelope by exhaustive

search. (This is possible because there are -<-31T[2 vertices v such that v belongs
to X or is adjacent to a vertex in X.) In the negative case write "There is no
Hamiltonian path from Start to Finish," and halt.

4. While List Empty do the following:
4.1. Set v := Head (List), List := Tail (List).
4.2. Extend F to an envelope for X t_J {v}. Notice that (.J F contains at most

3[xl vertices whereas v is adjacent to at least 3(Ixl + 1) vertices. If v Start
and v is the first vertex of some P F, or v Finish and v is the last vertex
of some P F, or v is an internal vertex of some P F then do nothing,
otherwise do the following. If v is an end of some P in F then pick
u V-(.J F adjacent to v, and extend P by the edge {v, u}. If v (.J F then
pick
u {x: x V- (.J F, x is adjacent to v, and x Finish},
w {x: x V- 12 F, x is adjacent to v, x Start, and x u}
and extend F by a new path (u, v, w).

4.3. Set X := X [.J { v}.
LEMMA 2.2. The time of Stage 2 is O(n).
Proof The proof is clear.
Remark. In connection to the case of decreasing p(n), one of the referees was

interested in the run-time of step 3. We describe a variation ofthe dynamic programming
algorithm (Bellman (1960); Held and Karp (1962)) to carry out step 3. Let U=
{v V- T: v is adjacent to a vertex in T}. A chain P of vertices from T t_J U will be
called a pseudo-path if (a) Start is the first vertex in P, (b) if v is the successor of u

in P but {u, v} is not an edge then {u, v}_ U, there is an edge between u and its
P-predecessor, and there is an edge between v and its P-successor unless v is the last
in P, (c) if v is the successor of u in P and {u, v} is an edge then {u, v} f’) T , (d)
if Finish belongs to P then T__ P and Finish is the last in P. The idea is to compute

496 Y. GUREVICH AND S. SHELAH

a function f whose properties are described below. The domain off consists of triples
(X, Y, v) where {Start}c_ X c_ T, Y c_c_ U, YI-<_2IX l, and v X t_l Y. Each f(X, Y, v) is
either a pseudo-path P such that X c_ p and v is the last in P, or the string "The
desired pseudo-path does not exist." Compute f by induction on IX I. Turn any
pseudo-path f(T, Y, Finish) into the desired envelope for T; if no f(T, Y, Finish) is a
pseudo-path then write "There is no Hamiltonian path from Start to Finish" and halt.
The run-time of this algorithm is bounded by Idomain (f)l times a polynomial in n.

Stage 3. Extend F-paths using orange edges. Let P1,’’’, Pk be the F-paths
where Start First (P1), and Finish Last (Pk). Obviously, k-< T[. The orange
fans of vertices in V-T are at least n/12; in particular, the oringe fans of
Last (P1),..., Last (Pk-), First (P2),""", First (Pk) are at least nil. The union of the
paths P,..., Pk contains less than 3IT[vertices. Find the maximal rn such that

31TI+ 2re(k-1)=< nil2. Using only orange edges, extend each path P2,..., Pk by an
additional final segment oflength rn and extend each path P, , Pk- by an additional
initial segment of length rn in such a way that the extended paths P,. , Pk remain
disjoint.

LEMMA 2.3. The time of Stage 3 is O(n).
Proof. The proof is obvious.
Stage 4. Sew the paths P1, ", Pk into one path Qo using yellow edges. For < k,

let Ai be the final tenth part of Pi; for j > 1, let Bj be the initial tenth part of P. For
each < k, find x A and y B/ such that {xi, yi} is a yellow edge, then throw from

Pi the successors of x and throw from P/ the predecessors of y. In the case of failure
(for at least one i) go to the algorithm HPA3; in the case of success sew the (possibly
shortened) paths P,..., Pk into one path Qo using the yellow edges {x, yi}.

LEMMA 2.4. The time ofStage 4 is O(n/ /-4). The probability offailure is bounded
by 2**O(- n2//--4)o

Proof The proof is clear. The expected computation time is bounded by a constant

(which depends on p).
Stage 5. Partition V-Qo into disjoint paths Q, Q2," satisfying the following

condition: either Q/I is a circuit (a closed path) of length at least ni-2/2 or each of
the two end-points of Q/ is adjacent to at least nl-2/2 vertices in Uj__< Q. Assuming
that Q,. ., Q have been constructed, U U__< Q, and V- U , we construct
Qi/ using, say, yellow edges.

Pick a vertex in V- Ui and set X equal to the path consisting of that vertex only.
While there is a yellow edge from Last (X) to a vertex in V-(U U X), append X by
such a vertex. While there is a vertex in V-(Ui U X) with a yellow edge to First (X),
pick one such vertex and make it the new first vertex of X.

If there are at least nl-2/2 yellow edges between First (X) and U as well as

between Last (X) and U, then set Q/ := X. Otherwise let u be an end-point of X
with less than ni-2/2 yellow edges between u and U. Without loss of generality,
u First (X). There are more than nl--/2 vertices v of X such that {v, u} is a yellow
edge; let w be the last (with respect to X) among these vertices. Turn X into a circuit

Q/ by throwing away the successors of w and adding the edge {w, u}.
LEMMA 2.5. The time of Stage 5 is O(n).
Proof. The proof is clear.
Before we explain the last stage of HPA2, let us introduce some terminology and

notation. If P is an open path P, v P and v Last (P) then v’ is the successor of v

with respect to P. We suppose that every closed path (circuit) comes with a distinguished

member, called the initial member, and a specified direction of traversing the path.
Since our vertices are natural numbers, we can use, for example, the following rule:

EXPECTED COMPUTATION TIME 497

V

FIG.

the member of a circuit with the least numerical value is the initial member, and the
lesser of the two neighbors of the initial member defines the direction of traversing.
If P is a circuit and v e P then v’ is the predecessor of v with respect to P.

After Stage 5 we have a sequence Qo, Q1, ", Q,, of paths. Let Q,/I be the empty
set. If Q Qi and i<= m let Q’= Qi/l.

Stage 6. Merging the paths Qo, Q1," ", Qm into the desired Hamiltonian path.
1. Set R := Qo and Q := Q1.
2. If Q is empty then halt.
3. If Q is a circuit then do the following:

3.1. Set u equal to the first (with respect to R) member of {x e R T: x’ T},
and v equal to the initial member of Q.

3.2. If {u, v} and {v’, u’} are green edges, then set R equal to the concatenation
of:

the initial segment [Start, u] of R,
the segment Iv, v’] of Q (which includes all vertices of Q), and
the final segment [u’, Finish] of R,

set Q := Q’, and go to 2. (See Fig. 1.)
3.3. Find or establish the nonexistence of a pair (x, y) such that x e R-T,

x’ T, y e Q, and neither of the pairs {x, y}, {y’, x’} has yet been examined
for being a green edge. In the positive case set u := x, v := y and go to 3.2;
in the negative case go to HPA3.

4. If Q is an open path, then do the following.
4.1. Set

A := {w e R T: w’ T, and {w, First (Q)} is a yellow edge},
B := {w e R- T: w’ T, and {Last(Q), w} is a yellow edge},
I equal to the least initial segment of R that contains one half of A or
one half of B.
If I does not contain one half of A, then set Q equal to the reverse of Q,
and swap A and B.

(When step 4.1 is completed, A {we R- T: w’ T, and {w, First (Q)}
is a yellow edge}, I is an initial segment of R which contains at least one
half of A, B= {we R-T: w’ T, and {w, Last (Q)} is a yellow edge}, and
R- I contains at least one half of B.)

498 Y. GUREVICH AND S. SHELAH

4.2. Set
u equal to the first (with respect to R) member of A I,
v equal to the first (with respect to R) member of B- I.

4.3. If {u’, v’} is a green edge then
set R equal to the concatenation of:

the segment [Start, u] of R,
the path Q,
the reverse of the segment [u’, v] of R,
the segment [v’, Finish] of R,

set Q:= Q’, and go to 2. (See Fig. 2.)
4.4. Find or establish the nonexistence of a pair (x, y) such that x A, y B,

and the pair {x’, y’} was not examined on being a green edge yet. In the
positive case set u := x, v := y and go to 4.3; in the negative case go to HPA3.

LEMMA 2.6. The computation time ofStage 6 is O(n2). The probability of thefailure
on Stage 6 is bounded by 2"*O(-n2/1-4).

Proof. On Stage 6, HPA2 repeatedly makes attempts to combine the current paths
Q and R into a new path R. Each attempt is uniquely identified by a pair (u, v) of
vertices. Therefore the number of attempts is bounded by n2. This gives the bound on
the computation time.

It remains to prove the bound on the probability of failure. There is a fraction m
of n/l2 such that in no case HPA2 transfers the control to HPA3 within first m attempts.
For 1,. ., m let Ei be the event that either HPA2 does not make the ith attempt
(i.e. the desired Hamiltonian path is constructed during previous attempts) or HPA2
makes the ith attempt and the ith attempt is successful. The probability of Ei, assuming

2any primitive boolean combination of events Ej with j < i, is at least r---Pgreen- By
Proposition 0.1, the probability that at most mr events E happen, is 2"’0(-n2//-4).
Hence the probability that HPA2 fails is 2"*0(-n-/ /-4). I"]

Note. Reading the technical report (Gurevich and Shelah (1984)), one of the
referees expressed the following concern. Suppose that we are merging R with Q Q
which happened to be an open path. The set Af)I contains 1(n//2) elements, and
the set B fq (R- 1) contains O(n/12) elements. Thus we have 1)(n2//4) pairs to search
on step 4.4. However, many of those pairs could be examined earlier, when we tried
to merge R with those Qj that j < and Q is an open path. Are there enough pairs
left to guarantee the high chances of success in merging R and Q?

It is true that Stage 6 splits into the substages of merging R and Q, R and Q2,
etc. But consider Stage 6 as one sequence of attempts to merge the current R and the
current Q. If HPA2 fails on Step 6, then the great majority of the attempts were

FIG. 2

EXPECTED COMPUTATION TIME 499

unsuccessful. We do not care how the unsuccessful attempts were spread over different
substages. By Proposition 0.1, such an event is unlikely.

Let us summarize the analysis.
THEOREM 2.1. The run-time of HPA2 on a graph with n vertices is 0(n2).
Proof. Use Lemmas 2.1-2.6.
THEOREM 2.2. Fix a probability p. The probability that HPA2 fails on a random

member G of a probability space F*(n, p) is 2-3n+n).
Proof. Use Lemmas 2.1, 2.4 and 2.6.
To simplify the exposition, we have assumed that the input is a random member

of F*(n, p) whereas in effect we are interested in an input which is the output of HPA1.
Instead of a fully colored graph, given by the extended adjacency matrix, we have a
graph which is only partially colored red. In addition, we have important information
that HPA1 has failed on the corresponding uncolored graph. Let HPAI(G) be the
outcome of HPA1 on the input G in the case that HPA1 fails of G.

THEOREM 2.3. Fix a probability p. Let G be a random member of some F(n, p).
The probability that HPA2 fails on HPAI(G), assuming that HPA1 has failed on G, is
2-3n+o(n).

Proof. The idea is that the analysis above remains valid. The coloring is completed
on Stage 1 of HPA2. This does not change our estimation of the computation time of
Stage 1, and it does not matter for the rest of HPA2 when the graph was colored.

Further, HPA2 never looks to the red part of the extended adjacency matrix. It
is easy to see that all six lemmas remain valid under the assumption of any realizable
boolean combination of events "{u, v} is a red edge." In particular, they remain valid
under the assumption that HPA1 fails on the original input. This particular assumption
is a boolean combination of events "{u, v} is a red edge" because HPA1 utilizes only
red edges.

3. Algorithm HPA3. One obvious algorithm for the Hamiltonian Path Problem
is a straightforward exhaustive search: examine in turn all permutations of the vertices
different from Start and Finish. Stirling’s formula gives an upper bound 2n on the
run-time of the straightforward exhaustive search algorithm on graphs with n vertices;
in this section 1--log2 n.

The fastest known algorithm for the Hamiltonian Path Problem is a version of
the so-called dynamic programming algorithm (Bellman (1960), Held and Karp (1962)).
We sketch the idea roughly. Suppose for simplicity that Start Finish. We will compute
a function f satisfying the following conditions. The domain of f consists of pairs
(X, v) where X is a set of vertices, Start belongs to X, Finish does not belong to X
unless X contains all vertices, v is an element of X different from Start, and if X
contains all vertices then v--Finish. Each f(X, v) is either a Hamiltonian path in
X from Start to v or the string "The desired Hamiltonian path does not exist."
The computation proceeds by induction in IXI. The run-time of this algorithm on
graphs with n vertices is bounded by 2 times a polynomial in n. Unfortunately,
this algorithm requires exponential space (and a computer with addresses of length
about n).

Combining the idea of the dynamic programming algorithm with the idea of
Savitch’s theorem (Savitch (1970)), we give here a recursive algorithm HPA3 for the
Hamiltonian Path Problem. The run-time of HPA3 on a graph with n vertices is
bounded by 22" times a polynomial in n; it is slower than the dynamic programming
algorithm but still much faster than the exhaustive search algorithm. The work space
of HPA3 on graphs with n vertices is O(n).

500 Y. GUREVICH AND S. SHELAH

We will describe HPA3 informally. Let (G, Start, Finish) be an instance of Hamil-
tonian Path Problem, and V be the set of vertices of the graph G. Without loss of
generality, V {0, 1,. , n- 1} for some n. As in the previous sections, we will often
ignore rounding reals in order to simplify exposition.

If n _-< 3 then use the exhaustive search algorithm. Suppose that n > 3.
Let Center range over the set V-{Start, Finish},
U V-{Start, Center, Finish},
A range over subsets of U such that Ia[- [u[/2 and min (U) a unless U ,
B=U-A,
A’ be the subgraph of G with the universe A t.J {Start, Center},
B’ be the subgraph of G with the universe B U {Center, Finish}.
For each pair (Center, A) in turn recursively apply HPA3 to the triples

(A’, Start, Center) and (B’, Center, Finish). If HPA3 constructs a Hamiltonian path in
A’ from Start to Center and a Hamiltonian path in B’ from Center to Finish, then
concatenate the two paths into a Hamiltonian path in G from Start to Finish and halt.
Otherwise go to the next pair (Center, A). If there is no next pair, then write "There
is no Hamiltonian path from Start to Finish" and halt.

Obviously, the algorithm HPA3 solves the Hamiltonian Path Problem.
TIEOREM 3.1. Let S(n) be the work space and T(n) be the time that HPA3 needs

in order to handle graphs with n vertices.
(a) In an appropriate implementation of HPA3, S(n)= O(n).
(b) T(n)=22"xn (t).
Proof (a) The idea is to pass A (resp. B) to the recursive procedure in the form

of the characteristic function which is a boolean vector. The recursive procedure passes
further a shorter boolean vector which is a characteristic function that refers to the
natural order of A (resp. B). There is a constant b such that for all n > 3,

S(n) <- bn + S((n -3)/2 + 2) <= bn + S(n/2 + 1).
Choose a constant c such that S(n)<-cn for n_-<3, and bn+c(n/2+l)<-cn for

n>3.
Check by induction on n that S(n)<= cn for all n.
(b) There are n-2 possible values of Center. For each Center, the number of

possible values for A or B is bounded by 2"-3. For each pair (Center, A), HPA3 calls
the recursive procedure twice. There is a constant b such that for all n > 3,

T(n) <_- 2"+b X T(n/2+ 1).
Choose a constant c such that T(n) <- 22n+1 for n _-< 3, and 2n+bl 2(2n+cI)/2/ 2n+cl

for n>3.
Check by induction on n that T(n)<= 2"+ for all n. [3

Remark. Why is HPA3 faster than the straightforward exhaustive search
algorithm? To answer this question we use the notation of HPA3. For given Center
and A, we spend some time on A plus some time on B whereas the straightforward
exhaustive search goes through all permutations of A times all permutations of B.

Theorems 1.2, 2.2 and 3.1 imply Theorem 1 of the Introduction.
Remark. It is important that the product of the probability of HPA2 to fail and

the time bound of HPA3 is o(n). This explains the expression 3/(-log2 qg,) on Stage
1 of HPA2; it guarantees the probability 2-3n+(n) of HPA2 to fail.

4. The case of directed graphs. In this section we prove Theorem 2 of the Introduc-
tion. The adaptation of HPA to directed graphs is pretty obvious almost everywhere.
The exceptions are Stage 2 and step 4 of Stage 6 of HPA2 which are treated below.

EXPECTED COMPUTATION TIME 501

Before we turn to the two exceptions let us notice that Stage 1 of HPA2 should be
modified to ensure that T contains all vertices v such that either the orange, yellow
or green fan-in of v is less than n! - or the orange, yellow or green fan-out of v is
less than n/12.

First, we modify Stage 2 of HPA2. Notice that if v X, and Fan-in (v)_->31x]
unless v=Start, and Fan-out (v)=>31XI unless v= Finish, then every envelope for
X-{v} can be easily extended to an envelope for X. Hence the problem reduces to
finding or establishing the nonexistence of an envelope for some subset S of T such
that for every vS, either Fan-in (v)<31SI or Fan-out (v)<3lS I. Let Y range over
minimal sets of edges such that (a) if v S, v # Start and Fan-in (v)<31si then Y
contains an edge {u,v}, and (b) if vS, reFinish and Fan-out(v)<31SI then Y
contains an edge {v, w}. There are only bounded many of different Y’s. The problem
reduces to the following: given a set Y, find or establish the nonexistence of an envelope
F for S such that every Y-edge is a part of an F-path. The Y-edges form a family of
paths. If one of the paths is a circle, then the task is impossible, otherwise the task is
easy.

Second, we modify step 4 of Stage 6. This time we cannot reverse the order of Q
or any segment of R. Set A, B and I as in 4.1. We are forced to consider two cases.

Case 1. I contains one half of A (and therefore R- I contains at least one half
of B). Find or establish the nonexistence of a triple (u, v, w) such that u Afq/, v is
a nonfinal vertex of Q, we B f] (R-I), and (v, u’), (w, v’) are edges. In the negative
case go to HPA3. In the positive case set R equal to the concatenation of segment
[Start, u] of R, segment [First (Q), v] of Q, segment [u’, w] of R, segment [v’, Last (Q)]
of Q, and segment [w’, Finish] of R. (See Fig. 3.)

Case 2. I contains one half of B (and therefore R- I contains at least one half
of A). Find or establish the nonexistence of a triple (u, v, w) of vertices such that

FIG. 3

FIG. 4

W

502 Y. GUREVICH AND S. SHELAH

u’ B f’)/, v is a nonfinal vertex in Q, w A fq (R I), and (u, v’), (v, w’) are edges. In
the negative case go to HPA3. In the positive case set R equal to the concatenation
of segment [Start, u] of R, segment [v’, Last (Q)] of Q, segment [u’, w] of R, segment
[First (Q), v] of Q, and segment [w’, Finish] of R. (See Fig. 4.)

Theorem 2 of the Introduction is proved. [3

REFERENCES

D. ANGLUIN AND L. G. VALIANT (1979), Fastprobabilistic algorithmsfor Hamiltonian circuits and matchings,
J. Comput. System Sci., 18, pp. 155-193.

R. BELLMAN (1960), Combinatorial processes and dynamic programming, in Proc. of the 10th Symposium
in Appl. Math., Amer. Math. Soc., Providence, RI.

B. BOLLOBAS (1979), Graph Theory, Springer-Verlag, New York, Berlin.
B. BOLLOBAS, T. I. FENNER AND A. M. FRIEZE (1985), An algorithm for finding Hamilton cycles in a

random graph, in Proc. 17th Annual ACM Symposium on Theory of Computing, pp. 430-439.
H. CHERNOFF (1952), A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations, Ann. Math. Statist., 23, pp. 493-509.
P. ERDS AND J. SPENCER (1974), Probabilistic Methods in Combinatorics, Academic Press, New York.
M. R. GAREY AND D. S. JOHNSON (1979), Computers and Intractability, W. H. Freeman, San Francisco.
R. L. GRAHAM (1983), Applications of the FGK inequality and its relatives, in Mathematical Programming,

The State of Art, Bonn 1982, Springer-Verlag, New York, Berlin.
Y. GUREVICH AND S. SHELAH (1984), Expected computation time for Hamiltonian Path Problem and clique

problem, Tech. Report CRL-TR-50-84, Univ. of Michigan, Ann Arbor.
M. HELD AND R. M. KARP (1962), A dynamicprogramming approach to sequencing problems, J. Soc. Indust.

Appl: Math., 10, pp. 196-210.
D. S. JOHNSON (1984), The NP-completeness column: an ongoing guide, J. Algorithms, 5, pp. 284-299.
L. LEVIN (1984), Problems, complete in "average" instance, in Proc. 16th Annual ACM Symposium on

Theory of Computing, p. 465.
L. POSA (1976), Hamiltonian circuits in random graphs, Discrete Math., 14, pp. 359-364.
W. J. SAVITCH (1970), Relationships between nondeterministic and deterministic tape complexities, J. Comput.

System Sci., 4, pp. 177-192.
E. SHAMIR (1983), How many random edges make a graph Hamiltonian? Combinatorica, 3, pp. 123-131.

