Chapter XIII
M onadic Second-Order Theories

by Y. Gurevich

In the present chapter we will make a case for the monadic second-order logic
(that is to say, for the extension of first-order logic allowing quantification over
monadic predicates) as a good source of theories that are both expressive and
manageable. We will illustrate two powerful decidability techniques here—the
one makes use of automata and games while the other uses generalizedgroducts
la Feferman-Vaught. The latter is, of course, particularly relevant, since monadic
logic definitely appears to be the proper framework for examining generalized
products.

Undecidability proofs must be thought out anew in this area; for, whereas
true first-order arithmetic iseducible to the monadic theory of the real lirf® it
is nevertheless natiterpretable in the monadic theory d&® Thus, the examination
of a quite unusual undecidability method is another subject that will be
explained in this chapter. In the last section we will briefly review the history of
the methods thus far developed and give a description of some further results.

1. Monadic Quantification

Monadic (second-order) logic is the extension of the first-order logic that allows
quantification over monadic (unary) predicates. Thus, although binary, ternary,
and other predicates, as well as functions, may appear in monadic (second-order)
languages, they may nevertheless not be quantified over.

1.1. Formal Languagesfor Mathematical Theories

We are interested less in monadic (second-order) logic itself than in the applica-
tions of this logic to mathematical theories. We are interested in the monadic
formalization of the language of a mathematical theory and in monadic theories of
corresponding mathematical objects. Before we explore this line of thought in
more detalil, let us argue that formalizing a mathematical language—not necessarily in
monadic logic, but rather in first-order logic or in any other formal logic for that
matter—can be useful.
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We begin by observing that the first-order Zermelo-Fraenkel set theory
stands as a very important case in point, since it provides the most popular way
to avoid known paradoxes in set theory. Another excellent example is related to
the Lefschetz principle in algebraic geometry. This principle asserts that any
algebraic statement that is true for the field of complex numbers is also true for
any algebraically closed field of characteristic 0. Tarski proved a meaningful
exact version of the Lefschetz principle, namely, that all algebraically closed
fields of characteristic O are elementarily equivalent.

The task of classifying all mathematical structures of a kind up to
isomorphism (or homeomorphism, etc.) may be impossible. For example,
nobody can classify all abelian groups up to isomorphism. Formalizing (a
portion of) the language may allow classification by properties that are
expressible in the formal language. Szmielew [1955] did, in fact, classify all
abelian groups up to elementary equivalence. The classification of structures up
to indistinguishability in a formal language may indeed be a reasonable
alternative to the original classification problem provided, of course, that the
formal language expresses enough of the relevant mathematics.

Another impossible task is that of learning everything about a specific
structure. For example, nobody can learn all about the binary tree of words in a
two-letter alphabet. Formalizing (a portion of) the language may enable us to
learn all about the structure that is capable of being expressed in the formal
language. ltis, of course, a reasonable approach if the formal language is
sufficiently rich. Indeed, Rabin [1969] has constructed an algorithm which is
capable of recognizing the true statements in the very expressive monadic
(second-order) language of the binary tree with two successor functions.

The study of mathematical structures in a formal language may, of course,
degenerate to a mere logic exercise if the language is not sufficiently expressive.
For example, imagine studying first-order properties of dense linear orders. On
the other hand, the study itself may become intractable if the language is over-
expressive. For instance, imagine studying second-order properties of dense
linear orders. A good formal language has to meet two conflicting demands. It
must express an interesting portion of the relevant mathematics, and it must also
provide a manageable theory. One of the main aims of this chapter is to
demonstrate that the monadic (second-order) logic is a good source of
expressive and manageable theories.

1.2. Ordered Abelian Groups and Restricted Monadic Quantification

| began to think in terms of monadic logic while | was working on ordered
abelian groups. The original problem | faced was the decision problem for the
elementary theory of such groups—a question of Tarski. It appeared, however,
that monadic logic gives a better formalization of the informal theory of o.a.
groups. The story was an important lesson for me and | will briefly relate it to
you.
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An o.a. group is a group and a chain, the two structures being connected by
the law

X<y—>X+z<y+z

Here is a particular example: the additive group of complex numbers ordered
thus:

a+bi<c+d iff b<d or b=d anda<c.

The subgroups of an ordered abelian group that form intervals arecusilex
subgroups. For example, the real numbers form a convex subgroup in the o.a.
group of complex numbers just described. It is easy to verify that the convex
subgroups of any o.a. group are linearly ordered by inclusion. Before
proceeding, we should point out that throughout this chapter the dbamsand
linear ordering will be used interchangeably.

The elementary first-order theory of o.a. groups was shown to be decidable in
Gurevich [1964], there was proven that two o0.a. groups are elementarily
equivalent iff their chains of definable convex subgroups with some definable
weights are elementarily equivalent. Of course, in that study most of the
informal theory of 0.a. groups was left aside, such theory tending as it does to
deal with convex subgroups. In particular, we note that the o.a. group of
complex numbers described above is elementarily equivalent to the naturally
ordered additive group of real numbers, although only one of these o.a. groups
has a non-trivial convex subgroup.

The elementary language of 0.a. groups was expanded in Gurevich [1977a]
by adding quantifiable variables that range over arbitrary convex subgroups, and
the expanded theory of such groups was there proven to be decidable. You
might suspect that the expanded theory is decidable because the expansion did
not greatly increase the expressive power, and that the restricted monadic
quantification can be essentially eliminated. However, this is not at all the case!
Not only does the expansion considerably increase the expressive power, but it
is also thedementary quantification that can be essentially eliminated in the
expanded theory. Two 0.a. groups are equivalent in the expanded language iff
their chains of convex subgroups with some definable weights are elementarily
equivalent. Moreover, the decision procedure is clearer and less cumbersome in
the case of the expanded theory. Thus, in the case of 0.a. groups, the monadic
logic really does provide a better formalization.

Not too much work has yet been done on this kind of algebraic application of
restricted monadic quantification. In this connection, the reader might consult
Kokorin-Pinus [1978], an informative, although somewhat biased, survey. The
remainder of this chapter is devoted mainlynoestricted monadic quantifica-
tion, an area in which some very impressive progress has been made. In the
original papers, many of the results on unrestricted monadic quantification are
accompanied by restricted monadic quantification results. The work on
unrestricted monadic quantification seems to be a natural step in the
development of ways that are capable of dealing with the presumably more
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applicable restricted monadic quantification.

1.3. Monadic Languages

The monadic (second-order) logic is the fragment of the full second-order logic
allowing quantification only over elements and monadic predicates. One way to
define the monadic version of an elementary language to augment. by a
sequence of quantifiable set variables and by new atomic formelxs where

t is an elementary term and is a set variable. The intended interpretation

here is thate is the membership relation and the set variables range over all

subsets of a structure fdr. Observe, however, that in the case of restricted
monadic quantification the set variables range only over special subsets; that is
to say, they only range over subgroups, or normal subgroups, etc.

The following proposition shows that the monadic theory of a structure may
easily be intractable.

1.3.1 Proposition. Let P beaternary predicate on a non-empty set S
Supposethat, for every x,y € S, thereis ze S with (x,y, 2 « P, and for every

Z < S thereisat most one pair (X, y) with (x,y, 2) € P; such P may be called a

pairing predicate. Then the true (full) second-order theory of S is
interpretable in the monadic theory of (S P).

Proof. The proof is quite clear. First, we code ternary, quaternary, etc.,
predicates by binary ones. That done, we then code a binary pregicpiz

monadic predicate Z{ there is a pain( y) in B with (X, y, 2) < P}. o

We will be interested in the monadic theories that are not able to express
pairing such as monadic theories of (linear) orders, monadic theories of trees,
etc. Inthese theories it is useful in many cases for us to rid ourselves entirely of
elementary variables by coding the original structure on singleton sets. For
example, we consider the monadic language of order as the (formally) first-order

language whose vocabulary consists of the binary predicate sy®balsyd < .
Every chain (that is, every linearly ordered set) gives a standard model: the
variables range over all subsets of the ch&iis the usual inclusion, and <Y

means that there are elements y with X={x}, Y={y}. The (formally)
first-order theory of these standard models is, by the definition, the monadic
theory of linear order.

2. The Automata and Games Decidability Technique

The first technique for dealing with nontrivial monadic theories originated in the
theory of finite automata. In Section 2.1 we will demonstrate this technique on
an easy example of the monadic theory of finite chains. Section 2.2 is devoted to
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the monadic theory of the chain of natural numbers, while Section 2.3 is
devoted to the central result proven by the technique which is decidability of the
monadic theory of the binary tree.

2.1. Monadic Theory of Finite Chains

We define themonadic language of one successor as formally the first-order
language with binary predicates and SUC. It is convenient here for us to

view a finite chain as a model for the monadic language of one successor, that
is, the variables range over the subsets of the cl&iis ordinary inclusion,

and SUCK, Y) means that there are pointsy such thatX = {x}, Y= {y}, and
y is the successor of. The linear order (on singleton sets) is then easily
definable.

Throughout this sectioly is an alphabet (all of our alphabets are finite and
are not empty). A -automatonis a quadrupleA= (S T, sn, F), where Sis the
finite set of states, TE Sx Y x S is thetransitiontable, s,< S is theinitial

state, andF € S istheset of final (or accepting) states. Ais generally a non-
deterministic automaton. Itdeterministicif Tis a total function fronsx 3.
to S

Arun of theY -automatonA on a wordo; . . .o in Y isa sequencs . . .S
of states such thagy, o1, 5) € T and everyg, cix1, S+1) € T. The automaton
acceptso; . . .g) if thereisarurs, . . .5 on this word withg < F.

2.1.1 Theorem. Thereisan algorithmthat, given an alphabet 3 and a
Y.-automaton A, constructs a deterministic Y -automaton accepting exactly the
words accepted by A.

Proof. See any standard text in automata theory or, for the original proof,
Rabin-Scott [1959]. o

2.1.2 Theorem. There is an algorithm that, given an alphabet } and a
Y-automaton A, decideswhether A accepts at least one non-empty word.

Proof. Let A= (ST, sy, F). First, we construct a singleton alphapét {a}
and a3 -automaton A'= (S T, sn, F) that accepts a non-empty word Af
accepts a non-empty word. Set

T ={sa%: 565 « T, for someo  3}.

Second, we use the algorithm of Theorem 2.1.1 to construct a deterministic
Y '-automatonA" that accepts exactly the words accepted'by

Third, letn be the number of states éf'. Consider now the unique run
S ...Sp+10f A" ontheY'-word oflengthif+ 1). Therearei<j< n+1
with §=s5. Hence, any run ok" is purely periodic from th&h place on.
Thus, A" accepts a non-empty word iff a final state appears among. §.1.0

A finite chainC with n subsetsX|, . . . ,X, can be considered as a word
Word(C, X, . .. X,) oflength C|, in the alphabef,, that is the Cartesian
product of preciseln copies of {0, 1}. Ifn=0, then}) is a singleton. In
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casen >0, a letter of},, can be viewed as a column ofzeros and ones. For
example, ifCis the chain Sunday, . . ., Saturday Xpd¢ {Monday, Thursday}
andX, = (Monday, Tuesday, Wednesday}, then we have

0100100
WordC, X;, Xp) =
0111000.

2.1.3 Theorem. Thereisan algorithmthat, given n and a 3 ,-automaton A,
constructs aformula o(Xy, . . . ,X,) inthe monadic language of one successor
such that for every finite chain C and any subsets Xy, . .. ,X, of C, we have
that

Ceop(Xy ... X, Iiff Aaccepts Word(C, Xy, ... ,Xp).

Proof. Without loss of generalityC can be taken as the chain 1, .l. for some
I. Lets,...,snbe the states oA. The desired formula says that there are
subsetsy, . . .,Yn describing an accepting run éfon WordC, Xy, . . . ,Xy).
The intended meaning of is {i: Ais in the statey after reading théh
letter}. o

2.1.4 Theorem. Thereisan algorithmthat, given aformula o(Xy, ... ,X,) in
the monadic language of one successor (with free variables as shown),
constructsa > ,-automaton A such that for every finite chain C and any subsets
Xy, ..., X, of C, we havethat

Ceop(Xy ... X, Iiff Aaccepts Word(C, Xy, ... ,Xp).
Proof. We will merely sketch the proof. The automaton is built by induction

on the formula. The atomic cases and the case of disjunction are quite easy. As

to the case in whiclp = 3X.1y, the desired ,-automaton guesse&.; and

mimics the} .;-automaton correspondingyo The case of negation is easy for
deterministic automata. We will now use Theorem 2.1.1 and the result will
follow. o

Theorems 2.1.3 and 2.1.4 together constitute a kind of normal form theorem
for the monadic theory of finite chains.

2.1.5 Theorem. The monadic theory of finite chainsis decidable.

Proof. Given a sentenag, we use the algorithm of Theorem 2.1.4 to find an
appropriate automaton. The senteqde satisfiable iff the automaton accepts
at least one non-empty word. Now, using Theorem 2.1.2, the assertion follows
immediately. o

2.2.Monadic Theory of m

As usualm will denote the chain of natural numbers. We consider it here as a
model for the monadic language of one successor: The variables range over the

subsets ofw, € is the usual inclusion, and SUC(Y) means that there is a
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natural numbex such thatX = {x} andY ={x+ 1}. The monadic theory a#h

is known as SIS which is an acronym for second-order (monadic) theory of one
successor. Observe that the linear order (on singleton sets) is easily definable in
SIS.

A sequential Y -automatonis a quadrupléd = (S T, s, F), whereSis the set

of finite states TE€ Sx Y x S is thetrangition table, s, is theinitial sate and
F is the setf final collections of states. A is generally a non-deterministic

automaton. However, it deterministicif Tis a total function fronsx } to S
A runof Aon asequence;o,. .. Is a sequencgs,. . . of states such that

(Sn, 01, &1) € T, and everyg, Gi+1, S+1) € T. Itis anacceptingrunif{s. s,=s

for infinitely manyn} belongs toF. And, finally, A accepts a sequence
0102 . .. ifthereis an accepting run &fon this sequence.

2.2.1 Theorem. Thereisan algorithmthat, given an alphabet 3 and a
sequential > -automaton A, congructs a deterministic sequential ¥ -automaton
accepting exactly the sequences accepted by A.

This result is proven in McNaughton [1966]. However, simpler proofs can
be found in Rabin [1972], Choueka [1974], Thomas [1981]. m

2.2.2Theorem. Thereisan algorithmthat, given an alphabet 3 and a
sequential ¥ -automaton A, decides whether A accepts at |east one sequence.

Proof. The argument here is simple, since we only need repeat the proof of
Theorem 2.1.2, speaking about sequences rather than words and changing the
last sentence to: Thi#§ accepts the uniqug'-sequence iff the collection
{si...,5a}isfinal. m]

Subset¥X, . .. ,X,of o form a sequence SER) . .. ,X,) in the alphabet
Yo The following three theorems and their proofs are similar to the
corresponding theorems and proofs in Section 2.1.

2.2.3 Theorem. Thereisan algorithmthat, given nand a } ,-automaton A,
constructs aformula o(Xy, . .. ,X,) inthe monadic language of one successor
such that for any subsets Xy, . . . ,X, of o,

® E Xy, ... X, iff A accepts SEQKy, ... ,Xp). o

2.2.4 Theorem. Thereisan algorithmthat, given aformula o(Xy, . . . ,X,) the
monadic language of one successor (with free variables as shown), constructs a
Y n-automaton A such that for any subsets Xy, . . . X, of o,

® E Xy, ... X, iff A accepts SEQKy, ... ,Xp). o

2.2.5 Theorem. The monadic theory of co is decidable. o
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2.3. Monadic Theory of the Binary Tree

The binary treeis here defined as the sét}* of all words in the alphabet
{l, r}. The empty worckis the root of the tree. The wordsand xr are
respectively thdeft and theright successors of a wordx.

Themonadic language of two successorsis (formally) the first-order

language with binary predicates Left and Right. We regard the binary tree as
a model for the monadic language of two successors: the variables range over

the subset% is the usual inclusion, Le( Y) means that there is a woxavith
X={x}, Y={xl}, and RightK, Y) means that there is a wosdwith X = {x},

Y = {xr}. The monadic theory of the binary tree is known as S2S which is an
acronym for the second-order (monadic) theory of two successors.

S2S is a very expressive theory. The relatian the initial segment of"
and % precedey lexicographically" are easily expressible (when coded on
singleton sets). Rabin [1969] interpreted in S2S the monadic theories of 3, 4,
etc. successors, the monadic theoryoosuccessors, and a good deal more.

A mappingV from the binary tree to an alphabjgtwill be called a
Y -valuation or a Y -tree. We say that dree Y -automaton is a quadruple
A= (ST, Ty F) whereSis the finite alphabet atates, TS Sx{l, r} x ¥ x Sis

thetrangitiontable, T;, €3 x S is theinitial statetable, and F is the set of
final collections of states. In order to describe when the automataeccepts a
Y -tree V, we introduce a gameg&(A, V) between the automatoA and another
player called Pathfinder.

A chooses: Pathfinder chooses:
So
d,
5
d,
52
{I)
53

Here eacls, € S and eachd, < {I, r}. The choices ofA are restricted by the
following conditions:

(V(€), %) € T and €, G, V(i - .. Ohea), Sner) € T

We would like to avoid the possibility of the automaton not being able to
make the next move. One way to do this is to provide our automata with an
additional state FAILURE in such a way that a transition into FAILURE is
always possible, but a transition from a FAILURE to another state is never
possible. Of course, the singleton set {FAILURE} will not be a final collection.
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The automatorA wins a playsdisid; . . . if {se S s,=s for infinitely
manyn} belongs toF. Otherwise, Pathfinder wins. The automatnaccepts
V if it has a winning strategy ifi(A, V). Otherwise, itrejects V. The notion of
strategy is clarified below.

Apositionin T'(A, V) is a word in the alphabedu {I, r} thatis an initial
segment of some plagpds,d, . . . . Thelast appearancerecord LAR(p) in a
position pis the string of last appearances of statep.i@onsider the following
example:

A Pathfinder Position LAR
e e
a a a
! al a
b alb ab
r albr ab
a albra ba
I albral ba
¢ albrale hac
r albralcr bac
¢ albralere bae
1 albralcrel bac
a albralercla hea

Here is an inductive definition of the last appearance record AR pis
the empty worde (that is, the initial position), then LARYis empty. Ifp=q|
or p=qr, then LARP) = LAR(q). Suppose now that=gs, u=LAR(q) and
u' is obtained fromu by erasing all appearances ®f Then LARp) =u's.
Every last appearance record is a word in alphghetere each state appears at
most once.

A (deterministicltrategy for the automatorA in the gamel'(A, V) is a
function assigning a legal state to every position of even length. A
(deterministic)gtrategy for Pathfinder is a function assigning a directioor r
to each position of odd length.

Unfortunately, deterministic tree automata are too weak and Theorem 2.1.1
cannot be generalized to them. That theorem played a key role in Section 2.1,
and in the case of tree automata the proper form of determinacy will play an
analogous role.

2.3.1 Theorem (Forgetful Determinacy TheoremPne of the players has a
winning strategy f in['(A, V) suchthat if p, q aretwo positions, where the
winner makes movesand p, q define the sameresidual game (that is, they
have the same continuation) and have the same last appearance records, then
f(p) =f(q).

Proof. See Gurevich and Harrington [1982]. m
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A strategy for a player in'(A, V) will be called forgetful if f(p) =f(q) for
all positionsp, g such that the player makes moveg,iq and p, q define the
same residual games, and moreover, the last appearance reqoafsdiim g
coincide. The reason for this term is that any vd{p¢ depends on the residual
game and an only limited information about the history. Thus, in brief, we may
say that a forgetful strategy "forgets" most of the history.

2.3.2 Theorem. Thereisan algorithmthat, given an alphabet Y andatree} -
automaton A, decides whether A acceptsat least one > -tree.

Proof. As in the proof of Theorem 2.1.2, we first reduce the problem to the
case of a singleton alphabet. Thus, supposeXhata singleton and/ is the
uniquey -tree. By the forgetful determinacy theorem, one of the players has a
forgetful strategy winnindg" (A, V). List all forgetful strategied, , . . . ,f,, for

the automatorA and all forgetful strategies;, . . . ,g, for Pathfinder. Itis
possible to check each against eacly; because the play eventually becomes
periodic. This way we can find the desired winning strategy and determine
whether or notA acceptsV. o

SubsetsXy, . . . , X, of the binary tree give & -tree that will be called
TREEXy, . . . ,X,) wherey,is asin Section 2.1.

2.3.3 Theorem. Thereisan algorithm that, given n and a tree 3 ,-automaton

A, congtructsaformula ¢(Xy, . . . ,X,) inthe monadic language of two
successors suchthat for any n subsets Xy, ... X, of thebinary tree,

£, Eo(Xy, ... Xy iff A acceptsTREEX,, ... ,X,).

Proof. A runof a tree} -automatonA on a > -tree V is a functionR from
the binary tree to the set of statesfofsuch that every sequence

R(e)d. R(d|)d2 R(d|, dz) C
is a legal play in["(A, V). If A wins all these plays then the rRris accepting.

The desired formula says that there are subgetshere s ranges over the
states of the given treg,-automatonA, that describe an accepting rigof A
on TREEK, . . . ,X,). The intended meaning &f is

e{l, r¥* 1 R(X) = sk o

2.3.4 Theorem. Thereisan algorithmthat, given aformula ¢(Xy, ..., %) in
the monadic language of two successors, constructs atree Y ,-automaton A in
such away that for any n subsets Xy, . . . ,X, of the binary tree,

{, ¥ Eo(Xy, ... X, iff A acceptsTREEX,, ... ,X,).

Proof. The argument here is similar to that given for Theorem 2.1.4, except for
the case of negation which is treated in Theorem 2.3.6 below. o
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2.3.5 Theorem. The monadic theory of the binary tree is decidable.
Proof. The argument here is similar to that given for Theorem 2.1.5. o

2.3.6 Theorem (Complementation TheoremYhereisan algorithmthat, given
an alphabet ¥ and atree Y -automaton A, congtructsatree }-automaton
accepting exactly the Y -trees rgjected by A.

Proof. LetV be a3 -tree rejected byA. By the forgetful determinacy theorem,
Pathfinder has a forgetful strategywinning I'(A, V). If p is a position in

I'(A, V) let Nodep) be the string of even letters m For example, ifp =
albralcrcla then Nodeg) =Irlrl. If p, g are two positions of odd length,
Nodef) = Nodef)), and A is in the same state ip, g (that is to say,p, g have
the same last letter), thgm q define the same residual game. This allows us
to codef by an appropriate valuation of the binary tree.

Let RECORDS be the set of wordsin the alphabet of states & such
that every state appears at most onca.ifcElements of RECORDS will be
called records. Lep be the set of functions assigning a lettesr r to each
record. There is & '-tree V such that for every positiopin I'(A, V) we have

f(p) = (V (Nodep))(LAR p).
Since is winning, every path
e, di, didy, didods, . . .
through the binary tred {r}* satisfies the following condition:

*) There are no sequencess; . . . and Uy, . . . such that
sdsid, . . . is a play with respect foandug, ug, W, . . .
are corresponding last appearance records arfor{

everyi thereisj>i with 5= s} is a final collection of
states.

Clearly (*) abbreviates a formula in the monadic language of one successor
whose parameters code the pathd;, did,, did.ds, . .. and the corresponding
sequences/(e), V(dy), V(ddy), . . . andV'(e), V'(dy), V'(ddy), . . . . By Theorem
2.2.4 there is a sequential automatar= (S, T, Sin, F") over the alphabet

G x3hu I, r} x¥ x¥") that accepts a sequence
V(e)\/l(e), d1V(d1)\/l(d1), dz V(d|d2)\/l(d|d2), e
iff it satisfies (*).
Let A"= (S, T', Tn, F') be the deterministic trééx ¥ '-automaton with
T'(s, d, 66") =T'(s, doc') and T",(cc") = T'(Sin, 66"). A" mimics A' and
accepts they xY'-tree VxV given by V and V. Finally, let4 be the}-

automaton that guesses and mimicsA”. Note that each successor in the row
A A, A", 4 is computable from the predecessor. EvidentlacceptsV.
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A is the desireds -automaton complementindy For, suppose that accepts
a >-treeV. There is & -tree V such thaA" accepts/ x V'. Then A’ accepts
every sequence

V(e)V'(€), chV(d)V'(dh), dz V(dido)V'(ddh), - . -

Thus, every pathe, d;, did,, ... through the binary tree satisfies (*), whdre
is the strategy for Pathfinder defined by

f(p) = (V (Nodep))(LAR p).
Evidently f is winning. HenceA rejects V. o

3. The Modd-Theoretic Decidability Technique

The most important tools for dealing with monadic theories@nposition

theorems. The term "composition" here means generalized products in the sense
of Feferman-Vaught [1959]. The Feferman-Vaught theorem reduces the first-
order theory of the given composition to the first-order theories of the parts
(summands, factors) and the monadic (!) theory of the index structure. Monadic
composition theorems reduce the monadic theory of the given composition to
the monadic theory of the parts and the monadic theory of the index structure
(see, for example, the monadic composition theorem for chains in Section 3.2).
Thus, monadic composition theorems appear to be more natural. Moreover, the
interplay of monadic theories opens absolutely new and unexpected approaches
to the decision problem. One of these approaches is demonstrated in Section 3.3
by a model-theoretic proof of decidability of the monadic theory ot.imited

by the size of this chapter, we have chosen in the present section to explain only
an easy part of the model-theoretic technique for proving decidability of

monadic theories and to make this exposition as comprehensible as possible.
We hope that this discussion - selective though it may be — will assist the
interested reader in examining the more comprehensive exposition to be found
in either Shelah [1975€] or in the papers Gurevich [1979a] and Gurevich-Shelah
[1979].

3.1. Bounded Theories

Recall that the prefix of a prenex first-order formula is a word in the alphabet

{¥, 3}. Blocks of universal quantifiers alternate with blocks of existential
quantifiers in a prefix. Thalternation type of a prefix is the sequence of

lengths of the quantifier blocks. For example the alternation type of both
v33%®and3*v*3° is 3, 4, 5. Clearly, the alternation type of the empty prefix is
the empty sequence. Lettérandn (without subscripts) will be used to denote
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alternation types. We use the symbol " to denote concatenation of sequences.
Thus, if{ is3,4,5 therg”8 is 3, 4,5, 8.

LetL be a first-order language. For evamny indistinguishability by prenex
sentences with prefix of length gives an equivalence relation on structures for
L. The n-step Ehrenfeucht game was introduced to provide a convenient
sufficient condition for this equivalence relation to hold. Indistinguishability by
prenex sentences with prefix of a given alternation type is also an equivalence
relation on structures fdr. We generalize Ehrenfeucht games to provide
convenient sufficient conditions for these new equivalence relations to hold.

Proviso 1. Thevocabulary of L consistsof finitely many relation symbolsand
individual congtants.

LetM andN be structures fok and { be an alternation typg, . . . {,. The
game - I'(M, N) is played between players | and Il insteps. On thkth
step, player | chooses a structider N and a tuple ofx elements of the
chosen structure; and, in response, player Il chooses a tufleleinents of

the remaining structure. L&, ... ,a,n be the tupleofall {3+ -+,

elements chosen iM; the {;-tuple of the first step concatenated with the
{>-tuple of the second step, etc. LUmt. .., b, be the corresponding tuple of

elements chosen ilN. Player Il wins if the quantifier-free type @, . . . ,an
in M coincides with the quantifier-free type bf, ... b, in N, otherwise
player | wins.

3.1.1 Theorem. If player Il hasawinning strategyin{ — I'(M, N), then M
and N are indistinguishable by prenex sentenceswith prefix of type .

Proof. Any distinguishing prenex sentence of typegives a winning strategy
for player I. o

We will say that-structuresM and N are {-equivalent if player 1l has a
winning strategy it —I'(M, N).

By induction on the length §f we define thel-theory of an_-structureM
with a tuple of additional elements. 0 — Wh, . . . ,a) is the quantifier-free
type of ag, ..., in M. If{isn”~k then{ - ThM, a, ... ,a) is the set of all

n-Th(M, a, ... ,a, by, ... ,b) whereb, ... bceM.

3.1.2 Theorem. Two structuresfor L are C-equivalent iff they have the same
{-theory.

Proof. The proof is simple and we will omit it here. o

The usualn-step Ehrenfeucht game corresponds to the case {ihen
sequence ofh ones. This sequence will be denotéd I1-equivalent structures
are called usuallyn-equivalent. The'itheory of a structure is called usually the
n-theory.

It is important for us that our bounded theories - in particular, quantifier-free
types—are finite objects. This explains Proviso 1. This proviso is, however, too
restrictive for applications. Is there any way to have finite quantifier-free types
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in a situation when Proviso 1 fails? The answer is Yes. In fact, consider the
first-order theory of boolean algebras. There are infinitely many terms in a
given finite set of variables, but only finitely many of these terms are in
disjunctive normal form and each term is equal to one in disjunctive normal
form.

Proviso 2. L may have function symbolsbut it has only finitely many relation
symbols. T isatheoryinL, T allowsa definition of normal termsin such a
way that:

(i) thereareonly finitely many normal terms for any given finite set of
variables,
and

(i) everytermisequal in T toa normal term (in the same variables).

An atomic formulaP(t, . . . ,t) will be calledsandard if the terms
T, ...,k are normal. We identify the quantifier-free type of a tuple
(&, ...,&) inamodelM of T with the set of standard atomic formulas

o(v, . ..,v) such thatM =¢(a, . . . ,&). Now we can simply repeat the

definition of(-theories. Proviso 2 will suffice for our purposes here. A more
liberal proviso can be found in Gurevich [1979a].

3.1.3Theorem. T is decidable if there is an algorithm computing
{{-ThM): M =T} from{. Tis decidable if thereisan algorithm computing

{1" = Th(M): M £ T} from n.

Proof. As in the case of Theorem 3.1.2, the proof of this result is simple and
will not be given here. o

Even if T is not decidable, there is often an algorithm which computes a box

including {{ - Th(M): M =T} from {. We define these boxes by induction on
the length of . The OFBox is

{0-ThiM,&,...,a):MT anda, ...,a M}

If £ isn”k, thenthel-I-Box is the power-set of thg- (I + k)-Box. We
now turn our attention to

3.14 Proposition. If MET anda, ..., M then
{-ThM, &, . . . ,a) « (-I-Box.

Proof. Again, the argument for this result is obvious and is omitted hereo

It will be convenient to view elements of eveéry-Box as ordered in a
standard manner. For example, the order may be lexicographical.
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3.2. Monadic Composition Theoremfor Chains

To fit this section into the framework of Section 3.1, we should say what the
languagelL and the theoryT are. Let BOOL be the first-order language of
boolean algebras containing all the usual boolean operations and the equality
predicate. L is the monadic language of order that is obtained from BOOL by
adding the predicaté < Y. Every chain gives a standard model lfoin the
following way: We consider the boolean algebra of subsets and aefinvaff
there are pointsXywith X={x} and Y={y}. Tis the monadic theory of
order in L. In other wordsT is simply the first-order theory of the described
standard models fot.. L and T satisfy Proviso 2 and we can freely use
{-theories as well as other notions defined in Section 3.1.

Suppose thaM is the lexicographic sum
LY Miziel)

of chainsM; with respect to a chaih This means thaM is itself a chain, the
chainsM; are disjoint, the universe d#l is the union of the universes of the
chains M, and a pointx « M; precedes iM a pointy € M; iff i<jor i=]
andx<y in M.

Let X be anl-tuple X, ... ,X of subsets oM. Fori <1, the I-tuple
XINM, ..., XNM will be denoted X|M;. For every alternation typgand
every t e (-I-Box, let

PC, X t)={i: {-ThM;, X| M) =t}.
Furthermore, letP({, X) be the sequencéP( , X, t): t € -I-Box) that
partitionsl.

3.21Lemma. There is an algorithm that computes O — ThM, X) from
0 - Th(, P(0, X)) whenl, M and X arevaried.

Proof. LetP=P(0,X) and P,= P(0, X, t). If t isaboolean term in variables
Vi, ...V, thenwe lett* =t (X, ...,X), where the complements are taken in
M. Itis easy to check that

™ N Mi:r(X|ﬁMi,...,X|ﬂMi),
where the complements are takeiin

In order to compute 0 — TH( X) it suffices to compute the truth values of
statementss* = t* and ¢* <1*, wheres andrt are in disjunctive normal form.

o*=c* iff o* N M=t N M; for everyi e |, iff for every t € 04-Box,
we have that eithd?= 0 or timplies 6 = t. Given 0 — Th{, P), we can
check the last necessary and sufficient condition.
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Note that <t means that is a singleton sett* is a singleton iff there is
se 04-Box such thaPs is a singleton,s impliest<t and for every other

t € 04-Box, we have that eith@®; = 0 or t impliest= 0. Given 0 — TH( P),
we can check the necessary and sufficient condition.

Finallyc* <t*iff both ¢* andt* are singleton and either
(i) there are disting t « 04-Box such thatPs < P, and simpliesc # 0,
t impliest<0; or
(i) there is & 0-1-Box such thaP; # 0, andt impliesc <.
Given 0 — Thi, P), we can check the necessary and sufficient condition.o

3.2.2 Definition. If { is empty, then for everyy H(C, K) is the empty
alternation type. If isn”j, thenH(, k) = H(n, k+ j) * p, wherep is the
cardinality ofn -(k + j)-Box.

3.23 Theorem. Thereisan algorithm COMPthat computes{ — Th(M, X) from
H(C,1) = Th(, P(, X)) whenl, M, Xand{ arevaried.

Proof. By induction om, we construct algorithms COMBuch that every
COMPR, computes; -Th(M, X) from H(Z, I) — Th(, P(, X)), for every of
lengthn. The construction is uniform im and results in the desired algorithm
COMP.

The case = 0 was treated in Lemma 3.2.1. Suppose that COM&ready
constructed. Instead of defining COMP formally, we will simply explain
how it works.

Let{ be an alternation type of length {* k — Th(M, X) is the set

S1 = {{ - Th(M, X"Y): Ih(Y) =K},

whereY ranges over tuples ok subsets oM. COMR, will computeSL from
& ={n-Th(l, P, X"Y)): In(Y) =k},

wheren=H(, | + k). & is computable from
3 ={n —Thl, P(C "k, X), P(C, X2 Y)): Ih(Y) =k},

From the other sid&{(Z ~k, 1) — Th(, P(C "k, X)) is the set
$A ={n-Th(l, PC"k X) " Q): IN(Q) = E-(I +K)-Box]},

where 1 is again H(, |+ k). Evidently, S3 is included into4.
We give a verifiable necessary and sufficient condition for an element
u=n-Th({, P "k, X) " Q) of $4 to belong t&3:

The sequence
Q= {Qute(+k-Box)

partitionsl, andt € s wheneverQ, meets Pk, X 9).
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The argument for necessity is obvious. To prove the sufficiency, suppose that
u satisfies the condition. We need to find a toptE k subsets oM such that

PE X~Y)=Q. For everyi €|, there arese { "k-I-Box andt e Z-(I + k)-Box

such that ie Pk X,8) N Q. Then tes that is to sayt e (k-
Th(M;, X|M)). Hence,t={—-ThM, (X|M)~*Y'"), for some tuple/' of k
subsets ofVi. Now choose& such thaty |M;=Y', foriel. m

3.3. Monadic Theory of Countable Ordinals

3.3.1 Theorem. Thereisan algorithm PLUS such that if M isthe
lexicographic sum M; + M, of chains M; and M, andif X isatuple of
subsets of M, then for every alternation type ¢,

£ —=Th(M, X) = PLUSE - Th(My, X | My), £ — Th(My, X | My)).

Proof. Simply takel = {1, 2> in the composition theorem and the result
follows. =

We writet = t; +1, if t= PLUS(;, t;). The induced addition of bounded
theories is obviously associative.

3.3.2 Theorem. The monadic theory of finite chainsis decidable.

Proof. By Section 3.1, it suffices to show that"@ ThM): M is a finite
chain} is computable froom. Given n, we compute the"itheory t; of
singleton chains. We thus comptge t;+ t;, t; = t, + t, etc., stopping when
we find i < jwitht =t. Theset{y, ... t.i} isequalto1-ThM): M is
finite}. o

3.33Theorem. There is an algorithm MULT satisfying the following
condition. Let M be the lexicographical sumof chains M; with respect to a
chainl, andlet X beatupleof | subsetsof M. If {—Th(M;, X|M;) = s for
every i and n= H( 1), then

¢—Th(M, X) = MULT(n — Th(), 9).

Proof. The algorithm COMP computes— Th(M, X) from n—Th(l, P(, X))
which is itself computable frory — Th(l) and s, becauseP({, X, s) =I and
any otherP(C, X, t) = 0. o

We writes =t-sif s =MULT(t,9).
3.3.4 Theorem. The monadic theory of o isdecidable.

Proof. By induction onn, we construct an algorithrfy such that, given
an alternation typéof length n and a natural numbér f, computes { -
Th(w, X): X is an I-tuple of subsets af}. The construction is uniform im
and provides an algorithm which will subsume evéryBy Section 3.1, we
know that this is enough for decidability.
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Casen=0is easy. Suppose that 0 and f,_; is already constructed.
Given { andl, we compute = H({,I) which is equal t§ * k, for some

alternation typéj of length n—1 and somek. Also, we compute
t=n-Thw)={f —Th@, Y): Y is a k-tuple of subsets @6}

= foo1(®, K).

Using the decision procedure for the monadic theory of finite chains, we
computeA = {{ - Th(M, X): M is a finite chain andX is anl-tuple of subsets of
M}. And, finally, using the algorithms PLUS and MULT, we comBite

{so+t-ss,scAL

Evidently, B€ C={{ - Th(, X): X is an |-tuple of subsets af}. We
prove thaB = C, which fact allows us to compu@

Given anl-tuple X of subsets ofio color every non-empty interval, |) of
natural numbers by the "colot'- Th([i, j), X | [i, j)). By the Ramsey theorem,

there is an infinite sequence @< n, < - - - such that all intervalsi, n.1)
have the same colas. If s is the color of [Ony), then (- Th(w, X) = s+

t-seB. m]
3.3.5 Theorem. The monadic theory of countable ordinals is decidable.

Proof. We explain how to compute {+ Th(@): a is a countable ordinal} from
a given numbem. First, we use the algorithm of Theorem 3.3.4 to compute

n - Th(w), wheren = H(1", 0). By Theorem 3.3.3"+ Th(@-®) =t- (1" -
Th(w)), for any a. Second, compute the minimal sgtof 1"-theories which
contains the "theory of singleton chains and which is also closed under

addition and under multiplication by It is easy to see th& is the desired
{1" - Th(@): a is a countable ordinal}. o

4. The Undecidability Technique

Themonadic topology of a topological spac&) is the first-order theory of the
structure{PSQ), €, OPEN , where P3() is the power-set obJ, € is the

usual inclusion and OPEN is the unary predica{es open." In this section,

we will describe a proof of undecidability of the monadjpdaiogy of the Cantor
discontinuum CD. The monadic topology of CD is easily interpretable in the
monadic theory of the real linB. In this way, we get undecidability of the
monadic theory ofR. We could, of course, deal directly with the monadic
theory ofR — it would be practically the same proof. Undecidability of the
monadic topology of CD seems to be even more mysterious and more difficult
to prove.

In Section 4.1 we will give a rough idea how one can talk about natural
numbers in the monadic topology of CD - explaining the details would require
more space. However, the details can be found in Gurevich-Shelah [1982].
There is a serious restriction on how much we can say about natural numbers in
the monadic topology of CD: true first-order arithmetic is not interpretable (in
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the usual sense of this word, for example Monk [1976]) in the monadic theory of
R, see Gurevich-Shelah [198la]. In Section 4.2, we show that whatever we can
say about natural numbers in the monadic topology of CD is enough to reduce
true first-order arithmetic to the monadic topology of CD. Actually, a much
stronger result is proven in Section 4.2.

4.1. How Can One Speak About Natural Numbersin the Monadic Topology of
the Cantor Discontinuum ?

The idea is to slice a countable everywhere densP gefo everywhere dense
slices §, S, . . . and to code this decomposition by parameters. First, we
choose an everywhere subggt of D such thaD - D° is everywhere dense
also. Then, we slic® in such a way that the seis= SN D°, A= S ND°,

A, =S N D° ... are disjoint as well as everywhere dense. We then prove that
there is a parametaV such that a certain monadic formup@X) with
parameter®, D°, W defines the slices locally: that is, evefy satisfiesp and

if some X satisfiesp, then every non-empty open §&has a hon-empty open
subsetH where X coincides with one of the slic&. We have not said
anything about set& — Ag, St — Ay, . . .. They can be used to code additional
information. In particular, a pairing function can be coded.

The coding described is best explained in Gurevich-Shelah [1982]. Here we
can only summarize results of the coding in a convenient form. There are

monadic topological formulas Premigg( Share, vo) and Pairing§, Vo, V1, Vz,

v3) which satisfy the following conditions. Bothand o, V4, V2, V3) are

sequences of (set) variables. The formulas Premise, Share, and Pairing do not
have any free variables except those shown. Pramjpisetatisfiable in CD. If

t is a sequence of point sets and Prer)ike{ds in CD then there is a
sequencefA :i<w) of disjoint subsets of CD which satisfy the conditions
CO0-C2 below:

CO. Eaclh, is everywhere dense and each intersecApfi A;, with i #],
is empty.

Cl. Sharet(X) holds iff every non-empty open €8t has a hon-empty
open subsét such thaX N H is equal to somey, N H.

We will say thatX is a t-share if Sharef, X) holds. We order the ordered
pairs of natural numbers first by the maximum and then lexicographically:

(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 1), . . ..

LetP be the set of triplesi, §, k) of natural numbers such that jj is the
kth pair (when (0, 0) is pair number 0).

C2. Suppose thak, Y, Z are t-shares ands is a hon-empty open set.
Then, Pairing(X, Y, Z, G) holds iff, for every non-empty opép, € G,

there is a tripld, (, k) € P and a nonempty opdth< G; with XN H =
ANH, YNH=ANH, ZNH=ANH.
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Before we go on to discuss reduction, let us recall that an open Sulusfet
topological space is calletegular if the interior of the closure o6 coincides
with G. The following propositions is well known.

4.1.1 Proposition. Theregular open subsets of any topological space U form
a complete boolean algebra with:

(i) GH=GNH;

(i) G +H = Interior(ClosureG v H));

(i) — G = InteriorU - G); and
(iv) 1=U, and 0=@.

4.2. Reduction

Models of ZFC, the Zermelo-Fraenkel set theory with the axiom of choice, will
be calledworlds. In this discussion we will work in a worMl By sets is

meant elements of/. For every complete boolean algelBgin the world V)

a standard construction providesBavalued world V? (see Jech [1978]). 1§

is a formula in the language of ZFC with possible parameters ¥grthen the
boolean value of will be denoted as usuabl]} Some simple but useful facts
about V? are summarized in the following

4.2.1 Proposition.
(a) upposethat {b: i €1} isanantichain in B (which
meansthat b - b= 0 for i#j). For every{c <V iec1} there is

6 < VPsuchthat b < [l =o]| foriel.
(b) Let y(v) be aformulain the language of ZFC with exactly one free
variable and perhaps some parameters from V2, thenthereis ¢ < \V?

such that [js(o) || = [Bvw(V)Il.
(c)Let y(v) beasaboveand t < VP, Quppose |Fv(v e 1)|| = 1, thenthereis
oV suchthat o <1l = 1,and [(o)ll= |GV € Dy(WI-
Proof. For the proof of (a), see Lemma 18.5 in Jech [1978]. As to part (b), see
Lemma 18.6 in Jech [1978]. Turning now to part (c), weblet||@v e T)y(V)||.
By part (b), there areéy and o; such thatdp e 7|l =1 andd¢ly « T and y(cy)||
=b. Moreover, by part (a), there & such that{) < |lo = (|| £ |o = 1||, and
thenb<|lo =61]| < |lo € T]|- w(0)||. ¢ is the desired element &F. O
In the remainder of this subsecti8ris the boolean algebra of regular open
subsets of the Cantor discontinuum CD\)n An elements < V® will be
called aquas-dement (of ) if |lo € w]| = 1. It will be called guasi-set (of

natural numbers) ifd|€ w|| = 1. Hereafter, we ignore the difference between
an element ofV and the canonical name for it ivf.

Let t be a sequence of subsets of CD satisfying Prethisé(e will say that
a t-share X represents a quasi-element if

Y{beB: XNb=ANb}=|lo=n| for n<o.
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Subsets of CD will be calle@oint sets, and we will say that a point-séf
representsa quasi-setr if

Y{beB: XNb=ANb}=|net|| for n<o.

4.2.2 Proposition.
(a) Every t-share represents some quasi-element, and every quasi-element
is represented by some t-share.
(b) Supposethat t-shares X, X1, X, represent quasi-elements co, 61, 6> .

For every beB, Pairing(t, Xo, X1, Xz, b) holdsin CD iff

b < ||(co, 61, 6) € Pl

(c) Every point set represents some quasi-set, and every quasi-set is
represented by some point set.

(d) Supposethat a t-share X represents a quasi-element ¢, and a point set
Y representsaquas-set t. Then

dle t||= {beB: XN bE Y}
Proof. (a) Given at-shareX let
b,=Y{beB: XNb=A,Nb} for n<o.

By condition CO, distinct regular open sdisare disjoint. Moreover, by
condition Cl, they partition CD. By Proposition 4.2.1, thereisvith

llo = n|| > b, forall n. ¢is the desired quasi-element. Conversely; ifs a
quasi-element, then the desireghare is

X=U{A N6 =n|:n< ok

For the proof of part (b) we use condition C2.

Turning now to part (c), we see thatyifis a point set, then the desired
quasi-sett is a function fromw to B with

T(n)=3Y{beB: AyNbecY} forall n.

Conversely, ift is a quasi-set, then the desired point set is
Y=U{A, N|het||:n< n}

We now consider part (d). To prazewe will suppose that 0 &< |c < 1]|.
It then suffices to show that thereis B<a with XN bEgY. Sinces isa
guasi-element and is a quasi-set, there are and 0 <a;<a such that a; <

llb=n]] and a; <|he1]||. SinceX represents, there is 0 a,<a such
that XN a; = A, N a. SinceY representst, thereis 0 < a such that

A.NbEY. Thus, XNbeY.

To prove2, we will suppose thaa> 0 and XN a<c Y. It then suffices to

show that there is Ok<a with b<|l «1]|. Sincec is a quasi-element,
therearen and 0 <a;<a with a; <|jo = n||. SinceX represents, there is



500 XI111. Monadic Second-Order Theories

0 <b<ag; suchthatXNb=A,Nb and, thereforeA,Nb<Y. SinceY

represents, we haveb<|net||. Thus,b<| 1. m

4.2.3 Theorem. The full second-order theory of X intheworld V2is
reducible to the monadic topology (in the world V) of the Cantor discontinuum.
In other words, thereis an algorithm (not depending on the choice of the ground
world V) that assigns a sentence o* in the language of monadic topology to

every second-order sentence ¢ in such away that CD = ¢* iff o] =1. ©

This theorem tells us that the monadic topology of CD is very complicated.
In particular, true first-order arithmetic is reducible to the monadic topology of
CD. For,Vand V? share the same true first-order arithmetic. Moreover, there
is an algorithm interpreting true first-order arithmetic in (and therefore reducing
it to) the full second-order theory &, in any world. This algorithm, in
conjunction with the algorithm of Theorem 4.2.3, reduces true first-order
arithmetic to the monadic topology of CD.

Proof of Theorem4.2.3. The algorithm of Proposition 1.3.1 interprets the full
second-ordei/®-theory of w in the monadia/®-theory of the structurex P),
whereP is the pairing predicate defined in Section 4.1. Lebe the monadic
language of ¢, P). We will view individual variables (respectively set
variables) ofL as variables ranging over quasi-elements (respectively quasi-
sets). Thus, we view as a sublanguage of the language of ZFCy I a
sentence that is ah-formula with parameters, we will writep||| instead of

lko = |-
Let t be a tuple of point sets such that Prenijseglds in CD. By induction

on L-formulas o(uy, . . . ,Un, Vi, - . . ,V,n) we define a formula

(N < ”(P(ul, -+ o Um, \/|1 e ,Vn)”)[
in the language of monadic topology in such a way thatsharesx, . . . , X,
represent quasi-elements . . . .6, and point sety], ... ,Y, represent quasi-
setst, . . . ,T, and b e B, then
(*) CEB®D < lo(Xs, -+ - X Yoy -« YD)k

i< (o, . .. .Om T - - - T
In the casem=n= 0, b=1 we will have the desired:
Premige~ (1< ||lp|]} holdsin CD iff {fj| = 1.

Ca=l. ¢ is (Ug, U, Up) € P. Let W< |[o][} be Pairingt, uo, U, U, , W), and
use Proposition 4.2.2(b).

Case2. pisue V. Let (W< ||o|]}x be a formula saying thatnw-V is
nowhere dense, and use the result of Proposition 4.2.2(d).
Caz3.9is 91 & 9, Set

W< llollk = Ws llpallx & (W= lo2f[} -
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Case4. pis~vy. Let W< |||l be a formula saying that there is no
0 <w <w satisfying ¢ < [l||}. To check ¢), we suppose for simplicity thet
is a sentence. Theh £ |p||) holds iff thereisno 0 da<b with a<|p]| iff
b<{lpll.

Caseb. ¢ isduy(u). Let (W< |||} be aformula saying that there is a
t-shareu satisfying (< |l(u)||}. To check«) assume for simplicity that is a
sentence. We first suppose thag |[p||. By the results of Proposition 4.1.1(c),
there is a quasi-elemeiat with |\s(c)|| = Ip||> b. If at-shareX representss,
then by the induction hypothesib £ | (X)||} holds. Hence,l(< |p|[} holds.
Next, we suppose that somshareX satisfiesp< [w(X)||}. It represents some
quasi-element. By the induction hypothesid) < |w((o)||]. Hence, we have

b=kll-

Case 6. ¢ is IVy(V). Let (W< |||} be a formula asserting that there is a point
set V which satisfiesWw< |l(V)||}. To check<) in this situation is similar to
the task of checking in Case 5. o

5. Historical Remarks and Further Results

We will first review very briefly the history of the method of automata and

games. We will also mention delimiting undecidability results and some other
closely related results obtained by model-theoretic methods. In Section 5.2 we
will, very briefly review the history of the model-theoretic methods used to deal
with monadic theories. Some later results use model-theoretic methods as well
as the method of automata and games. It seems to make no real sense to divide
the two approaches too sharply, however.

5.7.Emphasizing the Method of Automata and Games

Church [1963] gave "a summary of recent work in the application of
mathematical logic to finite automata." Exploring connections between logic
and finite automata proved fruitful indeed; but the most interesting applications
appeared to be applications of finite automata to the decision problems for
monadic second-order theories. Decidability of the monadic theory of finite
chains could have been the first, the most natural and the easiest example — but
it was not. | only just made up this particular application and inserted it into
Section 2 for expository purposes. Arithmetic was too much on the minds of
those who first explored the connections between logic and finite automata. The
first results were related to the weak monadic theory ofith the successor
relation. This theory was called weak second-order arithmetic. (Let us recall
that the weak monadic theory of a structure is the theory of that structure in the
monadic second-order language when the set variables range over finite sets of
elements.) We will not speak about weak monadic theories here. A survey of
the results in this area can be found in Thatcher-Wright [1968]. Let us note
merely that the game technique given in Section 2 can be used to give an
alternative (and relatively simple) proof of decidability of the weak monadic
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theory of the binary tree. We should also note that the decidability schema of
Section 2, a schema that is based on correspondence between monadic formulas
and automata, had already taken shape in the work on weak monadic theories.

Decidability of the monadic theory SIS of with the successor relation was
proved by Buchi [1962]. He established a correspondence between SIS
formulas and Bichi automata. These machines are ordinary finite automata

A= (ST,sn F) with F &€ Sthat work on sequences is said to accept a
sequence;o; . . . in the input alphabet oA if thereis arunss, ... of Aon

the given sequence (which means, of course,shati(s) € Tand every

(S, 6i4, S+1) € T) such that for every there ig > i with 5 e F. Blichi also

solved the emptiness problem for Blchi automata. Unfortunately, a non-
deterministic Blchi automaton may be not equivalent to any deterministic
Blchi automaton, and Blichi used the Ramsey theorem to solve the
complementation problem for Biichi automata. Our sequential automata were
introduced by Muller [1963] in order to prove Theorem 2.2.1. However, the
first correct proof of that theorem was published by McNaughton [1966].
Simplifications of McNaughton's proof can be found in Rabin [1972], Choueka
[1974], Thomas [1981].

Decidability of the monadic theory S2S of the binary tree with two successor
relations was proven by Rabin [1969]. He established a correspondence
between S2S formulas and Rabin automata that are somewhat different from our
tree automata, and his proof of the complementation theorem is an extremely
difficult induction on countable ordinals. He used the same technique to solve
the emptiness problem for Rabin automata, although Rackoff [1972] found a
simple reduction of the emptiness problem for Rabin automata to the emptiness
problem for automata on finite binary trees. Our simple proof of the decidability
of S2S follows Gurevich and Harrington [1982].

The idea of using games had been exploited earlier however. Bichi-
Landweber [1969a] used a strong determinacy of more special games to prove

the following: Suppose that a senteiee3Yo(X, Y) holds in SIS wherex, Y

are tuples of variables. Then there is a deterministic sequential automaton
which outputs an appropriate outpdtwhen readingX. In particular, there is

an SIS formulap* (X, Y) uniformizing o; that is,p* implies¢ in SIS and, for
everyX, there is a uniqu¥ such thate*(X, Y) holds in SIS. Bichi [1977]
sketched a reduction of the complementation problem for Rabin automata to a
strong determinacy for booledh- games. This determinacy result was proven
independently in Gurevich-Harrington [1982] and in the manuscript Biichi
[1981]. The latter solution, however, is much more complicated (and it still
uses an induction on countable ordinals).

Let me add a few words about Rabin's uniformization problem for S2S.

Suppose that a senteri€¥ 3Yop(X, Y) holds in S2S (where for the sake of
simplicity, X, Y are just single variables). Is there an S2S forngdig, Y)

such thatp* impliese in S2S and, for ever¥, there is a uniqu¥ such that
o*(X,Y) holds in S2S? Using model-theoretic methods and forcing Gurevich-
Shelah [1983Db] solved this problem negatively. Their counterexapgY)
asserts that iX is not empty, theny is a singleton subset of.
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Rabin [1969] proved the decidability of many interesting theories by inter-
preting them in S2S. Among those theories we find the monadic theory of
countable chains and the theory of the real line with quantification over
countable sets. More direct model-theoretic proofs of these two results as well
as delimiting undecidability results can be found in Gurevich-Shelah [1979].
For more on this the reader may also see Section 5.2. Finally, we note that
Rabin [1969] also proved that S2S allows us to quantify Bysubsets of
(infinite) branches of the binary tree. (Basic open sets of the topology in
guestion are sets of branches through a given node.)

Open Question. If we augment the language of S2Shby allowing
quantification of arbitrary Borel sets over branches, isthe resulting theory of
the binary tree in the augmented language decidable?

Shelah [1975¢€] states the reducibility of the monadic theory of a tree of
height co with a given structuon the successors of each node to the monadic
theory of S. The details appear in Stupp [1975]. Their proof uses Rabin's
technique. The game technique of Gurevich-Harrington [1982] gives the
generalized result fairly easily.

Buichi [1973] used automata to prove decidability of the monadic theery of
(with the order). See also Litman [1976], Buchi-Siefkes [1973], Buchi-Zaiontz
[1983] for additional results about monadic theories of ordinals of cardinality at
mostX;. There is a good reason why these results cannot be generatized to
Using model-theoretic methods and assuming the existence of a weakly compact
cardinal, Gurevich, Magidor, and Shelah [1983] prove:

(i) for any giverS<= w, there is a forcing extension of the given set-theoretic
world, where the monadic theorymfthas the Turing degree of S; and

(i) there is a forcing extension of the given set-theoretic world, where the
monadic theory af, and the full second-order theorywf are reducible
each to the other.

5.2. Moded -Theoretic Methods

The paper Shelah [1975e] represented a breakthrough in the study of monadic
theories of chains. Shelah developed the model-theoretic decidability method,
which we illustrated in Section 3, and proved all known decidability results
about monadic theories of chains in a uniform way. Assuming the continuum
hypothesis, he reduced true first-order arithmetic to the monadic theory of the
real line. This was the first undecidability result in the area.

Shelah's decidability method was rooted in achievements of his predecessors.
In this connection, let me mention Feferman-Vaught [1959], Ehrenfeucht
[1961], and Lauchli [1968]. Working on well-orderings, Shelah used ideas of
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Buchi and Rabin. For more on this, see the references in Shelah [1975¢]. A
detailed version of the model-theoretic decidability method, a version which
prepared the ground for stronger results, is given in Gurevich [1979a]. Shelah's
undecidability method was absolutely new. Actually, he wanted to prove
decidability of the monadic theory of the real line. He was developing and
sharpening the decidability method to achieve this goal when he discovered the
undecidability. Later, he reduced true first-order arithmetic to the monadic
theory of the real line just in ZFC, without making any additional set-theoretic
assumptions. See Gurevich-Shelah [1982] in this connection.

Sometimes model-theoretic analysis is less informative than is the
automaton-theoretic. For example, the decision procedure in Section 2 for the
monadic theory ofw gives more than the corresponding decision procedure in
Section 3: It establishes the correspondence between monadic formulas and
deterministic sequential automata. In many other cases, however, the model-
theoretic analysis is more informative. For example, Shelah answered
negatively a question posed by Rabin, a question asking whether or not
countable orders can be characterized in the monadic theory of chains.

Let us examine the monadic theory of countable chains a bit further. Shelah
[1975€] conjectured that the monadic theory of countable chains can be finitely
axiomatizable in the monadic theory of chains. However, Gurevich [1977b]
refuted this conjecture. He provided a certain axiomatization of the monadic
theory of countable chains. A chaindlort if it embeds neithes; nor m,*,
wherew;* is the dual ofy;. A chain without jumps (that is, a densely ordered
chain) is perfunctorily n-modest if for all everywhere dense subsets . . . ,X,,

there is a perfect subsat without jumps such that< X; U - - - U X, and every

XiNY isdenseinY. A chainisn-modes if all its subchains without jumps

are perfunctorilyn-modest. A chain imodest if it is n-modest, for every. It

appears that a chain is monadically equivalent to a countable chain iff it is short
and modest. Rabin [1969] proved decidability of the monadic theory of
countable chains. Thus, the monadic theory of short modest chains is decidable.
Gurevich-Shelah [1979] proved directly decidability of short modest chains.

The situation is very different for non-modest chains. Assuming the
continuum hypothesis, Gurevich-Shelah [1979] reduced true first-order
arithmetic to the monadic theory of any honmodest chain. The use of the
continuum hypothesis was removed in Gurevich-Shelah [1982]. The reader may
also consult Gurevich-Shelah [1979] for a model-theoretic analysis of the theory
of the real line with quantification over countable subsets.

In order to discuss undecidability results, we need to clarify the terminology.
A reduction of a theory T to a theoryT* is an algorithm associating a sentence
¢* in the language off* with each sentenagin the language off in such a
way thatep* holds in T* iff ¢ holdsinT. An interpretation of one theory in
another is a special case of reduction when models afe defined inside
models ofT*. An exact definition of interpretation can be found in Monk
[1976] for example.

As we mentioned above, Shelah [1975€] reduced true first-order arithmetic to
the monadic theory of the real line. In Section 4 we did not say much about the
undecidability method of Shelah [1975€e]. This method was augmented in
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Gurevich [1977b] by a technique of towers, a technique that has been exploited
extensively in subsequent papers. Confirming Shelah's conjecture, Gurevich
[1979b] reduced true third-order arithmetic to the monadic theory of the real line
(in fact, to the monadic theory of any short non-modest chain) in Gédel's
constructive universe. The converse reduction is obvious. Only during the
Jerusalem Logic Year 1980-81 we — Saharon Shelah and | - realized that our
reductions are really a kind of interpretation of (in terms of Section 4) theories in
the "next world" V? in theories in "this world"V. Subsuming all mentioned
undecidability results, Gurevich-Shelah [198la] managed:

(i) reduce true second-order arithmetid/fhto the monadi®/-theory of any
short non-modest chain; and also
(ii) to reduce true third-order arithmetic\ifi to the monadi&/-theory of any
short non-modest chain if the continuum hypothesis holds in

In contrast to this, Gurevich-Shelah [1981a] proved that true first-order arith-
metic is not interpretable in the monadic theory of the real line.

Gurevich-Shelah [1983a] reduce true second-order logic to the monadic
theory of (linear) order under very weak set-theoretical assumptions. This gives
the complexity of the monadic theory of order. It does not mean, however, that
the monadic theory of order is as un-manageable as second-order logic. From a
model-theoretical point of view, there is an enormous difference between these
two theories (reflected somewhat in different Lowenheim and Hanf numbers).
This topic is, however, beyond the scope of this chapter and the reader may see
Chapter 12 in this connection.

A few words about topology. Grzegorczyk [1951] introduced the monadic
topology (see Section 4) and interpreted (in a simple and natural way) true first-
order arithmetic in the monadic topology of the Euclidean plane. It does not
take much more sophistication to verify that the monadic topology of the
Euclidean plane and true third-order arithmetic are interpretable, each in the
other. For more on this, the reader may see Gurevich [1980]. Grzegorczyk's
guestion about the decision problem for the monadic topology of the real line
was, however, long open. Reading the paper Shelah [1975¢€], | noted that Shelah
had solved negatively the question of Grzegorczyk under the continuum
hypothesis. Several papers — especially Gurevich-Shelah [1981c] - give
undecidability results about the monadic topology. In particular, all mentioned
above undecidability results about the monadic theory of the real line apply to
the monadic topology of the Cantor discontinuum. For a positive result on
monadic topology see Gurevich [1982].

GurevichShelah [1981b] use both model-theoretic methods and the method

of automat and games to construct a decision procedure for the theory of trees
(all trees, not necessarily well-founded) with quantification over maximal
branches.

Finally, let us mention some results that are not directly related to decision
problems. Gurevich [1977b] proved (thus refuting Shelah's conjecture) that the
predicate "X is countable” is expressible in the monadic theory of the real line if
the continuum hypothesis holds. Gurevich [1979b] also proved (and thus partly
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refuted and partly confirmed Shelah's conjectures) that the monadic theory of
the real line can be finitely axiomatizable (in the monadic theory of chains) and
categorical under natural set-theoretic assumptions. By "Shelah's conjectures”
here, we mean the collection of conjectures that are given in Shelah [1975e].
Almost all of these conjectures have been decided by now, and a majority of
those decided are true. Thus, the program sketched in Shelah [1975¢€] is
essentially fulfilled. Moreover, | have an impression that an important and
natural phase in the study of monadic second-order theories is now completed.
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