
Chapter XIII 

Monadic Second-Order Theories 

by Y. Gurevich 

 

In the present chapter we will make a case for the monadic second-order logic 
(that is to say, for the extension of first-order logic allowing quantification over 
monadic predicates) as a good source of theories that are both expressive and 
manageable.  We will illustrate two powerful decidability techniques here—the 
one makes use of automata and games while the other uses generalized products a 
la  Feferman-Vaught.  The latter is, of course, particularly relevant, since monadic 
logic definitely appears to be the proper framework for examining generalized 
products. 

     Undecidability proofs must be thought out anew in this area; for, whereas 
true first-order arithmetic is reducible to the monadic theory of the real line  R, it 
is nevertheless not interpretable in the monadic theory of R.  Thus, the examination 
of a quite unusual undecidability method is another subject that will be 
explained in this chapter. In the last section we will briefly review the history of 
the methods thus far developed and give a description of some further results. 

 

1. Monadic Quantification 

Monadic (second-order) logic is the extension of the first-order logic that allows 
quantification over monadic (unary) predicates.  Thus, although binary, ternary, 
and other predicates, as well as functions, may appear in monadic (second-order) 
languages, they may nevertheless not be quantified over. 

 

1.1. Formal Languages for Mathematical Theories 

We are interested less in monadic (second-order) logic itself than in the applica-
tions of this logic to mathematical theories.  We are interested in the monadic 
formalization of the language of a mathematical theory and in monadic theories of 
corresponding mathematical objects.  Before we explore this line of thought in 
more detail, let us argue that formalizing a mathematical language—not necessarily in 
monadic logic, but rather in first-order logic or in any other formal logic for that 
matter—can be useful. 

  



480 XIII. Monadic Second-Order Theories 

     We begin by observing that the first-order Zermelo-Fraenkel set theory 
stands as a very important case in point, since it provides the most popular way 
to avoid known paradoxes in set theory.  Another excellent example is related to 
the Lefschetz principle in algebraic geometry.  This principle asserts that any 
algebraic statement that is true for the field of complex numbers is also true for 
any algebraically closed field of characteristic 0.  Tarski proved a meaningful 
exact version of the Lefschetz principle, namely, that all algebraically closed 
fields of characteristic 0 are elementarily equivalent. 

     The task of classifying all mathematical structures of a kind up to 
isomorphism (or homeomorphism, etc.) may be impossible.  For example, 
nobody can classify all abelian groups up to isomorphism.  Formalizing (a 
portion of) the language may allow classification by properties that are 
expressible in the formal language.  Szmielew [1955] did, in fact, classify all 
abelian groups up to elementary equivalence.  The classification of structures up 
to indistinguishability in a formal language may indeed be a reasonable 
alternative to the original classification problem provided, of course, that the 
formal language expresses enough of the relevant mathematics. 

     Another impossible task is that of learning everything about a specific 
structure.  For example, nobody can learn all about the binary tree of words in a 
two-letter alphabet.  Formalizing (a portion of) the language may enable us to 
learn all about the structure that is capable of being expressed in the formal 
language.  It is, of course, a reasonable approach if the formal language is 
sufficiently rich.  Indeed, Rabin [1969] has constructed an algorithm which is 
capable of recognizing the true statements in the very expressive monadic 
(second-order) language of the binary tree with two successor functions. 

     The study of mathematical structures in a formal language may, of course, 
degenerate to a mere logic exercise if the language is not sufficiently expressive. 
For example, imagine studying first-order properties of dense linear orders.  On 
the other hand, the study itself may become intractable if the language is over-
expressive.  For instance, imagine studying second-order properties of dense 
linear orders.  A good formal language has to meet two conflicting demands.  It 
must express an interesting portion of the relevant mathematics, and it must also 
provide a manageable theory.  One of the main aims of this chapter is to 
demonstrate that the monadic (second-order) logic is a good source of 
expressive and manageable theories. 

 

1.2. Ordered Abelian Groups and Restricted Monadic Quantification 

I began to think in terms of monadic logic while I was working on ordered 
abelian groups.  The original problem I faced was the decision problem for the 
elementary theory of such groups—a question of Tarski.  It appeared, however, 
that monadic logic gives a better formalization of the informal theory of o.a. 
groups.  The story was an important lesson for me and I will briefly relate it to 
you. 
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     An o.a. group is a group and a chain, the two structures being connected by 
the law 

           x < y → x + z < y + z. 

Here is a particular example: the additive group of complex numbers ordered 
thus: 

           a + bi < c + di   iff    b < d,  or  b = d  and  a < c. 

The subgroups of an ordered abelian group that form intervals are called convex 
subgroups.  For example, the real numbers form a convex subgroup in the o.a. 
group of complex numbers just described.  It is easy to verify that the convex 
subgroups of any o.a. group are linearly ordered by inclusion.  Before 
proceeding, we should point out that throughout this chapter the terms chain and 
linear ordering will be used interchangeably. 

     The elementary first-order theory of o.a. groups was shown to be decidable in 
Gurevich [1964], there was proven that two o.a. groups are elementarily 
equivalent iff their chains of definable convex subgroups with some definable 
weights are elementarily equivalent.  Of course, in that study most of the 
informal theory of o.a. groups was left aside, such theory tending as it does to 
deal with convex subgroups.  In particular, we note that the o.a. group of 
complex numbers described above is elementarily equivalent to the naturally 
ordered additive group of real numbers, although only one of these o.a. groups 
has a non-trivial convex subgroup. 

     The elementary language of o.a. groups was expanded in Gurevich [1977a] 
by adding quantifiable variables that range over arbitrary convex subgroups, and 
the expanded theory of such groups was there proven to be decidable.  You 
might suspect that the expanded theory is decidable because the expansion did 
not greatly increase the expressive power, and that the restricted monadic 
quantification can be essentially eliminated.  However, this is not at all the case! 
Not only does the expansion considerably increase the expressive power, but it 
is also the elementary quantification that can be essentially eliminated in the 
expanded theory.  Two o.a. groups are equivalent in the expanded language iff 
their chains of convex subgroups with some definable weights are elementarily 
equivalent.  Moreover, the decision procedure is clearer and less cumbersome in 
the case of the expanded theory.  Thus, in the case of o.a. groups, the monadic 
logic really does provide a better formalization. 

     Not too much work has yet been done on this kind of algebraic application of 
restricted monadic quantification. In this connection, the reader might consult 
Kokorin-Pinus  [1978], an informative, although somewhat biased, survey.  The 
remainder of this chapter is devoted mainly to unrestricted monadic quantifica-
tion, an area in which some very impressive progress has been made.  In the 
original papers, many of the results on unrestricted monadic quantification are 
accompanied by restricted monadic quantification results.  The work on 
unrestricted monadic quantification seems to be a natural step in the 
development of ways that are capable of dealing with the presumably more  
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applicable restricted monadic quantification. 

 

1.3. Monadic Languages 

The monadic (second-order) logic is the fragment of the full second-order logic 
allowing quantification only over elements and monadic predicates.  One way to 
define the monadic version of an elementary language  L  is to augment  L  by a 

sequence of quantifiable set variables and by new atomic formulas  t � X,  where 
t  is an elementary term and  X  is a set variable.  The intended interpretation 

here is that  �  is the membership relation and the set variables range over all 
subsets of a structure for  L.  Observe, however, that in the case of restricted 
monadic quantification the set variables range only over special subsets;  that is 
to say, they only range over subgroups, or normal subgroups, etc. 

     The following proposition shows that the monadic theory of a structure may 
easily be intractable. 

1.3.1 Proposition.    Let  P  be a ternary predicate on a non-empty set  S.   

Suppose that, for every  x, y � S,  there is  z � S,  with  (x, y, z) � P, and for every 

z � S  there is at most one pair (x, y) with  (x, y, z) � P;  such  P  may be called a 
pairing predicate.   Then  the  true  (full)  second-order theory of  S  is 
interpretable  in  the  monadic  theory of  (S, P). 

Proof.   The proof is quite clear.  First, we code ternary, quaternary, etc., 
predicates by binary ones.   That done, we then code a binary predicate  B by a 

monadic predicate  {z:  there is a pair (x, y) in  B  with (x, y, z) � P}.                   □  

     We will be interested in the monadic theories that are not able to express 
pairing such as monadic theories of (linear) orders, monadic theories of trees, 
etc.  In these theories it is useful in many cases for us to rid ourselves entirely of 
elementary variables by coding the original structure on singleton sets.  For 
example, we consider the monadic language of order as the (formally) first-order 

language whose vocabulary consists of the binary predicate symbols  �  and  ≤ . 
Every chain  (that is, every linearly ordered set)  gives a standard model:  the 

variables range over all subsets of the chain,  � is the usual inclusion, and  X < Y 
means that there are elements  x < y  with  X = {x},  Y = {y}.   The  (formally) 
first-order theory of these standard models is, by the definition, the monadic 
theory of linear order. 

 

2. The Automata and Games Decidability Technique 

The first technique for dealing with nontrivial monadic theories originated in the 
theory of finite automata. In Section 2.1 we will demonstrate this technique on 
an easy example of the monadic theory of finite chains. Section 2.2 is devoted to  
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the monadic theory of the chain  ω  of natural numbers, while Section 2.3 is 
devoted to the central result proven by the technique which is decidability of the 
monadic theory of the binary tree. 

 

2.1. Monadic Theory of Finite Chains 

We define the monadic language of one successor as formally the first-order 

language with binary predicates  �  and SUC.  It is convenient here for us to 
view a finite chain as a model for the monadic language of one successor, that 

is, the variables range over the subsets of the chain,  �  is ordinary inclusion, 
and SUC(X, Y) means that there are points  x, y such that  X = { x}, Y = {y},  and  
y  is the successor of  x.  The linear order (on singleton sets) is then easily 
definable. 

     Throughout this section  ∑ is an alphabet (all of our alphabets are finite and 
are not empty).  A  ∑-automaton is a quadruple  A = (S, T, sin, F), where  S is the 

finite set of states,  T � S × ∑× S  is the transition table,  sin� S  is the initial 

state,  and F � S  is the set of final (or accepting) states.  A is generally a non-

deterministic automaton.   It is deterministic if  T is a total function from S × ∑ 
to  S. 

     A run of the ∑-automaton  A  on a word  σ1 . . . σl  in ∑ is a sequence s1 . . . sl  

of states such that (sin, σ1, s1)  � T and every (si, σi+1, si+1)  � T.   The automaton 

accepts σ1 . . . σl  if there is a run s1 . . . sl  on this word with  sl  � F. 

2.1.1 Theorem.  There is an algorithm that, given an alphabet ∑ and a  
∑-automaton A,  constructs a deterministic ∑-automaton accepting exactly the 
words accepted by A. 

Proof.   See any standard text in automata theory or, for the original proof, 
Rabin-Scott [1959].                                                                                               □  

2.1.2 Theorem.  There  is  an  algorithm  that,  given  an  alphabet   ∑ and  a  
∑-automaton   A,  decides whether A accepts at least one non-empty word. 

Proof.   Let  A = (S, T, sin, F).  First, we construct a singleton alphabet ∑' = {a} 
and a ∑'-automaton   A' = (S, T', sin, F)  that accepts a non-empty word iff  A 
accepts a non-empty word.  Set 

           T' = { s1as2: s1σs2 � T,  for some σ � ∑}. 

     Second, we use the algorithm of Theorem 2.1.1 to construct a deterministic 
∑'-automaton  A"  that accepts exactly the words accepted by A'. 

     Third, let  n  be the number of states of  A".   Consider now  the  unique  run 
s1 . . . s n+1 of  A" on the  ∑'-word  of length (n + 1).  There are   i < j ≤  n + 1 
with  si = sj.  Hence, any run of A"  is purely periodic from the ith  place on. 
Thus,  A"  accepts a non-empty word iff a final state appears among sl , . . . ,sj-1.□   

     A finite chain C with  n subsets  Xl, . . . , Xn  can be considered as a word 
Word(C, Xl, . . . ,Xn)  of length |C|,  in the alphabet ∑n  that is the Cartesian 
product of precisely n copies of {0, 1}.  If  n = 0,  then  ∑0  is a singleton.  In  
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case n > 0, a  letter of  ∑n can be viewed as a column of  n  zeros and ones.   For 
example, if  C is the chain Sunday, . . . , Saturday and X1 = {Monday, Thursday} 
and X2 = (Monday, Tuesday, Wednesday},  then we have 

                                              0 1 0 0 1 0 0  
           Word(C,  X1,  X2) = 
                                             0 1 1 1 0 0 0.  

2.1.3 Theorem.  There is an algorithm that, given  n  and a  ∑n-automaton   A, 
constructs a formula φ(X1, . . . , Xn)  in the monadic language of one  successor 
such that for every finite chain C and any subsets  X1, . . . , Xn  of  C, we have 
that 

           C � φ(X1, . . . , Xn)    iff   A accepts  Word(C, X1, . . . , Xn). 

Proof.  Without loss of generality, C can be taken as the chain 1, . . . , l  for some 
l.  Let  sl, . . . , sm be the states of  A. The desired formula says that there are 
subsets  Yl, . . . , Ym  describing  an accepting run of  A on Word(C, X1, . . . , Xn). 
The intended meaning  of  Yk is  {i:  A is in the state sk after reading the ith 
letter}.                                                                                                                    □  

2.1.4 Theorem.  There is an algorithm that, given a formula  φ(X1, . . . , Xn)  in 
the monadic language of one successor (with free variables as shown), 
constructs a  ∑n-automaton  A  such that for every finite chain C and any subsets 
X1, . . . , Xn   of  C, we have that 

           C � φ(X1, . . . , Xn)    iff   A accepts  Word(C, X1, . . . , Xn). 

Proof.   We will merely sketch the proof.  The automaton is built by induction 
on the formula.  The atomic cases and the case of disjunction are quite easy.  As 

to the case in which  φ = �Xn+1ψ,   the desired ∑n-automaton guesses Xn+1 and 
mimics the ∑n+1-automaton corresponding to ψ.  The case of negation is easy for 
deterministic automata.  We will now use Theorem 2.1.1 and the result will 
follow.                                                                                                                   □  

     Theorems 2.1.3 and 2.1.4 together constitute a kind of normal form theorem 
for the monadic theory of finite chains. 

2.1.5 Theorem. The monadic theory of finite chains is decidable. 

Proof.   Given a sentence φ, we use the algorithm of Theorem 2.1.4 to find an 
appropriate automaton.  The sentence φ is satisfiable  iff  the automaton accepts 
at least one non-empty word.  Now, using Theorem 2.1.2, the assertion follows 
immediately.                                                                                                         □ 

 

2.2. Monadic Theory of ω   

As usual, ω   will denote the chain of natural numbers.  We consider it here as a 
model for the monadic language of one successor:  The variables range over the 

subsets of  ω, �  is the usual inclusion, and SUC(X, Y) means that there is a  
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natural number x such that  X = {x}  and Y = {x + 1}.  The monadic theory of ω  
is known as  SIS which is an acronym for second-order (monadic) theory of one 
successor.  Observe that the linear order (on singleton sets) is easily definable in 
SIS. 

     A sequential  ∑-automaton is a quadruple A = (S, T, sin, F),  where S is the set 

of  finite states  T � S × ∑× S  is the transition table,  sin  is the initial state and 
F  is the set of final collections of states.   A is generally a non-deterministic 
automaton.  However, it is deterministic if  T is a total function from S × ∑  to S.  
A run of  A on a sequence  σ1σ2 . . . is a sequence s1s2 . . . of states such that  

(sin, σ1, s1) � T,  and every (sin, σi+1, si+1) � T.  It is an accepting run if { s: sn = s 
for infinitely many n} belongs to F.  And,  finally,  A accepts  a  sequence          
σ1σ2 . . .   if there is an accepting run of  A on this sequence. 

2.2.1 Theorem.  There is an algorithm that, given an alphabet ∑ and a 
sequential  ∑-automaton  A,  constructs a deterministic sequential ∑-automaton 
accepting exactly the sequences accepted by  A. 

     This result is proven in McNaughton [1966].   However, simpler proofs can 
be found in Rabin [1972], Choueka [1974], Thomas [1981].                               □  

2.2.2 Theorem.   There is an algorithm that, given an alphabet ∑ and a 
sequential ∑-automaton A,  decides whether A accepts at least one sequence. 

Proof.  The argument here is simple, since we only need repeat the proof of 
Theorem 2.1.2, speaking about sequences rather than words and changing the 
last  sentence  to:  Thus A"  accepts the unique ∑'-sequence  iff  the  collection 
{ s1, . . . , sj -1} is final.                                                                                            □  

     Subsets X1, . . . , Xn of  ω   form a sequence SEQ(X1, . . . , Xn) in the alphabet 
∑n.  The following three theorems and their proofs are similar to the 
corresponding theorems and proofs in Section 2.1. 

2.2.3 Theorem.  There is an algorithm that, given  n and a ∑n-automaton  A, 
constructs  a formula φ(X1, . . . , Xn)  in the monadic language of one successor 
such that for any subsets X1, . . . , Xn  of  ω, 

           ω  �  φ(X1, . . . , Xn)   iff   A  accepts  SEQ(X1, . . . , Xn).                            □  

2.2.4 Theorem.  There is an algorithm that, given  a formula  φ(X1, . . . , Xn)  the 
monadic language of one successor (with free variables as shown), constructs a 
∑n-automaton  A  such that for any subsets X1, . . . , Xn  of  ω, 

           ω  �  φ(X1, . . . , Xn)   iff   A  accepts  SEQ(X1, . . . , Xn).                            □ 

2.2.5 Theorem. The monadic theory of co is decidable.                                      □ 



486 XIII. Monadic Second-Order Theories 

2.3. Monadic Theory of the Binary Tree 

The  binary tree is here defined as the set {l, r} *  of all words in  the  alphabet 
{ l, r}.  The empty word e is the root of the tree.  The words xl and  xr  are 
respectively the  left and the  right successors of a word x. 

     The monadic language of two successors is (formally) the first-order 

language with binary predicates �, Left and Right.  We regard the binary tree as 
a model for the monadic language of two successors: the variables range over 

the subsets, �  is the usual inclusion, Left(X, Y) means that there is a word x with 
X = {x},  Y = {xl},  and  Right(X, Y) means that there is a word  x  with  X = {x},  
Y = {xr}.   The monadic theory of the binary tree is known as S2S which is an 
acronym for the second-order (monadic) theory of two successors. 

     S2S is a very expressive theory.  The relation "x is the initial segment of  y" 
and  "x precedes y lexicographically" are easily expressible  (when coded on 
singleton sets).  Rabin [1969] interpreted in S2S the monadic theories of 3, 4, 
etc. successors, the monadic theory of  ω  successors, and a good deal more. 

   A  mapping  V  from  the binary tree to  an alphabet  ∑ will  be  called  a        
∑-valuation  or a  ∑-tree.   We  say that a  tree ∑-automaton  is  a  quadruple    

A = (S, T, Tin, F)  where S is the finite alphabet of states, T � S ×{ l, r}  × ∑ × S is 

the transition table,  Tin � ∑ × S  is the initial state table, and  F is the set of 
final collections of states.  In order to describe when the automaton  A  accepts a 
∑-tree  V,  we introduce a game  Γ(A, V) between the automaton  A  and another 
player called Pathfinder. 

 

Here each sn � S  and each dn � { l, r}.  The choices of  A  are restricted by the 
following conditions: 

           (V(e), s0) � Tin    and    (sn, dn+1, V(dl . . . dn+1), sn+1) � T. 

     We would like to avoid the possibility of the automaton not being able to 
make the next move.  One way to do this is to provide our automata with an 
additional state FAILURE in such a way that a transition into FAILURE is 
always possible, but a transition from a FAILURE to another state is never 
possible.  Of course, the singleton set {FAILURE} will not be a final collection. 
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     The automaton  A wins a play s0dls1d2 . . .  if  { s � S: sn = s  for infinitely 
many n}  belongs to  F.  Otherwise, Pathfinder wins.  The automaton  A  accepts 
V  if it has a winning strategy in Γ(A, V).  Otherwise, it  rejects  V.  The notion of 
strategy is clarified below. 

     A position in Γ(A, V)  is a word in the alphabet  S � { l, r}   that is an initial 
segment of some play  s0dls1d2 . . . .  The  last appearance record  LAR(p) in a 
position  p is the string of last appearances of states in  p. Consider the following 
example: 

 

     Here is an inductive definition of the last appearance record LAR(p).  If  p is 
the empty word  e  (that is, the initial position), then LAR(p) is empty.  If  p = ql 
or  p = qr,  then LAR(p) = LAR(q).  Suppose now that p = qs,  u = LAR(q)  and 
u'  is obtained from  u by erasing all appearances of  s.  Then  LAR(p) = u's.  
Every last appearance record is a word in alphabet S, where each state appears at 
most once. 

     A (deterministic) strategy for the automaton  A  in  the  game  Γ(A, V) is a 
function assigning a legal state to every position of even length.  A 
(deterministic) strategy for Pathfinder is a function assigning a direction l  or  r 
to each position of odd length. 

     Unfortunately, deterministic tree automata are too weak and Theorem 2.1.1 
cannot be generalized to them.  That theorem played a key role in Section 2.1; 
and in the case of tree automata the proper form of determinacy will play an 
analogous role. 

2.3.1 Theorem  (Forgetful Determinacy Theorem).  One of the players has a 
winning strategy  f  in Γ(A, V) such that if  p, q  are two positions, where the 
winner makes moves and   p, q  define  the same residual game  (that  is, they 
have  the  same continuation) and have the same last appearance records, then 
f(p) = f(q). 

Proof.   See Gurevich and Harrington [1982].                                                      □ 
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     A strategy f  for a player in Γ(A, V)  will be called forgetful if  f(p) = f(q)  for 
all positions p, q  such that the player makes moves in p, q  and  p, q define the 
same residual games, and moreover, the last appearance records in  p and in  q 
coincide.  The reason for this term is that any value  f(p) depends on the residual 
game and an only limited information about the history.  Thus, in brief, we may 
say that a forgetful strategy "forgets" most of the history. 

2.3.2 Theorem.  There is an algorithm that, given an alphabet  ∑  and a tree ∑-
automaton  A, decides whether A accepts at least one  ∑-tree. 

Proof.   As in the proof of Theorem 2.1.2, we first reduce the problem to the 
case of a singleton alphabet.  Thus, suppose that  ∑ is a singleton and  V  is the 
unique ∑-tree.  By the forgetful determinacy theorem, one of the players has a 
forgetful strategy winning  Γ(A, V).  List all forgetful strategies  f1 , . . . , fm  for 
the automaton  A  and all forgetful strategies  g1, . . . , gn  for Pathfinder.   It is 
possible to check each  fi  against each  gj  because the play eventually becomes 
periodic.  This way we can find the desired winning strategy and determine 
whether or not  A  accepts  V.                                                                                □  

     Subsets  X1, . . . , Xn  of the binary tree give a  ∑n-tree that will be called 
TREE(X1, . . . , Xn)  where  ∑n is as in Section 2.1. 

2.3.3 Theorem.   There is an algorithm  that, given  n  and a tree ∑n-automaton 
A,  constructs a formula  φ(X1, . . . , Xn)  in the monadic language of  two 
successors  such that  for any  n  subsets  X1, . . . , Xn  of the binary tree, 

           {l, r}* � φ(X1, . . . , Xn)    iff   A  accepts TREE(X1, . . . , Xn). 

Proof.   A run of a tree ∑-automaton  A  on a  ∑-tree  V  is a function  R  from 
the binary tree to the set of states of  A  such that every sequence 

           R(e)dl R(dl)d2 R(dl, d2) . . . 

is a legal play in  Γ(A, V).  If  A  wins all these plays then the run R is  accepting. 

     The desired formula says that there are subsets  Ys, where  s  ranges over the 
states of the given tree  ∑n-automaton  A,  that describe an accepting run  R of  A 
on TREE(X1, . . . , Xn).  The intended meaning of Ys is 

           {x�{ l, r}* : R(x) = s}.                                                                                 □ 

2.3.4 Theorem.  There is an algorithm that, given a formula  φ(X1, . . . , Xn)  in 
the monadic language of two successors, constructs a tree  ∑n-automaton  A  in 
such a way that for any  n  subsets  X1, . . . , Xn  of the binary tree, 

           {l, r}* � φ(X1, . . . , Xn)    iff   A  accepts TREE(X1, . . . , Xn). 

Proof.   The argument here is similar to that given for Theorem 2.1.4, except for 
the case of negation which is treated in Theorem 2.3.6 below.                            □ 
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2.3.5 Theorem.   The monadic theory of the binary tree is decidable.  

Proof.   The argument here is similar to that given for Theorem 2.1.5.                □ 

2.3.6 Theorem  (Complementation Theorem).  There is an algorithm that, given 
an alphabet  ∑ and a tree  ∑-automaton  A, constructs a tree  ∑-automaton 
accepting exactly the ∑-trees rejected by  A. 

Proof.   Let V  be a ∑-tree rejected by  A.  By the forgetful determinacy theorem, 
Pathfinder has a forgetful strategy  f  winning  Γ(A, V).  If  p  is a position in 
Γ(A, V)  let Node(p)  be the string of even letters in  p.  For example, if  p = 
albralcrcla  then Node(p) = lrlrl.  If  p, q  are two positions of odd length, 
Node(p) = Node(q),  and  A  is in the same state in  p, q (that is to say,  p, q  have 
the same last letter),  then  p, q  define the same residual game.  This allows us 
to code  f  by an appropriate valuation of the binary tree. 

     Let RECORDS be the set of words  u  in the alphabet of states of  A  such 
that every state appears at most once in  u.  Elements of RECORDS will be 
called records.  Let  ∑'  be the set of functions assigning a letter  l  or  r  to each 
record.  There is a  ∑'-tree  V  such that for every position  p in  Γ(A, V) we have 

           f (p)  =  (V' (Node p))(LAR p).  

     Since f  is winning, every path  

           e, d1, d1d2, d1d2d3,  . . .  

through the binary tree {l, r} *  satisfies the following condition: 

(*)       There are no sequences  s0sls2 . . .  and  u0u1u2 . . .  such that 
            s0dls1d2 . . .  is a play with respect to f  and u0, u1, u2, . . . 
            are corresponding last appearance records and {s: for 
            every  i  there is  j > i  with  sj = s}   is a final collection of 
            states. 

     Clearly (*) abbreviates a formula in the monadic language of one successor 
whose parameters code the path   e, d1, d1d2, d1d2d3, . . .   and the corresponding 
sequences  V(e), V(d1), V(dld2), . . . and  V'(e), V'(d1), V'(dld2), . . . .  By Theorem 
2.2.4  there  is  a  sequential  automaton   A' = (S', T', s'in, F')  over the alphabet 

(∑ × ∑') � ({ l, r} × ∑ × ∑')  that accepts a sequence 

           V(e)V'(e), d1V(d1)V'(d1), d2 V(dld2)V'(dld2), . . .  

iff it satisfies (*). 
     Let   A" = (S', T", T'in, F')    be the deterministic tree ∑ x ∑'-automaton with 
T"(s, d, σσ') = T'(s, dσσ')  and  T"n(σσ') = T'(s'in, σσ').   A''  mimics  A'  and 
accepts  the   ∑ × ∑'-tree  V × V'  given by  V  and  V'.   Finally,  let  Ā  be  the ∑-
automaton that guesses V'  and mimics A".   Note that each successor in the row  
A, A', A", Ā  is computable from the predecessor.  Evidently  Ā  accepts  V. 
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     Ā is the desired  ∑-automaton complementing A.  For, suppose that Ā accepts 
a  ∑-tree V.  There is a ∑'-tree  V such that A"  accepts V × V'.  Then  A' accepts 
every sequence 

           V(e)V'(e), d1V(d1)V'(d1), d2 V(dld2)V'(dld2), . . .  

Thus, every path  e, d1, d1d2,  . . .  through the binary tree satisfies (*),  where  f  
is the strategy for Pathfinder defined by 

           f (p)  =  (V' (Node p))(LAR p).  

Evidently  f  is winning.  Hence, A  rejects  V.                                                    □ 

 

3. The Model-Theoretic Decidability Technique 

The most important tools for dealing with monadic theories are composition 
theorems.  The term "composition" here means generalized products in the sense 
of Feferman-Vaught [1959].  The Feferman-Vaught theorem reduces the first-
order theory of the given composition to the first-order theories of the parts 
(summands, factors) and the monadic (!) theory of the index structure.  Monadic 
composition theorems reduce the monadic theory of the given composition to 
the monadic theory of the parts and the monadic theory of the index structure 
(see, for example, the monadic composition theorem for chains in Section 3.2). 
Thus, monadic composition theorems appear to be more natural.  Moreover, the 
interplay of monadic theories opens absolutely new and unexpected approaches 
to the decision problem.  One of these approaches is demonstrated in Section 3.3 
by a model-theoretic proof of decidability of the monadic theory of ω .  Limited 
by the size of this chapter, we have chosen in the present section to explain only 
an easy part of the model-theoretic technique for proving decidability of 
monadic theories and to make this exposition as comprehensible as possible.  
We hope that this discussion − selective though it may be − will assist the 
interested reader in examining the more comprehensive exposition to be found 
in either Shelah [1975e] or in the papers Gurevich [1979a] and Gurevich-Shelah 
[1979]. 

 

3.1. Bounded Theories 

Recall that the prefix of a prenex first-order formula is  a word in the alphabet 

{�, �}.  Blocks of universal quantifiers alternate with blocks of existential 
quantifiers in a prefix.  The alternation type of a prefix is the sequence of 
lengths of  the  quantifier blocks.  For example  the  alternation  type  of  both 

�
3
�

4
�

5 and �3
�

4
�

5  is  3, 4, 5.  Clearly, the alternation type of the empty prefix is 
the empty sequence.  Letters ζ and η  (without subscripts) will be used to denote  
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alternation types.  We use the symbol  ^  to denote concatenation of sequences. 
Thus, if  ζ  is 3, 4, 5  then  ζ ̂  8  is  3, 4, 5, 8. 

     Let L be a first-order language. For every  n,  indistinguishability by prenex 
sentences with prefix of length  n gives an equivalence relation on structures for 
L.  The  n-step Ehrenfeucht game was introduced to provide a convenient 
sufficient condition for this equivalence relation to hold.  Indistinguishability by 
prenex sentences with prefix of a given alternation type is also an equivalence 
relation on structures for L.  We generalize Ehrenfeucht games to provide 
convenient sufficient conditions for these new equivalence relations to hold. 

Proviso 1.   The vocabulary of  L  consists of finitely many relation symbols and 
individual constants. 

     Let M and N  be structures for L  and  ζ  be an alternation type ζ1, . . . ,ζn.  The 
game ζ  −  Γ(M, N)  is played between players I and II in  n steps.  On the kth 
step, player I chooses a structure M or N and a tuple of  ζk  elements of the 
chosen structure; and, in response, player II chooses a tuple of  ζk  elements of 

the remaining structure.  Let  al, . . . , am  be  the  tuple of all    ζ1 + � ��� + ζn 

elements chosen in  M;   the  ζ1-tuple of the  first step  concatenated  with  the  
ζ2-tuple of the second step,  etc.   Let  b1, . . . , bm  be the corresponding tuple of 
elements chosen in  N.   Player II wins if the  quantifier-free type of  al, . . . , am 
in  M coincides with the quantifier-free type  of  b1, . . . , bm  in N,  otherwise 
player I wins. 

3.1.1 Theorem.   If player II has a winning strategy in ζ  −  Γ(M, N),  then  M 
and N  are indistinguishable by prenex sentences with prefix of type  ζ. 

Proof.   Any distinguishing prenex sentence of type  ζ  gives a winning strategy 
for player I.                                                                                                            □ 

     We will say that L-structures  M  and  N are  ζ-equivalent if player II has a 
winning strategy in ζ  − Γ(M, N). 

     By induction on the length of ζ,  we define the  ζ-theory of an L-structure M 
with a tuple of additional elements.  0 − Th(M, a1, . . . , al)  is the quantifier-free 
type of  a1, . . . , al  in M.  If ζ is η ^ k  then  ζ − Th(M, a1, . . . , al)  is the set of all 

η − Th(M, a1, . . . , al, b1, . . . , bk)   where  b1, . . . , bk � M. 

3.1.2 Theorem.  Two structures for L  are  ζ-equivalent iff  they have the same 
ζ-theory.  

Proof.   The proof is simple and we will omit it here.                                          □  

     The usual  n-step Ehrenfeucht game corresponds to the case when ζ is a 
sequence of  n ones.  This sequence will be denoted 1n.  ln-equivalent structures 
are called usually  n-equivalent.  The ln-theory of a structure is called usually the 
n-theory. 

     It is important for us that our bounded theories − in particular, quantifier-free 
types—are finite objects. This explains Proviso 1. This proviso is, however, too 
restrictive for applications. Is there any way to have finite quantifier-free types  
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in a situation when Proviso 1 fails?  The answer is Yes.  In fact, consider the 
first-order theory of boolean algebras.  There are infinitely many terms in a 
given finite set of variables, but only finitely many of these terms are in 
disjunctive normal form and each term is equal to one in disjunctive normal 
form. 

Proviso 2.   L may have function symbols but it has only finitely many relation 
symbols.  T  is a theory in L,  T  allows a definition of normal terms in such a 
way that: 

(i)   there are only finitely many normal terms for any given finite set of  
      variables; 

           and 
    (ii)  every term is equal in T  to a normal term (in the same variables). 

     An atomic formula   P(τl, . . . , τk)  will  be  called  standard  if  the  terms    
τl, . . . , τk  are normal.    We  identify   the   quantifier-free   type  of   a  tuple  
(al, . . . , al)  in a model  M  of   T  with  the  set  of standard  atomic  formulas   

φ(vl, . . . , vl)  such that  M � φ(al, . . . , al).  Now we can simply repeat the 
definition of ζ-theories. Proviso 2 will suffice for our purposes here. A more 
liberal proviso can be found in Gurevich [1979a]. 

3.1.3 Theorem.    T  is  decidable  if  there   is  an   algorithm   computing         

{ ζ − Th(M): M � T}  from ζ .   T is  decidable  if there is an algorithm computing 

{1n − Th(M): M � T}  from  n. 

Proof.   As in the case of Theorem 3.1.2, the proof of this result is simple and 
will not be given here.                                                                                           □ 

     Even if  T  is not decidable, there is often an algorithm which computes a box 

including {ζ − Th(M): M � T}   from  ζ .  We define these boxes by induction on 
the length of ζ .  The 0-l-Box  is 

           {0 − Th(M, al, . . . , al): M � T  and  al, . . . , al � M}. 

If  ζ  is η ^ k,  then the  ζ-l-Box   is the power-set of the  η - (l + k)-Box.  We 
now turn our attention to 

3.1.4 Proposition.   If  M � T  and al, . . . , al � M   then 

           ζ − Th(M, al, . . . , al) � ζ-l-Box.  

Proof.   Again, the argument for this result is obvious and is omitted here.         □  

     It will be convenient to view elements of every  ζ-l-Box  as ordered in a 
standard manner. For example, the order may be lexicographical. 
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3.2. Monadic Composition Theorem for Chains 

To fit this section into the framework of Section 3.1, we should say what the 
language  L  and the theory  T  are.  Let BOOL be the first-order language of 
boolean algebras containing all the usual boolean operations and the equality 
predicate.   L  is the monadic language of order that is obtained from BOOL by 
adding the predicate X ≤ Y.   Every chain gives a standard model for L  in the 
following way:  We consider the boolean algebra of subsets and define X ≤ Y iff 
there are points x ≤ y with   X = {x}   and  Y = {y}.    Tis the monadic theory of 
order in  L.  In other words, T  is simply the first-order theory of the described 
standard models for  L.   L  and  T  satisfy Proviso 2  and  we  can  freely  use    
ζ-theories as well as other notions defined in Section 3.1. 

     Suppose that  M  is the lexicographic sum 

          L∑〈Mi: i � I〉 

of chains Mi  with respect to a chain  I.   This means that  M  is itself a chain, the 
chains Mi  are disjoint, the universe of  M  is the union of the universes of the 

chains Mi, and a point  x � Mi  precedes in M a point y � Mj   iff   i < j or  i = j 
and  x < y  in  Mi. 

     Let  X   be  an  l-tuple  Xl, . . . , Xl  of subsets of  M.   For  i � I,  the  l-tuple   
Xl ∩ Mi, . . . , Xl ∩ Mi  will be denoted    X | Mi.  For every alternation type ζ and 

every   t � ζ-l-Box,  let 

           P(ζ , X, t) = {i:  ζ − Th(Mi, X | Mi) = t}.  

 Furthermore, let  P(ζ , X)  be the sequence〈P(ζ , X, t): t � ζ-l-Box〉  that 
partitions I. 

3.2.1 Lemma.   There   is   an   algorithm   that   computes   0 − Th(M, X)  from 
0 − Th(I, P(0, X))   when I,  M  and  X  are varied. 

Proof.   Let P = P(0, X)  and  Pt = P(0, X, t).   If  τ  is a boolean term in variables 
vl, . . . , vl,  then we let   τ* = τ (Xl, . . . , Xl),  where the complements are taken in 
M.   It is easy to check that 

           τ* ∩  Mi = τ (Xl ∩ Mi, . . . , Xl ∩ Mi), 

where the complements are taken in Mi. 

     In order to compute  0 − Th(M, X)  it suffices to compute the truth values of 
statements  σ* = τ*  and  σ* ≤ τ*,  where σ and τ are in disjunctive normal form. 

     σ* = σ*  iff  σ* ∩  Mi = τ* ∩  Mi  for every i � I,  iff for every  t � 0-l-Box,  
we have that either Pt= 0  or  t implies  σ = τ .   Given 0 − Th(I, P),  we can 
check the last necessary and sufficient condition. 



494 XIII. Monadic Second-Order Theories 

     Note that τ ≤ τ means that  τ  is a singleton set.   τ*  is a singleton  iff there is 

s � 0-l-Box   such that Ps  is a singleton,  s  implies τ ≤ τ  and  for  every  other    

t � 0-l-Box,  we have that either Pt = 0 or  t  implies τ = 0.  Given 0 − Th(I, P), 
we can check the necessary and sufficient condition. 

     Finally σ* ≤ τ* iff both   σ* and τ* are singleton and either 

     (i)  there are distinct s, t � 0-l-Box  such that  Ps ≤ Pt and  s implies σ ≠ 0,   
            t  implies τ ≤ 0;  or  

     (ii) there is t � 0-l-Box  such that Pt ≠ 0, and  t  implies σ ≤ τ . 

Given 0 − Th(I, P),  we can check the necessary and sufficient condition.          □ 

3.2.2 Definition.   If  ζ  is empty, then for every k,  H(ζ, k) is the empty 
alternation type.  If ζ  is η ^ j,  then H(ζ, k) = H(η, k + j) ^ p, where p is the 
cardinality of η -(k + j)-Box. 

3.2.3 Theorem.  There is an algorithm COMP that computes ζ − Th(M, X)  from 
H(ζ , l) − Th(I, P(ζ, X))  when I,  M,  X and ζ are varied. 

Proof.   By induction on n, we construct algorithms COMPn such that every 
COMPn  computes  ζ −Th(M, X)  from H(ζ, l) − Th(I, P(ζ, X)),  for every ζ of 
length n.  The construction is uniform in  n  and results in the desired algorithm 
COMP. 

     The case n = 0 was treated in Lemma 3.2.1.  Suppose that COMPn is already 
constructed.  Instead of defining COMPn+1  formally, we will simply explain 
how it works. 

     Let ζ be an alternation type of length n.  ζ ^ k − Th(M, X) is the set 

           S1 = {ζ − Th(M, X ^ Y): lh(Y) = k},  

 where Y ranges over tuples of   k subsets of M.  COMPn  will compute S1 from 

           S2 = {η − Th(I, P(ζ , X ^ Y)): lh(Y) = k},  

 where η = H(ζ, l + k).  S2 is computable from 

           S3 = {η  − ThI, P(ζ ^ k, X), P(ζ, X ^ Y)): lh(Y) = k}, 

From the other side, H(ζ  ^ k, l) − Th(I, P(ζ ^ k, X)) is the set 

           S4 = {η − Th(I, P(ζ ^ k, X) ^ Q): lh(Q) = |ζ-(l + k)-Box|}, 

where   η   is  again    H(ζ, l + k).    Evidently,   S3  is  included  into  S4.         
We  give a verifiable  necessary  and  sufficient  condition  for an  element                           
u = η − Th(I, P(ζ ^ k, X)  ̂Q)  of  S4  to belong  to S3:  

The sequence 

           Q =〈Qt: t � ζ-(l + k)-Box〉 

partitions I,  and t � s  whenever  Qt meets   P(ζ ^ k, X, s). 
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     The argument for necessity is obvious. To prove the sufficiency, suppose that 
u  satisfies the condition.  We need to find a tuple Y of  k subsets of M such that 

P(ζ, X ^ Y) = Q.   For every i � I,  there are  s � ζ  ^ k-l-Box  and t � ζ-(l + k)-Box 

such   that    i � P(ζ ^ k, X, s)  ∩ Qt.    Then   t � s;    that  is  to  say,  t � ζ ^ k − 
Th(Mi, X | Mi).  Hence,  t = ζ − Th(Mi, (X | Mi) ^ Y i),  for some tuple Y i of  k 

subsets  of  Mi.  Now choose Y  such  that Y | Mi = Y i,   for i � I.                         □ 

 

3.3. Monadic Theory of Countable Ordinals 

3.3.1 Theorem.  There is an algorithm PLUS such that if  M  is the 
lexicographic sum  M1 + M2  of chains  M1  and  M2  and if  X  is a tuple of 
subsets of  M, then for every alternation type ζ , 

           ζ − Th(M, X) = PLUS(ζ − Th(M1, X | M1), ζ − Th(M2, X | M2)). 

Proof.   Simply take I =〈1, 2〉in the composition theorem and the result 
follows.                                                                                                                 □ 

     We write  t = t1 + t2  if  t = PLUS(t1, t2).  The induced addition of bounded 
theories is obviously associative. 

3.3.2 Theorem.  The monadic theory of finite chains is decidable. 

Proof.   By Section 3.1, it suffices to show that  {1n − Th(M): M  is a finite 
chain} is computable from  n.  Given  n, we compute the 1n-theory  t1  of 
singleton chains.  We thus compute t2 = t1+ t1, t3 = t2 + t1, etc.,  stopping when 
we find  i <  j with ti = tj.  The set {t1, . . . , tj -1}  is equal to 1n − Th(M): M  is 
finite}.                                                                                                                   □ 

3.3.3 Theorem.   There  is  an  algorithm  MULT  satisfying  the  following 
condition.  Let M be the lexicographical sum of chains  Mi  with respect to a 
chain I,  and let  X  be a tuple of  I  subsets of M.  If ζ − Th(Mi, X | Mi) = s  for 
every  i  and  η= H(ζ, l),  then 

           ζ − Th(M, X) = MULT(η − Th(I), s). 

Proof.   The algorithm COMP computes  ζ − Th(M, X)  from  η − Th(I, P(ζ , X)) 
which is itself computable from  η − Th(I) and  s, because  P(ζ , X, s) = I  and 
any other  P(ζ , X, t) = 0.                                                                                       □ 

     We write  s' = t � s  if  s' = MULT(t, s). 

3.3.4 Theorem.  The monadic theory of  ω  is decidable. 

Proof.   By  induction  on  n,  we  construct  an  algorithm  fn  such  that, given 
an  alternation type ζ of length  n and a natural number l,  fn  computes {ζ − 
Th(ω, X): X  is an  l-tuple of subsets of ω}.  The construction is uniform in  n 
and provides an algorithm which will subsume every  fn.  By Section 3.1, we 
know that this is enough for decidability. 
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     Case n = 0 is easy.   Suppose that n > 0  and   fn – 1  is already constructed. 

Given  ζ  and  l,  we compute η = H(ζ , l)  which is equal to η̃ ^ k,  for some 

alternation type η̃ of length   n − 1  and some  k.  Also, we compute 

           t = η − Th(ω) = {η̃  − Th(ω, Y): Y  is a  k-tuple of subsets of ω}  

                                 =  fn – 1(η̃, k). 

     Using the decision procedure for the monadic theory of finite chains, we 
compute A = {ζ − Th(M, X): M  is a finite chain and  X  is an l-tuple of subsets of 
M}.  And, finally, using the algorithms  PLUS  and  MULT,  we compute B = 

{ s0 + t � s: s0, s � A}. 

     Evidently,  B � C = { ζ − Th(ω, X): X  is an  l-tuple  of subsets of ω}.  We 
prove that B = C,  which fact allows us to compute C. 

     Given an  l-tuple  X of subsets of  ω color every non-empty interval [i, j) of 
natural numbers by the  "color"  ζ − Th([i, j), X | [i, j)).  By the Ramsey theorem, 

there is an infinite sequence   0 < n1 < n2 < � ���  such that all intervals [ni, ni+1) 
have the same color  s.  If  s0 is the color of  [0, n1),  then   ζ − Th(ω, X) =  s0 +   

t � s � B.                                                                                                                 □ 

3.3.5 Theorem.  The monadic  theory  of countable  ordinals  is decidable. 

Proof.  We explain how to compute {1n − Th(α):  α  is a countable ordinal} from 
a given number  n.  First, we use the algorithm of Theorem 3.3.4  to compute t = 

η  − Th(ω), where η = H(1n, 0).  By Theorem 3.3.3  1n − Th(α � ω) = t�� (1n − 
Th(α)),  for any  α.  Second, compute the minimal set  S  of   1n-theories which 
contains the   1n-theory  of singleton chains and which is also closed under 
addition and under multiplication by  t.   It is easy to see that  S  is the desired 
{1n − Th(α): α is a countable ordinal}.                                                                  □ 

 

4. The Undecidability Technique 

The monadic topology of a topological space  U  is the first-order theory of the 

structure〈PS(U), �, OPEN〉, where PS(U)  is the power-set of  U,  � is the 
usual inclusion and OPEN is the unary predicate  "X is open."  In this section, 
we will describe a proof of undecidability of the monadic topology of the Cantor 
discontinuum  CD.  The monadic topology of CD is easily interpretable in the 
monadic theory of the real line  R.  In this way, we get undecidability of the 
monadic theory of  R.  We could, of course, deal directly with the monadic 
theory of R − it would be practically the same proof.  Undecidability of the 
monadic topology of CD seems to be even more mysterious and more difficult 
to prove. 

     In Section 4.1 we will give a rough idea how one can talk about natural 
numbers in the monadic topology of CD − explaining the details would require 
more space. However, the details can be found in Gurevich-Shelah [1982]. 
There is a serious restriction on how much we can say about natural numbers in 
the monadic topology of CD: true first-order arithmetic is not interpretable (in  
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the usual sense of this word, for example Monk [1976]) in the monadic theory of 
R,  see Gurevich-Shelah [198la].  In Section 4.2, we show that whatever we can 
say about natural numbers in the monadic topology of CD is enough to reduce 
true first-order arithmetic to the monadic topology of CD.  Actually, a much 
stronger result is proven in Section 4.2. 

4.1.  How  Can One Speak  About Natural Numbers in the Monadic Topology of 
the Cantor Discontinuum ? 

The idea is to slice a countable everywhere dense set  D into everywhere dense 
slices  S0, S1, . . .  and to code this decomposition by parameters.  First, we 
choose an everywhere subset  D0 of  D such that D − D0  is everywhere dense 
also.  Then, we slice  D  in such a way that the sets A0 = S0 ∩ D0,  A1= S1 ∩ D0, 
A2 = S2 ∩ D0, . . . are disjoint as well as everywhere dense.  We then prove that 
there is a parameter  W  such that a certain monadic formula  φ(X)  with 
parameters D, D0, W  defines the slices locally:  that is, every  Sn  satisfies φ and 
if some  X  satisfies φ, then every non-empty open set G has a non-empty open 
subset  H  where  X coincides with one of the slices Sn.  We have not said 
anything about sets  S0 − A0, S1 − A1, . . . .  They can be used to code additional 
information.  In particular, a pairing function can be coded. 

     The coding described is best explained in Gurevich-Shelah [1982].  Here we 
can only summarize results of the coding in a convenient form.  There are 

monadic topological formulas Premise(u̅),  Share(u̅, v0) and  Pairing(u̅, v0, v1, v2, 

v3)  which satisfy the following conditions.  Both u̅� and  (v0, v1, v2, v3) are 
sequences of (set) variables.  The formulas Premise, Share, and Pairing do not 

have any free variables except those shown.  Premise(u̅) is satisfiable in CD.  If  
t  is  a  sequence of point sets and Premise(t) holds in CD then there is a 

sequence 〈Ai : i < ω 〉 of disjoint subsets of CD which satisfy the conditions 
C0-C2 below: 

     C0.  Each An is everywhere dense and each intersection  Ai ∩ Aj, with  i ≠ j, 
             is empty.  
     Cl.   Share (t, X)  holds iff every non-empty open set G  has a non-empty 
             open subset  H  such that X ∩ H is equal to some  An ∩ H. 

     We will say that  X is a  t-share  if Share(t, X)  holds.  We order the ordered 
pairs of natural numbers first by the maximum and then lexicographically: 

           (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 1), . . . . 

     Let P be the set of triples  (i, j, k)  of natural numbers such that  (i, j)  is the 
kth  pair (when (0, 0) is pair number 0). 

     C2.  Suppose that   X, Y, Z  are  t-shares and  G is a non-empty open set. 

             Then, Pairing(t, X, Y, Z, G)  holds iff, for every non-empty open G1 � G, 

             there is a triple  (i, j, k) � P  and a nonempty open H � G1 with  X ∩ H = 
             Ai ∩ H,  Y ∩ H = Aj ∩ H,  Z ∩ H = Ak ∩ H. 
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     Before we go on to discuss reduction, let us recall that an open subset  G  of a 
topological space is called  regular  if the interior of the closure of  G  coincides 
with  G.  The following propositions is well known. 

4.1.1 Proposition.   The regular open subsets of any topological space U  form 
a complete boolean algebra with: 

     (i) G�H = G ∩ H; 

     (ii) G + H = Interior(Closure(G � H)); 
     (iii) − G = Interior(U − G);  and 
     (iv) 1 = U,  and  0 = Ø. 

 

4.2. Reduction 

Models of ZFC,  the Zermelo-Fraenkel set theory with the axiom of choice, will 
be called  worlds.  In this discussion we will work in a world V.  By sets is 
meant elements of  V.   For every complete boolean algebra  B (in the world  V) 
a standard construction provides a  B-valued world  VB (see Jech [1978]).  If  φ 
is a formula in the language of ZFC with possible parameters from  VB, then the 
boolean value of φ  will be denoted as usual  ||φ||.  Some simple but useful facts 
about  VB are summarized in the following 

4.2.1 Proposition.   

     (a) Suppose that { bi:  i � I}  is an antichain  in  B  (which 

           means that  bi � bj = 0  for  i ≠ j).  For   every {σi  � VB: i � 1}   there  is 

           σ � VB such that bi ≤ ||σi = σ||   for i � I. 
     (b) Let ψ(v) be a formula in the language of  ZFC with exactly one free  

           variable and perhaps some parameters from  VB, then there is  σ � VB 

                  such that ||ψ(σ) || = ||�vψ(v)||. 

     (c) Let  ψ(v)  be as above and  τ � VB.  Suppose  ||�v(v � τ)|| = 1,  then there is  

           σ � VB  such that  ||σ � τ|| = 1,  and  ||ψ(σ)|| = ||(�v � τ)ψ(v)||. 

Proof.   For the proof of (a), see Lemma 18.5 in Jech [1978].  As to part (b), see 

Lemma 18.6 in Jech [1978].  Turning now to part (c), we let  b = ||(�v � τ)ψ(v)||. 

By part  (b), there are  σ0  and  σ1  such that ||σ0 � τ|| = 1 and ||σ1 � τ   and  ψ(σ1)|| 

= b.   Moreover, by part (a), there is  σ  such that (-b) ≤ ||σ = σ0||  ≤  ||σ � τ||, and 

then  b ≤ ||σ = σ1||  ≤  ||σ � τ|| � ψ(σ)||.  σ  is the desired element of  VB.                □ 

     In the remainder of this subsection  B is the boolean algebra of regular open 

subsets of the Cantor discontinuum CD (in V).  An element  σ � VB  will be 

called a  quasi-element  (of ω)  if  ||σ � ω|| = 1.  It will be called a quasi-set (of 

natural numbers)  if  ||σ � ω|| = 1.   Hereafter, we ignore the difference between 
an element of  V and the canonical name for it in  VB. 

     Let  t be a sequence of subsets of CD satisfying Premise(t).  We will say that 
a  t-share  X represents a quasi-element σ if 

          ∑{ b�B: X ∩ b = An ∩ b} =  ||σ = n||    for    n < ω. 
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Subsets of CD will be called  point sets, and we will say that a point-set  Y 
represents a quasi-set  τ  if 

          ∑{ b�B: X ∩ b = An ∩ b} =  ||n � τ||    for    n < ω. 

4.2.2 Proposition. 
      (a)  Every  t-share represents some quasi-element, and every quasi-element  
             is represented by some t-share. 
     (b)  Suppose that  t-shares X0, X1, X2  represent quasi-elements σ0, σ1, σ2 . 

            For every  b�B,  Pairing(t, X0, X1, X2, b)  holds in CD  iff   

            b ≤ ||(σ0, σ1, σ) � P||. 
     (c)  Every point set represents some quasi-set, and every quasi-set is 
            represented by some point set. 
     (d)  Suppose that a  t-share  X  represents a quasi-element σ,  and a point set 
            Y  represents a quasi-set  τ.  Then  

                     ||σ � τ|| = ∑{b�B: X ∩ b � Y}.  

Proof.   (a) Given a  t-share  X  let 

         bn = ∑{ b�B: X ∩ b = An ∩ b}     for    n < ω. 

By condition C0, distinct regular open sets  bn  are disjoint.  Moreover, by 
condition Cl,  they  partition  CD.  By  Proposition 4.2.1,  there is   σ  with       
||σ = n||  ≥ bn,  for all  n.  σ is the desired quasi-element. Conversely, if  σ  is a 
quasi-element, then the desired  t-share is 

           X = � {An ∩ ||σ = n||: n < ω}. 

     For the proof of part (b) we use condition C2. 

     Turning now to part (c), we see that if  Y  is a point set, then the desired 
quasi-set  τ  is a function from ω to B with 

           τ (n) = ∑{ b�B: An ∩ b � Y}     for all   n.  

     Conversely, if  τ  is a quasi-set, then the desired point set is 

           Y = � {An ∩ ||n � τ||: n < ω}. 

     We now consider part (d).  To prove �, we will suppose that 0 < a ≤ ||σ � τ||. 

It then suffices to show that there is  0 < b ≤ a  with X ∩ b � Y.  Since  σ  is a 
quasi-element and τ  is a quasi-set, there are  n   and  0 < a2 ≤ a  such that   a1  ≤ 

||σ = n||   and   a1  ≤ ||n � τ|||.  Since  X  represents σ,  there is 0 < a2 ≤ a1  such 
that  X ∩ a2 = An ∩ a2.  Since Y  represents  τ,  there is  0 < b ≤ a2  such  that     

An ∩ b � Y.  Thus,  X ∩ b � Y. 

     To prove �, we will suppose that  a > 0 and  X ∩ a � Y.  It then suffices to 

show that there  is  0 < b ≤ a  with  b ≤ ||σ � τ||.  Since  σ  is a quasi-element, 
there are n  and   0 < a1 ≤ a   with   a1 ≤ ||σ = n||.  Since X  represents σ,  there is  
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0 < b ≤ a1  such that  X ∩ b = An ∩ b  and,  therefore,  An ∩ b � Y.   Since Y 

represents τ,  we have  b ≤ ||n � τ||.   Thus,  b ≤ ||σ � τ||.                                       □ 

4.2.3 Theorem.   The full second-order theory of   0א in the world  VB is 
reducible to the monadic topology (in the world  V) of the Cantor discontinuum. 
In other words, there is an algorithm (not depending on the choice of the ground 
world  V) that assigns a sentence φ*  in the language of monadic topology to 

every second-order sentence φ in such a way that CD � φ* iff  ||ω � φ||  = 1.      □  

     This theorem tells us that the monadic topology of CD is very complicated. 
In particular, true first-order arithmetic is reducible to the monadic topology of 
CD.  For, V and  VB share the same true first-order arithmetic.  Moreover, there 
is an algorithm interpreting true first-order arithmetic in (and therefore reducing 
it to) the full second-order theory of  0א in any world.  This algorithm, in 
conjunction with the algorithm of Theorem 4.2.3, reduces true first-order 
arithmetic to the monadic topology of CD. 

Proof of Theorem 4.2.3.  The algorithm of Proposition 1.3.1 interprets the full 
second-order  VB-theory of  ω in the monadic VB-theory of the structure (ω, P), 
where P is the pairing predicate defined in Section 4.1.  Let  L  be the monadic 
language of  (ω, P).  We will view individual variables (respectively set 
variables) of  L as variables ranging over quasi-elements (respectively quasi-
sets). Thus, we view  L as a sublanguage of the language of ZFC.  If  φ  is a 
sentence that is an  L-formula with parameters, we will write  ||φ|| instead  of    

||ω � φ||. 

     Let  t be a tuple of point sets such that Premise(t) holds in CD.  By induction 
on  L-formulas  φ(u1, . . . , um, Vl, . . . , Vn)  we define a formula 

           (w  ≤  ||φ(u1, . . . , um, Vl, . . . , Vn)||)t 

in the language of monadic topology in such a way that if  t -shares Xl, . . . , Xm 

represent quasi-elements  σl, . . . , σm,  and point sets Yl, . . . , Yn  represent quasi-

sets τl, . . . , τn  and  b � B, then 

(* )                     CD � (b  ≤  ||φ(X1, . . . , Xm, Yl, . . . , Yn)||)t 

                                    iff  b ≤  ||φ(σl, . . . , σm, τl, . . . , τn)||. 

 In the case   m = n = 0,  b = l  we will have the desired: 

                          Premise(t) → (1 ≤  ||φ||)t  holds in CD    iff    ||φ|| = 1. 

     Case 1.  φ  is (u0, u1, u2) � P.  Let (w ≤  ||φ||)t  be Pairing(t, u0, u1, u2 , w), and 
use Proposition 4.2.2(b). 

     Case 2.  φ is u � V.  Let (w ≤  ||φ||)t    be a formula saying that u ∩ w − V  is 
nowhere dense, and use the result of Proposition 4.2.2(d). 

     Case 3. φ is  φ1 & φ2.  Set 

                     (w ≤  ||φ||)t = (w ≤  ||φ1||)t  & (w ≤  ||φ2||)t . 
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     Case 4.  φ is ~ ψ.  Let  (w ≤ || φ||)t   be  a  formula  saying  that  there  is  no   
0 < w' ≤ w  satisfying (w' ≤ ||ψ||)t.  To check (* ), we suppose for simplicity that φ 
is a sentence.  Then (b ≤ ||φ||)  holds iff there is no  0 < a ≤ b  with   a ≤ ||ψ||    iff 
b ≤ ||φ||. 

     Case 5.  φ  is �uψ(u).  Let (w ≤ ||φ||)t   be a formula saying  that  there  is  a    
t-share u  satisfying (w ≤ ||ψ(u)||)t.  To check (* ) assume for simplicity that φ is a 
sentence.  We first suppose that  b ≤ ||φ||.   By the results of Proposition 4.1.1(c), 
there is a quasi-element  σ  with  ||ψ(σ)|| = ||φ|| ≥ b.  If a t-share X represents  σ, 
then by the induction hypothesis  (b ≤  ||ψ(X)||)t  holds.  Hence, (b ≤ ||φ||)t  holds. 
Next, we suppose that some t-share X  satisfies (b ≤  ||ψ(X)||)t. It represents some 
quasi-element  σ.  By the induction hypothesis,  b ≤  ||ψ((σ)||.   Hence,  we have 
b ≤ ||φ||. 

Case 6.  φ  is  �Vψ(V).  Let (w ≤ ||φ||)t  be a formula asserting that there is a point 
set  V  which satisfies (w ≤ ||ψ(V)||)t.  To check (* ) in this situation is similar to 
the task of checking in Case 5.                                                                              □ 

 

5. Historical Remarks and Further Results 

We will first review very briefly the history of the method of automata and 
games.  We will also mention delimiting undecidability results and some other 
closely related results obtained by model-theoretic methods.  In Section 5.2 we 
will, very briefly review the history of the model-theoretic methods used to deal 
with monadic theories.  Some later results use model-theoretic methods as well 
as the method of automata and games.  It seems to make no real sense to divide 
the two approaches too sharply, however. 

 

5.7. Emphasizing the Method of Automata and Games 

Church [1963] gave "a summary of recent work in the application of 
mathematical logic to finite automata."  Exploring connections between logic 
and finite automata proved fruitful indeed; but the most interesting applications 
appeared to be applications of finite automata to the decision problems for 
monadic second-order theories.  Decidability of the monadic theory of finite 
chains could have been the first, the most natural and the easiest example − but 
it was not.  I only just made up this particular application and inserted it into 
Section 2 for expository purposes.  Arithmetic was too much on the minds of 
those who first explored the connections between logic and finite automata.  The 
first results were related to the weak monadic theory of  ω  with the successor 
relation.  This theory was called weak second-order arithmetic.  (Let us recall 
that the weak monadic theory of a structure is the theory of that structure in the 
monadic second-order language when the set variables range over finite sets of 
elements.)  We will not speak about weak monadic theories here.  A survey of 
the results in this area can be found in Thatcher-Wright [1968].  Let us note 
merely that the game technique given in Section 2 can be used to give an 
alternative (and relatively simple) proof of decidability of the weak monadic 
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theory of the binary tree.  We should also note that the decidability schema of 
Section 2, a schema that is based on correspondence between monadic formulas 
and automata, had already taken shape in the work on weak monadic theories. 

     Decidability of the monadic theory SIS of  ω  with the successor relation was 
proved by Büchi [1962].  He established a correspondence between SIS 
formulas and  Büchi  automata.  These machines  are ordinary  finite  automata 

A = (S, T, sin, F)  with  F � S that work on sequences.  A is said to accept a 
sequence σ1σ2 . . .  in the input alphabet of  A  if there is a run  s1s2 . . .  of A on 

the  given  sequence  (which  means, of course, that (sin, σ1, s1) � T and  every 

(si, σi+l, si+l) � T) such that for every i  there is j > i  with sj � F.  Büchi also 
solved  the emptiness problem for Büchi automata.  Unfortunately, a non-
deterministic  Büchi automaton may be not equivalent to any deterministic 
Büchi automaton, and Büchi used the Ramsey theorem to solve the 
complementation problem for Büchi automata.  Our sequential automata were 
introduced by Muller [1963] in order to prove Theorem 2.2.1.  However, the 
first correct proof of that theorem was published by McNaughton [1966]. 
Simplifications of McNaughton's  proof can be found in Rabin [1972], Choueka 
[1974], Thomas [1981]. 

     Decidability of the monadic theory S2S of the binary tree with two successor 
relations was proven by Rabin [1969].  He established a correspondence 
between S2S formulas and Rabin automata that are somewhat different from our 
tree automata, and his proof of the complementation theorem is an extremely 
difficult induction on countable ordinals.  He used the same technique to solve 
the emptiness problem for Rabin automata, although Rackoff [1972] found a 
simple reduction of the emptiness problem for Rabin automata to the emptiness 
problem for automata on finite binary trees.  Our simple proof of the decidability 
of S2S follows Gurevich and Harrington [1982]. 

     The idea of using games had been exploited earlier however.  Büchi-
Landweber [1969a] used a strong determinacy of more special games to prove 

the following:  Suppose that a sentence �X �Yφ(X, Y) holds in SIS where  X, Y 
are tuples of variables.  Then there is a deterministic sequential automaton 
which outputs an appropriate output  Y  when reading  X.   In particular, there is 
an SIS formula φ*(X, Y)  uniformizing  φ; that is, φ* implies φ  in SIS and, for 
every X, there is a unique Y  such that  φ*(X, Y) holds in SIS.  Büchi [1977] 
sketched a reduction of the complementation problem for Rabin automata to a 
strong determinacy for boolean-Fσ  games.  This determinacy result was proven 
independently in Gurevich-Harrington [1982] and in the manuscript Büchi 
[1981].  The latter solution, however, is much more complicated  (and it still 
uses an induction on countable ordinals). 

     Let me add a few words about Rabin's uniformization problem for S2S. 

Suppose that a sentence �X �Yφ(X, Y)  holds in S2S (where  for  the  sake of 
simplicity,  X, Y  are just single variables).  Is  there an  S2S formula  φ*(X, Y)  
such that φ* implies φ  in S2S and, for every  X, there is a unique Y such that 
φ*(X, Y)  holds in S2S?  Using model-theoretic methods and forcing Gurevich-
Shelah [1983b] solved this problem negatively.  Their counterexample  φ(X, Y)  
asserts that if  X is not empty, then  Y  is a singleton subset of  X. 
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     Rabin [1969] proved the decidability of many interesting theories by inter-
preting them in S2S.  Among those theories we find the monadic theory of 
countable chains and the theory of the real line with quantification over 
countable sets.  More direct model-theoretic proofs of these two results as well 
as delimiting undecidability results can be found in Gurevich-Shelah [1979].  
For more on this the reader may also see Section 5.2.  Finally, we note that 
Rabin [1969] also proved that S2S allows us to quantify over Fσ subsets of 
(infinite) branches of the binary tree.  (Basic open sets of the topology in 
question are sets of branches through a given node.) 

Open Question.   If we augment the language of  S2S by allowing 
quantification of arbitrary Borel sets over branches, is the resulting theory of 
the binary tree in the augmented language decidable? 

     Shelah [1975e] states the reducibility of the monadic theory of a tree of 
height co with a given structure S on the successors of each node to the monadic 
theory of  S.  The details appear in Stupp [1975]. Their proof uses Rabin's 
technique.  The game technique of Gurevich-Harrington [1982] gives the 
generalized result fairly easily. 

     Büchi [1973] used automata to prove decidability of the monadic theory of ω 
(with the order).  See also Litman [1976],  Büchi-Siefkes [1973], Büchi-Zaiontz 
[1983] for additional results about monadic theories of ordinals of cardinality at 
most 1א.  There is a good reason why these results cannot be generalized to ω2. 
Using model-theoretic methods and assuming the existence of a weakly compact 
cardinal, Gurevich, Magidor, and Shelah [1983] prove: 

     (i) for any given S <= ω, there is a forcing extension of the given set-theoretic 
          world, where the monadic theory of ω2 has the Turing degree of S;  and  
    (ii) there is a forcing extension of the given set-theoretic world, where the 
          monadic theory of ω2 and the full second-order theory of ω2 are reducible 
          each to the other. 

 

5.2. Model-Theoretic Methods 

The paper Shelah [1975e] represented a breakthrough in the study of monadic 
theories of chains. Shelah developed the model-theoretic decidability method, 
which we illustrated in Section 3, and proved all known decidability results 
about monadic theories of chains in a uniform way.  Assuming the continuum 
hypothesis, he reduced true first-order arithmetic to the monadic theory of the 
real line.  This was the first undecidability result in the area. 

     Shelah's decidability method was rooted in achievements of his predecessors. 
In this connection, let me mention Feferman-Vaught [1959], Ehrenfeucht 
[1961], and Läuchli [1968].  Working on well-orderings, Shelah used ideas of  
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Büchi  and Rabin.  For more on this, see the references in Shelah [1975e].  A 
detailed version of the model-theoretic decidability method, a version which 
prepared the ground for stronger results, is given in Gurevich [1979a].  Shelah's 
undecidability method was absolutely new.  Actually, he wanted to prove 
decidability of the monadic theory of the real line.  He was developing and 
sharpening the decidability method to achieve this goal when he discovered the 
undecidability.  Later, he reduced true first-order arithmetic to the monadic 
theory of the real line just in ZFC, without making any additional set-theoretic 
assumptions.  See Gurevich-Shelah [1982] in this connection. 

     Sometimes model-theoretic analysis is less informative than is the 
automaton-theoretic.  For example, the decision procedure in Section 2 for the 
monadic theory of  ω gives more than the corresponding decision procedure in 
Section 3:  It establishes the correspondence between monadic formulas and 
deterministic sequential automata.  In many other cases, however, the model-
theoretic analysis is more informative.  For example, Shelah answered 
negatively a question posed by Rabin, a question asking whether or not 
countable orders can be characterized in the monadic theory of chains. 

     Let us examine the monadic theory of countable chains a bit further. Shelah 
[1975e] conjectured that the monadic theory of countable chains can be finitely 
axiomatizable in the monadic theory of chains.  However, Gurevich [1977b] 
refuted this conjecture.  He provided a certain axiomatization of the monadic 
theory of countable chains.  A chain is  short if it embeds neither ω1 nor ω1*, 
where ω1* is the dual of ω1.  A chain without jumps (that is, a densely ordered 
chain) is  perfunctorily n-modest  if for all everywhere dense subsets X1, . . . , Xn, 

there is a perfect subset  Y  without jumps such that Y � X1 � ������� Xn and every 
Xi ∩ Y   is dense in  Y.   A chain is  n-modest  if all its subchains without jumps 
are perfunctorily n-modest.  A chain is modest if it is  n-modest, for every n.  It 
appears that a chain is monadically equivalent to a countable chain iff it is short 
and modest.  Rabin [1969] proved decidability of the monadic theory of 
countable chains.  Thus, the monadic theory of short modest chains is decidable. 
Gurevich-Shelah [1979] proved directly decidability of short modest chains. 

     The situation is very different for non-modest chains. Assuming the 
continuum hypothesis, Gurevich-Shelah [1979] reduced true first-order 
arithmetic to the monadic theory of any nonmodest chain. The use of the 
continuum hypothesis was removed in Gurevich-Shelah [1982]. The reader may 
also consult Gurevich-Shelah [1979] for a model-theoretic analysis of the theory 
of the real line with quantification over countable subsets. 

     In order to discuss undecidability results, we need to clarify the terminology. 
A reduction of a theory  T  to a theory  T* is an algorithm associating a sentence 
φ*  in the language of  T*  with each sentence φ in the language of  T  in such a 
way that φ* holds in  T*  iff  φ  holds in T.  An  interpretation of one theory in 
another is a special case of reduction when models of  T  are defined inside 
models of T*.   An exact definition of interpretation can be found in Monk 
[1976] for example. 

     As we mentioned above, Shelah [1975e] reduced true first-order arithmetic to 
the monadic theory of the real line.  In Section 4 we did not say much about the 
undecidability method of Shelah [1975e].  This method was augmented in 
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Gurevich [1977b] by a technique of towers, a technique that has been exploited 
extensively in subsequent papers.  Confirming Shelah's conjecture, Gurevich 
[1979b] reduced true third-order arithmetic to the monadic theory of the real line 
(in fact, to the monadic theory of any short non-modest chain) in Gödel’s 
constructive universe.  The converse reduction is obvious. Only during the 
Jerusalem Logic Year 1980-81 we − Saharon Shelah and I − realized that our 
reductions are really a kind of interpretation of (in terms of Section 4) theories in 
the "next world"  VB  in theories in "this world"  V.   Subsuming all mentioned 
undecidability results, Gurevich-Shelah [198la] managed: 

(i) reduce true second-order arithmetic in VB to the monadic V-theory of any 
     short non-modest chain; and also  

     (ii) to reduce true third-order arithmetic in VB to the monadic V-theory of any 
           short non-modest chain if the continuum hypothesis holds in V. 

In contrast to this, Gurevich-Shelah [1981a] proved that true first-order arith-
metic is not interpretable in the monadic theory of the real line. 

     Gurevich-Shelah [1983a] reduce true second-order logic to the monadic 
theory of (linear) order under very weak set-theoretical assumptions.  This gives 
the complexity of the monadic theory of order. It does not mean, however, that 
the monadic theory of order is as un-manageable as second-order logic.  From a 
model-theoretical point of view, there is an enormous difference between these 
two theories (reflected somewhat in different Löwenheim and Hanf numbers). 
This topic is, however, beyond the scope of this chapter and the reader may see 
Chapter 12 in this connection. 

     A few words about topology.  Grzegorczyk [1951] introduced the monadic 
topology (see Section 4) and interpreted (in a simple and natural way) true first-
order arithmetic in the monadic topology of the Euclidean plane.  It does not 
take much more sophistication to verify that the monadic topology of the 
Euclidean plane and true third-order arithmetic are interpretable, each in the 
other. For more on this, the reader may see Gurevich [1980].  Grzegorczyk's 
question about the decision problem for the monadic topology of the real line 
was, however, long open.  Reading the paper Shelah [1975e], I noted that Shelah 
had solved negatively the question of Grzegorczyk under the continuum 
hypothesis. Several papers − especially Gurevich-Shelah [1981c] − give 
undecidability results about the monadic topology.  In particular, all mentioned 
above undecidability results about the monadic theory of the real line apply to 
the monadic topology of the Cantor discontinuum.  For a positive result on 
monadic topology see Gurevich [1982]. 

     Gurevich	Shelah [1981b] use both model-theoretic methods and the method 
of automat  and games to construct a decision procedure for the theory of trees 
(all trees, not necessarily well-founded) with quantification over maximal 
branches. 

     Finally, let us mention some results that are not directly related to decision 
problems. Gurevich [1977b] proved (thus refuting Shelah's conjecture) that the 
predicate "X is countable" is expressible in the monadic theory of the real line if 
the continuum hypothesis holds.  Gurevich [1979b] also proved (and thus partly 
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refuted and partly confirmed Shelah's conjectures) that the monadic theory of 
the real line can be finitely axiomatizable (in the monadic theory of chains) and 
categorical under natural set-theoretic assumptions. By "Shelah's conjectures" 
here, we mean the collection of conjectures that are given in Shelah [1975e]. 
Almost all of these conjectures have been decided by now, and a majority of 
those decided are true. Thus, the program sketched in Shelah [1975e] is 
essentially fulfilled. Moreover, I have an impression that an important and 
natural phase in the study of monadic second-order theories is now completed. 
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