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Abstract.  Whereas first-order logic was developed to confront the infinite it is 
often used in computer science in such a way that infinite models are 
meaningless. We discuss the first-order theory of finite structures and 
alternatives to first-order logic, especially polynomial time logic. 

Introduction 

   Turning to theoretical computer science a logician discovers with pleasure an 
important role of first-order logic. One of the fashionable programming 
languages – PROLOG – is based on first-order logic; variants of first-order logic 
– Tuple Calculus, Relational Algebra, Domain Calculus – are used as query 
languages to retrieve information from relational databases; et cetera. 

   The database applications of first-order logic are of special interest to us here.  
In this connection let us mention that relational databases are not a side issue in 
the data field.  The relational data model together with the network and the 
hierarchical data models are "the three most important 'data models', the models 
that have been used in the great bulk of commercial database systems" [Ul, 
Section 1.4].  The relational data model brought a Turing Award to its inventor 
E.F. Codd. The three query languages, mentioned above, were also introduced 
by Codd and are important: "A language that can (at least) simulate tuple 
calculus, or equivalently, relational algebra or domain calculus, is said to be 
complete" [Ul, Section 6.1]. 

   Some of the new applications of first-order logic are unusual in that only finite 
structures are of interest.  In particular, relational databases can be seen as finite 
first-order structures (for the purpose of this paper), and the query languages, 
mentioned above, express exactly the first-order properties of relational 
databases. The question arises how good is first-order logic in handling finite 
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structures.  It was not designed to deal exclusively with finite structures.  In a 
sense the contrary is true.  It was developed as a tool in Foundations of 
Mathematics, especially when mathematicians and philosophers confronted 
paradoxes of the Infinite. 

   We do not question here the greatness of first-order logic of not necessarily 
finite structures.  Taking into account how elegant, natural and expressive first-
order logic is, it is actually amazing that formulas true in all structures (of an 
appropriate vocabulary) are exactly the ones for which there exist proofs in a 
specific formal system.  (Let us also recall the unique character of first-order 
logic [Lin].) But what happens to recursive axiomatizability, compactness and 
other famous theorems about first-order logic in the case of finite structures? We 
address this question in §1. Our feelings about the answer are expressed in the 
title of §1:  Failure of first-order logic in the case of finite structures. 

   In §2 we address a certain ineffectiveness of famous theorems about first-order 
logic. Consider for example Craig's Interpolation Theorem: for each valid 
implication φ→ψ there is an interpolant θ such that 

               vocabulary (θ) � vocabulary(φ)∩ vocabulary(ψ) 

and the implications φ→θ  and  θ→ψ  are valid.  No total recursive function 
constructs an interpolant from the given implication [Kr].  There is no recursive 
bound on the size of the desired interpolant in terms of the size of the given 
implication  [Fr].  Moreover, weaken the interpolation theorem by replacing "the 
implications φ→θ  and θ→ψ are valid"  by  "the implications φ→θ  and θ→ψ 
are  valid in all finite structures of appropriate vocabularies".  Still there is no 
recursive bound on the size of the desired interpolant in terms of the size of the 
given implication. 

   What is the use of criticizing first-order logic if we cannot come up with a 
reasonable alternative? We think here about applications where one needs at 
least the expressive power of first-order logic, like PROLOG or relational query 
languages.  "It is the case that almost all modern query languages embed within 
them on of the three notations" [Ul, Section 6.1].  (The three notations are the 
tuple calculus, the relational algebra, and the domain calculus.) 
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   One would like to enrich first-order logic so that the enriched logic fits better 
the case of finite structures.  The first temptation of a logician would be to 
regain recursive axiomatizability.  But no extension of the first-order theory of 
finite structures is recursively axiomatizable.  (Satisfiability of first-order 
formulas on finite structures is recursively axiomatizable.  But this axiomatiza-
bility provides only a criterion of existence of a formal proof for existence of a 
finite model.  It is not interesting.  The whole point of axiomatizability was to 
provide an existential criterion for a universal statement.) 

   Another temptation is to consider second-order logic (without third-order 
predicates or functions) or its fragments (like existential second-order logic) as 
an alternative to first-order logic.  Confining ourselves to finite structures, we 
consider this alternative in §3. 

   Second-order logic is certainly elegant, natural and much more expressive than 
first-order logic.  Second-order logic itself becomes more attractive in the case 
of finite structures:  no nonstandard models, no distinction between the weak 
and the strong versions of second-order logic, etc.  There is however one 
important - from the point of view of computer science – property of first-order 
logic that is lost in the transition to second-order logic.  For every first-order 
sentence φ there is an algorithm that, given a presentation of a structure S of the 
vocabulary of φ, computes the truth-value of φ  on S within time bounded by a 
polynomial in the cardinality  |S|  of  S  (and within working space bounded by 
log |S|).  In other words, first-order properties are PTIME  (and LOGSPACE)  
computable.  Second-order properties and even existential second-order 
properties are not PTIME computable unless P = NP.   If one takes the popular 
point of view that feasible computations are PTIME bounded and that  P is 
probably different from NP then second-order logic is not a good alternative to 
first-order logic. 

   Let us mention that computer scientists do feel that first-order logic is 
unreasonably restrictive.  PROLOG does have non-first-order features, and it 
was suggested to augment the essentially first-order query languages by 
different operators preserving feasible computability of queries.  Of course the 
notion of feasibility varies with applications.  From the point of view of PTIME 
computability, 
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the least fixed point operator LFP [AU]  appeared to be especially important.  It 
preserves PTIME computability and has great expressive power. 

   A natural idea arises to extend first-order logic in such a way that exactly 
PTIME  (LOGSPACE, etc.) computable properties of structures are expressible 
in the extended logic.  Chandra and Harel [CH2] considered the extension FO + 
LFP of first-order logic by LFP from that point of view and discovered that FO 
+ LFP does not capture PTIME.  It turned out, however, that FO + LFP does 
capture PTIME in the presence of linear order [IM1, Var].  In §4 we discuss 
fixed points and logics with order (as a logical constant) tailored for PTIME. 

   In §5 we return to some of the famous theorems about first-order logic and 
consider whether their analogues hold in the ease of logic specially designed for 
PTIME.  More specifically, we consider the analogues of Craig's Interpolation 
Theorem, Beth's Definability Theorem and the Weak Beth Definability Theorem 
for polynomial time logic.  These analogues happen to be equivalent to natural 
complexity principles whose status is unknown. 

   A lot of interesting problems arise. Design a logic that captures PTIME even 
in absence of linear order, or prove that there is no reasonable such logic if P ≠ 
NP.  What is a logic? What is a complexity class? Can every reasonable 
complexity class be captured by  a logic in the presence of linear order? Capture 
LOGSPACE, NLOGSPACE,  LOG2SPACE,  LOG2SPACE ∩ PTIME,  etc.   in 
the presence of linear order.  What are complexity tailored logics good for? Are 
complexity bounded programming languages useful? Some answers can be 
found in [Im2] and [Gu3]. 

   Our terminology is more or less standard. We use the term "vocabulary" rather 
than "signature" or "similarity type", and we use the term "structure" rather than 
"model" or "algebraic system".  Our vocabularies are always finite. 

   Acknowledgements.  I am very grateful to Andreas Blass and Neil Immerman 
for very useful discussions related to this paper. 
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               §1. Failure of first-order logic in the case of finite structures 

   We examine famous theorems about first-order logic in the case when only 
finite structures are allowed. The terms formula and sentence will refer in this 
section to first-order formulas and first order sentences. As usual, a sentence is a 
formula without free individual variables. 

   Recall that a formula φ is called valid (or logically true) if it is true in every 
structure of the vocabulary of φ, a formula φ  (resp. a set Φ of formulas) is said 
to imply a formula ψ logically if ψ is true in every model of φ  (resp. of Φ) 
whose vocabulary includes that of ψ and formulas φ, ψ are called logically 
equivalent if each of them logically implies the other.  We will say that a 
formula φ is valid in the finite case if it is true in every finite structure of the 
vocabulary of φ, a formula φ  (resp. a set Φ of formulas) implies a formula ψ in 
the finite case if ψ is true in every finite model of φ (respectively of Φ) whose 
vocabulary includes that of ψ, and formulas φ, ψ are equivalent in the finite case 
if each of them implies the other in the finite case. 

   The Soundness and Completeness Theorem is formulated usually for a 
specific logical calculus.  It states that a formula is valid iff it is provable in the 
calculus. The calculus-independent meaning of this theorem is that first-order 
logic is recursively axiomatizable, which boils down to the fact that valid 
formulas are recursively enumerable.  Trakhtenbrot [Tr] proved that the 
formulas valid in the finite case are not recursively enumerable.  Therefore first-
order logic is not recursively axiomatizable in the finite case, and the Soundness 
and Completeness Theorem fails for any logical calculus in the finite case. 

   Remark.  Tiny fragments of first-order logic are not axiomatizable recursively 
in the case of finite structures.  For example, let σ be a vocabulary that consists 

of one binary predicate symbol. The  �3
�* σ-sentences (i.e. the prenex σ-

sentences with prefixes �3
�

n), that are valid in the finite case, are not enum-
erable recursively [Gul, Ko].  Summaries of results of that sort can be found in 

[Gu2].  Goldfarb claims that even �2
�*  σ-sentences with equality, valid in the 

finite case, are not enumerable recursively [Go]. 
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   The Compactness Theorem for first-order logic states that if a set Φ of 
formulas logically implies another formula ψ then some finite subset of Φ 
logically implies ψ. The theorem fails in the finite case.   Let for example Φ = 
{φn : n>l} where every sentence φn  states existence of at least n different 
elements, and let ψ be any logically false formula. Then Φ implies ψ in the finite 
case; however no finite subset of Φ implies ψ in the finite case. 

   The Craig Interpolation Theorem states that if a formula φ logically implies a 
formula ψ then there is a formula θ  (an interpolant) such that 

                         vocabulary (θ) � vocabulary (φ) ∩ vocabulary (ψ) ,  

φ logically implies θ, and θ logically implies ψ. 

   The interpolation theorem implies the Beth Definability Theorem that states 
the following.  Suppose that a sentence φ(P)  defines an l-ary relation P 
implicitly i.e. if P' is a new l-ary predicate symbol then φ(P)  and φ(P') imply 

                         �x1 . . .��xl (P(x1, . . . ,xl) ↔  P'(x1, . . . ,xl)) . 

Then there is an explicit first-order definition of the same relation i.e. there is a 
formula θ(x1, . . . ,xl)  such that 

                          vocabulary (θ) � vocabulary (φ(P)) – {P}  

and φ(P)  logically implies 

                          �x1 . . .��xl (P(x1, . . . ,xl) ↔  θ(x1, . . . ,xl)). 

   If φ(P)  and P'  are  as in the antecedent of  the  Beth Definability Theorem 
then φ(P) & P(x1, . . . ,xl) logically  implies  φ(P') → P'(x1, . . . ,xl), and the 
corresponding interpolant is the desired explicit definition.  The same proof 
shows that the finite case version of the interpolation theorem implies the finite 
case version of the definability theorem. 

   The Weak Definability Theorem is the result of strengthening the antecedent 
of the Beth Definability Theorem.  The antecedent of the Beth Definability 
Theorem states that for every structure of the vocabulary 

                             σ = vocabulary (φ(P) ) – {P} 

there is at most one relation P that satisfies φ(P).  The antecedent of the Weak 
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Definability Theorem states that for every σ-structure there is a unique relation 
P that satisfies φ(P). 

   Theorem 1.  The Craig Interpolation Theorem, the Beth Definability Theorem 
and the Weak Definability Theorem fail in the finite case. 

   Proof.   Let us recall the definition of the quantifier depth of a formula:  

   q.d. (a quantifier-free formula) = 0 

   q.d. (a Boolean combination of formulas α1, . . . , αm ) = max{q.d.( α1), . . . , 
q.d.(αm)} 

   q.d. (�xα) = q.d. (�xα) = l + q.d. (α). 

   Lemma. 

   (i)  Suppose that  α  is a sentence in the vocabulary {<} of order,   n  is the 
quantifier depth of α, and A, B are finite linear orders of cardinalities  |A|, |B| ≥ 
2n.  Then α  does not distinguish between A and  B i.e.  A  satisfy α  iff  B 
satisfies α. 

   (ii)  There is no sentence α in the vocabulary {<}  such that an arbitrary finite 
linear order S satisfies α iff the cardinality  |S|  is even. 

   (iii)  There is no formula θ(x)  in the vocabulary {<}  such that if  S is a 

finite order a1 < a2 < . . . < an  then {x: S � 1= θ(x)} = {ak: k  is even}. 
 

   Proof of Lemma. 

   (i)  We use the Ehrenfeucht games [Eh].  It suffices to exhibit a winning 
strategy for player II in the Ehrenfeucht game Gn(A, B).  Without loss of 
generality no element is picked twice during the game.  The proposed strategy is 
to ensure the following.  Let a1 < a2 < . . . < ak  and  b1 < b2 < . . . < bk  be the 
elements chosen in A and  B respectively during the first k steps of the game.  
Let A0, A1, . . . , Ak  be the segments  [min(A) , a1],  [a1, a2], . . . , [ak, max(A)]  of 
A, and  let   B0, B1, . . . , Bk    be the respective segments of  B.   Then  for  every 
i = l, . . . , k  the elements ai, bi  were chosen at the same step of the game, and 
either  |Ai| = | Bi|  or  |Ai|, | Bi| > 2n-k    for 0 < i < k,  and either  |Ai| = | Bi|  or  |Ai|, 

| Bi| ≥ 2n-k    for  i�{0,...,k}.  

   (ii) The statement follows from (i). 



182                                                                                                                          Y. Gurevich 

   (iii)  If θ(x)  defines the set of even elements in every finite linear order then 
the sentence 

                              �x (x is maximal and  θ(x)) 

holds in an arbitrary finite linear order S iff  |S|  is even.                                    □ 

   Since the interpolation theorem implies the definability theorem and the 
definability theorem implies the weak definability theorem, it suffices to refute 
the weak definability theorem.  It is easy, however, to construct separate 
counterexamples to all three theorems. 

   Write a sentence α stating that  <  is a linear order,  let P, Q be distinct unary 
predicates.  Write a sentence β(P)  in the vocabulary {<, P}  such that if S is a 

finite linear order  a1 < a2 < . . . < an  and S satisfies β(P)  then  {x: S ��P(x)} = 
{ak: k is even}.  (Write that P does not contain the first element, and the 
successor of an element  x belongs to P iff  x does not belong to P.)   Obviously 
α & β(P) & P(x)  implies β(Q) → Q(x)  in the finite case.  If the interpolation 
theorem were true in the finite case then the interpolant would violate the 
statement (iii) of the Lemma. 

   Obviously, α & β(P)  defines  P implicitly in finite structures.  If the defin-
ability theorem were true in the finite case then the explicit definition of P 
would violate the statement (iii) of the Lemma.  Finally, the sentence 

                           (α → β(P)) & (¬α → ¬�xP(x)) 

defines  P uniquely in the finite case.  If the weak definability theorem were true 
in the finite case then the explicit definition would violate the statement (iii) of 
the Lemma. Theorem 1 is proved. 

   Remark.   The formula β(P)  in the proof of Theorem 1 can be simplified if we 
use an individual constant for the first element in the order and an additional 
binary predicate symbol for the successor relation.  The Lemma remains true for 
the richer vocabulary if 2n  is changed to 2n+1    (with an obvious change in the 
proof). 

   A sentence φ is said to be preserved under substructures if every substructure 
of a model of φ is a model of φ.  According to the Substructure Preservation 
Theorem [CK, §3.2], a sentence φ is preserved under substructures iff it is 
logically equivalent to a universal sentence. 
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   Theorem 2   (Tait) .  The Substructure Preservation Theorem fails in the case 
of finite structures.  In other words, there is a sentence φ such that any substruc-
ture of a  finite model of φ is a  model of φ, yet φ is not equivalent to any 
universal sentence in the finite case. 

   Proof.   Let (φ1 be the universal closure of the conjunction of the following 

formulas (where x ≤ y  abbreviates x = y  �� x < y) :  

                                 ( x < y & y < z) →  x < z, 

                                 ¬ (x  < x), 

                                 x ≤ y  �� y ≤ x, 

                                 0 ≤ x, 

                                  [S(x, y) & y ≠ 0] → [x < y & (z ≤ x  �� y ≤ z)], 

                                 S(x, 0) →  y ≤ x. 

   φ1 states that  <  is a linear order,  0 is the minimal element, and  Sxy  implies 
that either y is the successor of x or else x is the maximal element and y = 0.  Let 

φ2 be �x�y S(x, y), and let φ be φ1 & (φ2 → �x P(x))  where P is a unary 
predicate symbol. 

   First we check that φ is preserved under substructures of finite models. 
Suppose that A is a finite model of φ and B is a substructure of A.  Then B 
contains 0 and satisfies φ1.  If B does not satisfy φ2, then it satisfies the second 
conjunct of φ by default.  If B satisfies φ2 then B = A  and  B satisfies φ. 

   Next, let α be a sentence �x1 . . .��xn β(x1, . . . , xn) where β is quantifier-free.  
Let A be a model of φ1& φ2  such that the vocabulary of A includes that of  α,A 
has at least n+2 elements and P is empty in A, so that φ fails in A. If α is true in 
A then it is not equivalent to φ in the finite case.  Suppose that α is false in A.  

Then β(c1, . . . , cn) is false in A for some c1, . . . , cn.  Choose d�A different from 
0, c1, . . . , cn,  and put d into P.  The resulting structure B satisfies φ. However 
β(c1, . . . , cn) remains false in B. Hence α is false in B, and α is not equivalent to 
φ in the finite case.                                                                                                □ 

   I did not perform an exhaustive study of important theorems about first-order 
logic in the finite case. Some theorems become meaningless in the finite case. 
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Some theorems do survive:  the game criterion for two structures to be 
indistinguishable by sentences of a given quantifier depth   [Eh], composition 
theorems of the sort found in [FV], etc.  Moreover, some theorems were 
specifically proved for the finite case:  the 0-1 Law Theorem for example 
[GKLT, Fa].  Too often however we see the familiar pattern: the proof uses a 
kind of compactness argument and the theorem fails in the finite case.  
Sometimes a weaker version of the theorem in question survives.  Here is an 

example.  Recall that an �*�* sentence is a prenex sentence with a prefix �m
�

n. 

   Theorem 3  (Compton).  Let φ be  an �*�* sentence without function symbols. 
If φ is preserved by substructures of its finite models then it is equivalent to 
some universal sentence in the finite case. 

   Proof.  First let us recall a relativized version of the Substructure Preservation 
Theorem: 

   Let T0 be a first-order theory, and α be a sentence in the language of T0. 
Suppose that for every model A of T0 and for every substructure B  of  A that is a 
model of T0,  if A is a model of α then B is a model of α.  Then α is equivalent in 
T0 to some universal sentence. 

   The usual proof of the  Substructure  Preservation Theorem is easily 
relativizable:  just take ∆ to be the set of all sentences, that are equivalent in T0 
to universal sentences, in the proof of Theorem 3.2.2 in [CK]. 

   In our application T0 is the first-order theory of finite structures of the 
vocabulary of φ.  Let A be a (possibly infinite) model of T0, that satisfies φ. Let 
B be a substructure of A that is also a model of T0.  It suffices to prove that B 
satisfies φ. 

   First, we show that an arbitrary finite substructure A0 of A satisfies φ.  Write 
an existential sentence α stating existence of elements that form a structure 

isomorphic to A0.  The sentence  α & φ  has a finite model A1:  otherwise T0 ��

¬(α & φ)  which contradicts the fact that A is a model of T0,  α and φ.  Since A1  
satisfies α it has a substructure isomorphic to A0.  Now use the fact that φ holds 
in A1 and is preserved by substructures of finite structures. 



185 

   Recall that φ is 

                       �x1 . . .��xm�y1 . . . �yn ψ(x1, . . . , xm,y1, . . . ,yn)  

for some quantifier-free formula ψ.  We argue by reduction ad absurdum.  
Suppose that B fails to satisfy φ.  Then there are elements a1, . . . , am  such that 
the universal formula 

                                     �y1 . . .��yn  ¬ψ(a1, . . . , am, y1, . . . ,yn) 

holds in B.  This universal formula logically implies ¬φ and holds in the sub-
structure A0 = { a1, . . . , am} of B  (because universal formulas are preserved by 
substructure) .  Thus a finite substructure of A fails to satisfy φ which is 
impossible.                                                                                                           □ 

   Note that the counterexample to the Substructure Preservation Theorem, 

constructed in the proof of Theorem 2 is logically equivalent to an �*�* 
sentence. Thus Theorems 2 and 3 delimit each other. 

   Historical Remarks.  I am not the first to discover that Craig's Interpolation 
Theorem and Beth's Definability Theorem fail in the finite case.  (A question of 
Steve Simpson led me from Craig's Theorem to Beth's Theorem.)  Ron Fagin 
knew about the failure.  It was probably discovered long ago though I do not 
have any reference. 

   Theorem 2 was proved in [Ta]. The proof above is due to Gurevich and Shelah 
(that were not aware [Ta]). Theorem 3 was formulated and proved by Kevin 
Compton in a letter [Co] to me. 
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                             §2.  An ineffective side of first-order logic 

   We saw in §1 that Craig's Interpolation Theorem, Beth's Definability 
Theorem, the Weak Definability Theorem and the Substructure Preservation 
Theorem fail in the case of finite structures.  One may be tempted to allow 
infinite structures (to allow infinite relational databases in database theory) in 
order to regain these wonderful theorems; see [Va] for example.  There is 
however a catch there.  Let us speak, for example, about the weak definability 
theorem.  Even if you happen to know that Φ(P)  implicitly defines a relation P 
in every – finite or infinite – structure and even if you are interested in an 
explicit definition of the same relation P in finite structures only, still 
constructing the desired explicit definition from the given implicitly definition 
may be most problematic.  This is the point of the present section.  Again, the 
terms formula and sentence mean first-order formulas and first-order sentences. 
The length of a formula φ is denoted |φ|. 

   So then, how  constructive are  the wonderful theorems  mentioned above? In 
a certain  sense the interpolation theorem is  very constructive. The desired 
interpolant for a valid implication  (φ → ψ)  is easily constructible from a  proof 
of (φ → ψ) in an appropriate predicate calculus [Cr].  In the same sense the 
definability theorem is very constructive because the desired explicit definition 
can be found as an interpolant for an implication that is easily built from the 
given implicit definition, see §1. 

   There are also partial recursive functions f  and g such that if (φ → ψ) is a 
valid implication then f(φ → ψ)  is an interpolant for  (φ → ψ), and if  φ(P)  is an 
implicit definition of a relation P then  g(φ(P))  is an explicit definition of the 
same relation.  However, there are no total recursive functions f and g with the 
same properties [Kr].  Moreover, there are no total recursive functions that 
bound the length of the desired interpolant or explicit definition in terms of the 
length of a given formula [Fr].  Even the weak definability theorem is 
ineffective in that sense:  the length of the desired explicit definition is not 
bounded by any recursive function of the length of a given implicit definition.  
The next theorem gives a straightforward proof of this result of Friedman and 
strengthens it in a way related to finite structures. 
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   Theorem 1.  For every total recursive function f  there is a  sentence φ(P) such 
that 

   (i)    φ(P)  implicitly defines a relation P in every structure of  the  vocabulary 
σ = vocabulary (φ(P)) - {P}, and 

   (ii)    if  ψ   is  an  explicit definition of the same relation   P  in  every  finite  
σ-structure, then  |ψ| ≥ f( |φ(P)| ). 

   Proof.  Given a total recursive function  f  we construct an auxiliary total 
recursive function g.  The exact definition of g will be given later.  Let M be a 
Turing machine that computes g.  We suppose the following about M.  Its 
internal states are q0, . . . , qm   here q0  is the initial state and qm  is the halting 
state. The only tape of M is one-way infinite, the tape alphabet is {0, 1} where 0 

is also the blank.  An instruction of M is a 5-tuple qiaqjbd where d�{-l, 0, l} 
indicates whether the head of M will move to the left, stay still or move to the 
right.  If at moment 0 the state of M is q0, the head is in cell 0 and the tape word 
is 1n  then M will eventually halt in the halting state qm  with the tape word 1g(n) . 

   In order to describe computations of M by formulas we introduce unary 
predicates q0(t) , . . . , qm(t)  to indicate the state at moment t, a binary predicate 
H(x, t)  to indicate that the head is  in cell  x  at moment t, a binary predicate 
C(x, t)  to indicate that the content of cell x at moment t is 1, and unary 
predicates D-1(t), D0(t), D+1(t)  to indicate the move of the head that the machine 
is instructed at moment t to perform. 

   In order to use all these predicates properly, we need binary predicates <, S 
and an individual constant 0.  Let a sentence φ0 state that  <  is a linear order, 0 
is the minimal element,  S  is the corresponding successor relation, and every 
nonmaximal element has a successor. 

   A sentence φ1
n
  describes the initial configuration of M with the input 1n.  It is 

the conjunction of sentences 

   q0(0), H(0,0),  

   �x0 . . . �xn [x0 = 0 and �i<n S(xi, xi+1) and  �i<n C(xi, 0) and ¬C(xn,0)], 

   �x�y [¬C(x, 0) and x ≤ y imply  ¬C(y, 0)]. 
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   A sentence φ2  describes one computational step.  It is the universal closure of 
a quantifier-free conjunction.  Every instruction qiaqjbd  contributes the conjunct 

       [qi (t) & H(x, t) & Ca(x, t) & S(t, t') implies qj (t') & Cb(x, t') & Dd(t)]  

where C1 ,C0 are C, ¬C respectively.  In addition the quantifier-free part of φ2 

has the following conjuncts: 

       [¬qi (t) or  ¬qi (t)]  for  0 < I < j ≤ m, 

       [H(x, t) and H(y, t) imply x = y],  

       [¬Dd (t) or  ¬ De (t)]  for  -l ≤ d < e ≤ l,  

       [D0 (t) & H(x, t) & S(t, t')  implies  H(x, t')],  

       [D1(t) &  H(x, t) & S(t, t') & S(x, x')  implies H(x', t')],  

       [D-1(t) &  S(t, t') & S(x, x') &  H(x', t)  implies H(x, t')],  

       [¬H(x, t) and  S(t, t') imply  (C(x, t') ↔ C(x, t))]. 

   A sentence φ3  describes what happens after halting.  It is the universal closure 
of the formula 

          [qm(t) and  t < u  imply  (��i ≤ m ¬qi (u)  and  ¬H(x, u)  

                                             and  ¬C(x, u)  and  (��-1 ≤ d ≤1 ¬Dd (u))] . 

   Lemma.  For every model A  of  φ0   and for every natural number n there are 
unique predicates 

                            q0, . . . , qm, H, C, D-1, D0, D1            

on  A that satisfy   φ1
n

  & φ2  & φ3. 

    Proof  is straightforward.  In particular, the sentences φ0 , φ1
n, φ2   and  φ3 

imply that for every t there is a unique x with H(x, t):  the head does not slip 
from the tape because M computes a total function, and if D1(t), H(x, t), S(t, t') 
hold then x ≤ t < t'  and there is x'  such that S(x, x'), H(x', t') hold. 

   Let P be a ternary predicate symbol.  Write a sentence φn
 (P)  that states the 

following.  If φ0  fails or there are at most m+3 elements then P is empty. If φ 
holds and there are more than m+3 elements then 

   (a)  φ1
n, φ2 , φ3  hold where qi(t), Dd(t), H(x, t), C(x, t)  abbreviate P(0, i, t), 

          P(0, m+2+d, t), P(l, x, t), P(2, x, t)  respectively, and 

(b) P(0, x, t)  fails  for x > m+3,  and P(x, y, t)  fails  for x > 2. 
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When numbers 1, 2, etc.  appear as arguments of  P they mean of course the 
successor of 0, the successor of the successor of 0, etc.  It is easy to see that φ n 

implicitly defines a relation P in every structure of the vocabulary σ = {<, 0, S}. 
Let ψn  be an explicit definition of the same relation in every finite σ-structure.  

   Note that φ1
n and the quantifier depth of φ n do not depend on the choice of g.  

Define g(n) to be the power of 2 such that 

                           log2g(n) = f (|φ1
n| + n) + q.d.(φ n) + 1.   

φ1
n

 is the only part of φ n  that depends on n.  It occurs in φ n only once. Thus the 
number k = |φ n| - | φ1

n |  does not depend on n.  Let φ = φ k  and φ = ψ k.  Then 

        log2 g(k) = f (|φ|) + q.d.(φ) + 1.    

        Let α be the sentence 

         [φ(ψ)  and  �tqm(t)]. 

Every model of α reflects the whole computation M and has at least g(k) 
elements.  By the Remark following the Lemma in §1, g(k) ≤  21 + q.d.(α).  Hence 

                               q.d.(α) + l ≥ log2 g(k) = f(|φ|) + q.d.(φ) + l  

But q.d.(α) ≤ q.d.(φ) + q.d.(ψ).     Hence   |ψ| ≥ q.d.(ψ) ≥ f(|ψ|).                           □ 

   Remark 1.   It is easy to make the relation P of Theorem 1 unary.  The idea is 
to use auxiliary elements to code triples of real elements. 

   Remark 2.  Mundici exhibits in [Mu] short valid implications  (φ 
→ ψ) whose 

interpolants are enormously long.  The proof of Theorem 1 can be used for 
analogous purposes. 

   Theorem 2.  For every total recursive function f there is a  sentence φ such 
that 

   (i)  φ is preserved by substructures, and 

   (ii)  if ψ is a universal sentence that is equivalent to φ in every finite structure 
of the vocabulary of φ then |ψ| ≥ f(|φ|).                                                                 □ 

   Proof.  Let f  be a total recursive function.  As in the proof of Theorem 1, let g 
be an auxiliary total recursive function (specified later) and let M be a Turing 
machine that computes g.  Once again we describe computations of M by 
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first-order sentences. However, we take some additional care to make the 
desired description preserved under substructures. 

Instead of the sentence φ0 in the proof of Theorem 1 we use sentences φ1, φ2 

from the proof of Theorem 2 in §1.  We call them φ01  and φ02 here.  We split the 
sentence φ1

n  from the proof of Theorem 1 into a conjunction φ11 & φ12
n  where 

φ12
n  is the existential conjunct of φ n

 1  and φ11   is the conjunction of the two 
other conjuncts of φ1

n.  Let φ n be the sentence 

                 φ01  & φ11 & φ2 & φ3  & [φ02 & φ12
n → �t �x (qm(t) & x ≤ t & Q(x)] 

where φ2  and φ3  are the sentences from the proof of theorem 1 and Q is a new 
unary predicate. 

   First we check that every φ n  is preserved by substructures.  Let A be a model 
of  φ n.   Every substructure B  of  A  contains  0  and  satisfies  the  sentences 
φ01, φ11, φ2, φ3   because universal sentences are preserved by substructures.   If 
B does not satisfy φ02  or φ12

n  then it satisfies the last conjunct of φ n
   by default.   

Suppose that φ n
   satisfies φ02 and φ12

n.  Since B satisfies φ02  it is closed in A 
under successors.  If A is finite then B is equal to A and satisfies φ n.  Suppose A 
is infinite.  Then B includes the least substructure of A closed under successors 
whose elements can be identified with natural numbers in the obvious way.  
Since B satisfies the existential sentence φ12

n
  the structure A satisfies φ12

n
  too.  It 

is easy to see that A reflects the whole computation of the machine M on input 1.  
If M halts at moment T(n)  then qm(T(n))  holds in A.  In virtue of φ3  there is no 
element u > T(n)  in A that satisfies qm.  Since A satisfies φn there is some x ≤ 
T(n)  in A that satisfies Q.  Both T(n)  and x belong to B; hence B satisfies φ n. 

   Note  that  φ12
n

  does not depend on the choice of  g.   Define   g(n) = f (|φ12
n | + 

n).   Since  φ12
n

   is the only part of φ n  that depends on n,  the  number    k = |φ n| 
- | φ12

n |  does not depend on n.    Let φ = φ k.   Then g(k) = f (| φ |) . The 
computation of M on  input 1k  halts  at  certain moment that will be denoted 
T(k) . 

   Finally let  ψ  be a universal sentence �x1 . . .��xl  ψ'(xl, . . . , xl)  that is equiv- 

alent to φ in the finite case.  Here ψ' is quantifier-free.   Let A be the  model of  
φ01 & φ02 & φ11 & φ12

k & φ2 & φ3    with the universe    (0, 1, . . . , T(k))  and 
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the intended interpretation of the predicates. First we define Q to be empty in A.  
The resulting structure   A0  does not satisfy   φ; hence  it does not satisfy ψ and 
¬ψ'(c1, . . . , cl)  holds in A0 for some c1, . . . , cl.  If   l < T(k)  choose 

c�A-{0, c1, . . . , cl} and put c into Q.  The resulting structure A1  satisfies φ 

yet  c1, . . . , cl  still witness failure of ψ in A1  which is impossible.  Thus 
|ψ| ≥ l ≥ T(k) ≥ g(k) ≥ f(|φ |).                                                                                 □ 
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                    §3.  First-order logic versus second-order logic 

   In spite of the criticism in Sections 1 and 2, first-order logic is still a very good 
logic even in the case of finite structures.  It is not without reason that first-order 
logic is used in computer science.  It is elegant, natural and fairly expressive. 
However, if elegance, naturality and expressiveness are that important why 
wouldn't we turn to second-order logic? Second-order logic is elegant and 
natural as well, and it is much more expressive. 

   Second-order logic is not very popular among logicians.  The objection against 
second-order logic is that it is not well manageable.  However some fragments 
of second-order logic are much better manageable.  One of them is weak 
second-order logic, which allows quantification over finite predicates only.  In 
the finite case, of course, there is no difference between the two versions of 
second-order logic. 

   As we saw in §1 the theorems that made first-order logic so much preferable 
to second-order logic often fail or become meaningless in the finite case.  Is 
there any important advantage of first-order logic versus second-order logic in 
the finite case? We take a computational point of view and answer this question 
positively. 

   Proviso 1.  The term "structure" refers to finite structures if  the contrary has 
not been stated explicitly. 

   A structure will be viewed as certain data, as an input to algorithms.  A 
seeming difficulty is that elements of a structure are not necessarily constructive 
objects.  We are interested however in the isomorphism type of a given structure 
rather than in the nature of its elements.  Recall that  |S|  is the cardinality of a 
structure S. 

   Proviso 2.  The universe of a structure S consists of numbers  0, 1, . . . , |S|-1. 

   Proviso 2 by itself does not turn structures into inputs.  We still have to choose 
a way to represent basic relations and functions.  For example, a graph (V,E) 
may be represented as the lexicographically ordered list of edges or as an array 

A(i, j)  where  A(i, j) = l  if  (i, j)�E  and  A(i, j) = 0 otherwise. 

   Proviso 3.  A reasonable standard way to represent structures is chosen. 
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   We introduce global predicates.  Let σ be a vocabulary.  An l-ary 

σ-predicate is a function π  that assigns to each σ-structure S an l-ary 

g predicate π S  on S.  (The superscript S will be usually omitted.)  A zero-ary 

σ-predicate π  assigns a truth value to each σ-structure and therefore can be 
viewed as the set  {S: S is a σ-structure and π S  is true). Every first-order 
formula in the vocabulary σ with l free variables gives an l-ary σ-predicate. A 
global predicate is a σ-predicate for some σ. 

   Examples.    Let  σ = {E} where  E  is a  binary  predicate symbol.  Note that 
σ-structures are graphs.  The first example is a binary σ-predicate π1  such that 
for any graph G and any elements x, y of G,  π1(x, y)  holds in  G iff there is an 
E-path from x to y.   A more usual way to describe π1  is just to say that π1  is the 
binary σ-predicate "There is an E-path from x to y".  The second example is the 
set π2  of symmetric graphs.  In other words, π2  is a zero-ary σ-predicate such 
that π2  holds in a graph G iff G is symmetric.  Note that every relational query is 
a global predicate. 

   With each global predicate π we associate the problem of computing (or 
recognizing)  π.  It is a decision problem.  An instance of this decision problem 

is a pair  (S, x̅) where S is a structure of the vocabulary of π and x̅ is a tuple of 
elements of  S  whose length is the arity of π.  The corresponding question is 

whether π(x̅)  holds in S.  In order to avoid trivialities we suppose that the length 
of the presentation of S is at  least  |S|. 

   Theorem 1.  A Boolean combination of   PTIME  recognizable global 
predicates is a  PTIME  recognizable global predicate.  If  π (x1, . . . , xl , y)  is 

an  (l + 1)-ary PTIME  recognizable global predicate then   �y π(x1, . . . , xl , y)     
is an   l-ary  PTIME recognizable global predicate (with an obvious meaning). 
Every first-order global predicate is  PTIME recognizable. 

   Proof.    The  first  statement  is  obvious.   The  compute the truth value of 

�yπ (x ̅, y)  in S  compute successively the truth values for π (x ̅, 0),  π (x̅, 1), . . . ,  

π (x̅, |S|-1)  in S.  Since atomic first-order predicates are PTIME computable  
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(here we need reasonable standard representations of structures), the third 
statement follows from the first two.                                                                    □ 

   Some second-order global predicates are NP-complete.  For example, the set 
of 3-colorable graphs – a well-known NP-complete set – is definable by a 

second-order sentence �X�Y�Zψ(X, Y, Z) where X, Y, Z are unary predicate 
variables and ψ is first-order. Attaching little gadgets to vertices it is easy to 
construct an  NP-complete set of graphs definable by a second-order sentence 

�Xψ(X) where X is a unary predicate variable and ψ is first-order.  Thus there 
are  second-order  global  predicates that are  not  PTIME  recognizable  unless 
P = NP. 

   It is almost a consensus in Theoretical Computer Science that PTIME 
computations are feasible whereas superpolynomial time computations are 
intractable, see [GJ], [HU].  In particular, Hopcoft and Ullman write the 
following. "Although one might quibble that an n57  step algorithm is not very 
efficient, in practice we find that problems in P usually have low-degree 
polynomial time solutions". 

   Thus first-order global predicates appear to be feasibly recognizable, whereas 
recognizing a second-order global predicate may be intractable. From our point 
of view, explicit PTIME recognizability is a decisive advantage of first-order 
logic versus second order logic. 

   Remark.  Theorem 1 remains true if "PTIME" is replaced by "LOGSPACE".  
The same proof proves the new (and stronger) version of the theorem: just 
represent numbers in binary.  Theorem 1 and the stronger version of it are well-
known. 
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                          §4.  Fixed points and polynomial time logic 

   Provisos 1-3 of §3 are in force. 

   As we saw above in §3, first-order global predicates are PTIME computable 
and even LOGSPACE computable.  Unfortunately neither of these two 
statements can be reversed.  For example, the property of graphs to be of even 
cardinality is recognizable by an obvious algorithm in linear time and 
logarithmic space.  In virtue of the Lemma in §1 this property is not first-order. 

   A natural idea arises:  to augment first-order logic by additional operators in 
order to express exactly the PTIME  (LOGSPACE, etc.) computable global 
predicates. This is the idea reflected in the title:  given a complexity level to 
tailor a logic expressing exactly the global predicates computable within the 
complexity level. Neil Immerman uses the word "capture" [Im2].  The problem 
is to capture a given complexity level by logical means.  This section is devoted 
mainly to logic tailored for PTIME. 

   Remark.  Actually it makes sense to generalize the notion of global predicate 
to the notion of global function and try to capture exactly the global functions 
computable within a given complexity level.  Restricting attention to global 
predicates is even ridiculous if we see our logic as a notation system for 
algorithms or a potential programming language.  Just imagine a programming 
language such that each program outputs only a boolean value.  Global functions 
and functional (rather than predicate) logics are explored in [Gu3]. 

   Let us start with a note that first-order expressible global predicates apparently 
do not form a natural complexity class.  They certainly do not form a complexity 
class defined by Turing machines with bounds on time and/or space (see again 
the even cardinality example).  A computational model which is much closer to 
first-order logic is that of uniform sequences of boolean circuits of constant 
depth, unbounded fan-in, and polynomial size.  Modest extensions of first-order 
logic do capture natural circuit complexity classes, see [Im2] and especially 
[GL] in this connection. 
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   If we consider  NP, co-NP and higher levels of the polynomial hierarchy [St] 
as genuine complexity classes then second-order logic and some of its natural 
sub-logics do capture complexity classes.  (When we speak about second-order 
logic we suppose that there are no third-order predicates or functions.)   
Recall that  an existential second-order formula is a second-order formula     

φ = �x1, . . . , �xkψ  where ψ is first-order and x1, . . . , xk  are predicate (or 
function) variables.  The formula ψ may have free predicate and function 
variables as well as free individual variables. 

   Theorem 1.    A global predicate is computable in polynomial time by a 
nondeterministic Turing machine if and only if it is expressible by an existential 
second-order formula. 

   Theorem 1 is due to Fagin [Fal] and is readily generalizable to capture co-NP 
and higher levels of the polynomial hierarchy. Actually Fagin did not seek to 
characterize NP.  It was just the other way around.  He sought to characterize 
existential second-order sentences (generalized spectra in his terminology). 
Theorem 1 grew from investigations on spectra ;of first-order sentences [Be, JS, 
Fal, Bo].  It looks pretty obvious today, and nondeterministic polynomial time 
computable global predicates are not necessarily feasible.  However existential 
second-order logic does capture exactly the nondeterministic polynomial time 
computable global predicates and this fact inspired attempts to capture in a 
similar way deterministic PTIME computable global predicates.  (About 
extending Fagin's result to richer logics and higher complexity classes see [St] 
and [CKS].) 

   Meantime Codd proposed the relational database model and used variations of 
first-order logic (relational algebra, relational calculus) as query languages [Ul]. 
The relational model was a big success.  However, the first-order query 
languages were proven to be too restrictive in many applications. Attempts were 
made to enrich those languages by additional operators, most notably by the 
transitive closure operator [Zl] and the least fixed point operator [AU]. 

The transitive closure of a binary global predicate α(x, y) of some vocabulary σ 
is a global σ-predicate β(x, y)  such that for every σ-structure S the 
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relation  βS  is the transitive closure of the relation αS. More generally one can 

speak about the transitive closure of a global predicate α(x̅, y̅) where x̅, y̅ are 

tuple of individual variables of the same length [Im2].  In addition to x̅ and y̅, α 
may have individual parameters.  First-order expressible global predicates are 
not closed under the transitive closure operator; see Appendix 2. 

   In a conversation with Andreas Blass the question of notation for the transitive 

closure of α(p ̅, x̅, y̅) was raised.  The naive notation TCα(p̅, x̅, y̅)  is ambiguous. 
A possible unambiguous notation is 

                           TC(x̅, y̅; α(p̅, x̅, y̅), u, v) or TC x̅, y̅ (α (p̅, x̅, y̅), u̅̅, v̅) . 

   Here x̅ and y̅ are tuples of bound variables, p̅ is a tuple of parameters, and u̅̅, v̅�
are tuples of new free variables. 

   Let us define the least fixed point operator for global predicates.  It will be 
convenient to view global predicates as global sets: a global l-ary predicate α of 

a vocabulary σ assigns a set αS ��Sl to each σ-structure  S. We order global l-ary 

σ-predicates by inclusion: α ≤ β  if  αS ��βS  for every σ-structure S. We say that 
a global σ-predicate α is empty if α  is empty for every σ-structure S. 

   Definition.  Let σ be a vocabulary,  P be an additional predicate variable of 

some arity l, and π (P) be a global l-ary predicate of the vocabulary σ �{P}. 
View π (P) as an operator that, given a global l-ary  σ-predicate  α, produces a 
global  l-ary  σ-predicate π (α).  A global l-ary  σ-predicate  α  is a fixed point for 
π (P)  if  α = π (α), and  α is the least fixed point  for π (P)  if it is a fixed point 
and α ≤  β for every fixed point β for π (P) . 

   Recall the notion of monotonicity of a first-order formula in a predicate 
variable defined in Appendix 1.  This notion obviously generalizes to 
monotonicity of a global predicate in a predicate variable. 

   Claim 1.  Let  σ, P, l  and  π (P)   be as in  the  definition  above.   Suppose that  
π (P)  is monotone in P.  Then  there is a unique least  fixed point for  π (P).  
Moreover, let   α0, αl, α2, . . .  be global  l-ary  σ-predicates   such  that α0 is 
empty  and every  αm+1  equals  π (αm).  If  β is  the least fixed point for  π (P)  

and  S  is  σ-structure then  β S � αS
m  where  m=|S| l.  Thus  the  least fixed point  
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for π (P)   is  PTIME  computable if  π (P)  is. 

   The proof is clear.  The claim appears in [AU] in terms of relational algebra. A 
transfinite induction generalizes the claim to infinite structures.  In either form 
the claim is a special case of the classical theorem of Tarski [Tar]. 

   Example 1  [AU].   The transitive closure of a global predicate E(x, y)  is the 

least fixed point with respect to P for 

                                      E(x, y)  ���z [P(x, z) & P(z, y)]. 

   Example 2.  The semigroup generated by a set A is the least fixed point with 
respect to P for 

                                     A(x) ���z� y [P(y) & P(z) & x = y � z] 

   A possible notation for the least fixed point for a global  l-ary predicate π (P) 
with free individual variables x1, . . . , xl is 

                                      LFP (P, x1, . . . , xl ; π, y1, . . . , yl). 

It reflects the fact that LFP binds P and x1, . . . , xl.  The new individual variables 
y1, . . . , yl are free. 

   By the definition, LFP applies only to global predicates that are monotone in a 
given predicate variable.  By Claim 1 in Appendix 1 the decision problem 
whether a given first-order formula is monotone in a given predicate variable, is 
unsolvable. This poses a difficulty in defining the extension of first-order logic 
by LFP.  To overcome this difficulty Chandra and Harel [CH2] use positivity 
instead of mono-tonicity. 

   Let FO + LFP be the extension of first-order logic by the following formation 
rule.  (For the sake of definiteness we assume that substitution of terms for free 
occurrences of individual variables is one of the first-order formation rules.) 

   LFP formation rule.   Let  P  be a predicate  variable  of  some arity  l  and let 
φ(P, x1, . . . , xl)  be  a well-formed formula. If all free occurrences of P in φ  are 
positive and y1, . . . , yl  are new individual variables then 

                                     LFP (P, x1, . . . , xl ;  φ(P, x1, . . . , xl), y1, . . . , yl) 
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is a well-formed formula. All occurrences of  P and x1, . . . , xl  in the new 
formula are bound.   If Q is a predicate variable different from P then every free 
(resp. bound) occurrence of Q in φ remains free (resp. bound), and every 
positive (resp. negative) occurrence of Q in φ remains positive (resp. negative). 
The only occurrences of individual variables y1, . . . , yl in the new formula are 
bound. (φ may have individual parameters. They remain free.) The meaning of 
the new formula is that the tuple (y1, . . . , yl) belongs to the least fixed point for 
φ(P, x1, . . . , xl). 

   Remark.  Allowing individual parameters does not increase the expressive 
power of FO + LFP.  For example, the formula 

                                 LFP (P, y; E(u, y)  ���z (P(z) & E(z, y)), x). 

is equivalent to the formula 

                                 LFP(Q, w, y; E(w, y) ���z (Q(w, z) & E(z, y)), u, x). 
More generally,  

                                 LFP(P, y; φ(P, u, y), x) 
is equivalent to 

                                 LFP(Q, w, y; φ(Qw , w, y) ,u, x) 

where Qw(z) = Q(w, z).  However, parameters may be useful from the 
computational point of view. 

   Sometimes logicians speak about logic with equality.  In those cases the 
equality relation is a logical constant.  The equality sign is interpreted as the 
identity relation on the elements of a given structure and it is not listed as a 
member of a given vocabulary.  By Proviso 2 our structures are built from 
natural numbers.  This allows us to introduce the natural order of elements as a 
logical constant and to speak about logic with order. 

   Theorem 2  [Iml, Var].  A global predicate is  PTIME computable if and only 
if  it  is  expressible in  FO + LFP  with order. 

   The "if" implication of Theorem 2 follows from Theorem 1 in §3 and from 
Claim 1. A sketch of a proof of the "only if" implication can be found in [Iml].  
An alternative proof of the "only if" implication will be indicated later in this 
section. 
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   Aho and Ullman [AU] define a generalization of LFP whose application is not 
restricted by monotonicity. A similar idea was independently explored by 
Livchak [Lil].  Unaware of developments related to the least fixed point operator 
Livchak (who happened to be a former Ph.D. student of mine) proposes to 
augment the definition of first-order formulas by the following additional 
formation rule: 

   If F(x̅), G(x̅)  and H(x ̅)  are well-formed formulas with the same free 

individual variables x̅ = (x1, . . . , xl)  then L(F(x̅), G(x̅), H(x ̅))  is a new well-
formed formula whose meaning is the infinite disjunction 

                                         F0(x̅	 � F1(x̅	���F2(x̅	���
�
�
  

where F0(x̅	�is H(x̅)  and each Fi+1(x̅	   is the disjunction of F1(x ̅	�and the result 

of replacing each subformula G(y1, . . . , yl)  of F(x ̅)  by Fi(y1, . . . , yl) . 

   The extension of first-order logic with order by Livchak's rule captures PTIME 
[Li2].  We incorporate this fact into Theorem 3.  But first let us reformulate 
Livchak's rule. 

   Definition.  Let σ be a vocabulary,  P be an additional predicate variable of 

some arity l, and π(P)  be a global l-ary predicate of the vocabulary σ �{P}. 
View π(P)  as an operator that, given a global l-ary σ-predicate α, produces a 
global l-ary σ-predicate π (α) .  This operator π(P)  is inflationary if α ≤ π(α)  for 
every  global  σ-predicate  α.    Let  α0, α1, etc.  be a sequence  of  global  l-ary  
σ-predicates where α0 is empty and each αi+1   equals to π (αi). A fixed point β 
for π(P)    is an iterative fixed  point if for every σ-structure S there is an i  with  
β

S = αS
i . 

   Claim 2.  Let  σ, P, l, π(P)  and  α0, α1, etc. be as in the definition above. 
Suppose that  π(P)  is  inflationary in  P. Then there is a unique iterative fixed 
point β  for  π(P).   Moreover,  for every  σ-structure  S, βS = αS

m  where  m=|S|l . 

Thus the iterative fixed point for  π(P) is  PTIME  computable if  π(P)  is. 

   The proof is clear. Note that if  P  and  π(P)are as in the definition above then 

P � π(P) is inflationary.  Let FO + IFP be the extension of first-order logic by 
the following formation rule. 
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IFP  formation  rule.   Let  P  be a predicate variable  of some  arity  l,  and  let  

φ(P, x̅ )  be a well-formed formula whose free individual variables are all or 

some members of   x̅ = (x1, . . . , xl).  If  y̅ = ( y1, . . . , yl)  is a tuple of new 
individual variables then 

                                        IFP(P, x̅; P(x̅) � φ(P, x̅), y̅) 

is a well-formed formula.  The meaning of the new formula is that y̅ is in the 

iterative fixed point for P(x̅) � φ(P, x̅). 

   Claim 3.  FO + IFF expresses exactly the global predicates expressible in first-
order logic augmented by  Livchak' s rule. 

   Proof.   We consider the extension of first-order logic by both formation rules 
and show that either rule can be eliminated.  The formula 

                                         IFP(P, x̅; P(x̅) � φ(P, x̅), y̅) 

is equivalent to 

                                          L(φ(P, y̅),  P(y̅),  FALSE(y̅)). 

   Given a formula L(F, G, H)  with free individual variables x̅ = (x1, . . . , xl)  

and an additional l-ary predicate variable P write down a formula F'(P, x̅)  such 

that F(x̅) = F'(G, x̅).  Using P, F'(P, x̅), H(x ̅)  and first-order means write down a 

formula φ(P, x̅)  saying the following: 

           If  ¬�x̅ H(x ̅)  �then F'(P, x̅), 

           else if   ¬�x̅ P(x̅)  then  H(x ̅), 

           else F'(P, x̅).  

It is easy to check that L(F(x̅) ,G(x̅, H(x ̅))  is equivalent to 

                                           IFP(P, y̅; P(y̅) ��φ(P, y̅), x̅)  

where y̅ is a tuple of new individual variables.                                                     □ 

   Theorem 3.  Let it be a global predicate.  The following statements are 
equivalent: 

   (1) π   is PTIME computable, 

   (2) π   is expressible in  FO + LFP  with order, and 

   (3) π   is  expressible in FO + IFF with order. 
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   Proof.  The implication   (1) → (2)  follows from Theorem 2.  The implication 
(3) → (1)  follows from Claim 2. To prove the implication (2) → (3) note that if 

a global l-ary predicate π(P, x̅)  is monotone in an l-ary predicate variable P then 

                                           LFP(P, x̅; π(P, x̅), y̅)  

is equivalent to 

                                            IFP(P, x̅; P(x̅) �� π (P, x̅), y̅).                                     □ 

   Chandra and Harel show that FO + LFP without order is not able to express 
the global zero-ary predicate "The cardinality of a given structure is even" 
[CH2]. Their argument can be extended to show that FO + IFF without order is 
not able to express the same global predicate. Our Appendix 3 gives an 
alternative proof of the fact that FO + IFP without order is not able to express 
some PTIME computable order-independent global predicates π. 

   We turn our attention to global functions. 

   Definition.   A global partial function f of vocabulary σ, arity l and co-arity r 
assigns to each σ-structure S a partial function fS  from Sl  to Sr. 

   Example  3.  Let σ consist of one binary predicate variable E  (for "edge"), so 
that σ-structures are (directed) graphs.  Let f(x, y) be the length of a shortest path 
from x to y.  If S is a graph and  fS  is defined at (x, y) then fS(x, y) < |S| and 
therefore fS(x, y) is an element of S. 

   Example  4.   Let again σ be the vocabulary of graphs. For every graph S and 

every x�S let  f(x)  be the pair (y, z)�S2 such that there are exactly y • |S| + z 
elements u with an edge from x to u. 

   As was mentioned above, we are interested in logics (or algebras) that capture 
PTIME  (LOGSPACE, etc.) computable global functions.  In a sense FO + LFP 
with order does capture PTIME computable functions:  it allows one to speak 
about the graph of a PTIME computable function f and about digits in the binary 

notation for f (x̅). We prefer to speak about global functions directly. See [Gu3] 
in this connection. Here we mention only the results related to PTIME. 
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   Let us ignore singleton structures (alternatively we may allow boolean 
variables).  See the definition of recursive global partial functions in [Gu3]. 

   Theorem  4 [Gu3, Sa].  A global partial function is  PTIME  computable if and 
only if it is recursive. 

   Two algebras of recursive global partial functions were given in [Gu3] by 
some initial members and certain operations.  Let ARF   (for "Algebra of 
Recursive Functions") be either of them. 

   Theorem  5 [Gu3].  A  global partial function is  PTIME computable if and 
only if it belongs to ARF. 

   An important advantage of (the proof of) Theorem 5 versus (the proof of) 
Theorem 2 is preserving essential time bounds. 

   Remark.   It is easy to prove directly that the graph of every function in ARF is 
expressible in FO + LFP with order.  This together with Theorem 5 gives an 
alternative proof of the "only if" implication of Theorem 2.  Let π(x)  be a 

PTIME computable global predicate and let f(x̅ )  be the characteristic function 

for π(x) i.e.  f(x̅) = l  if π(x)  holds and f(x̅) = 0 otherwise.  By Theorem 5,  f  is 

in ARF.  Hence the predicate f(x̅) = y is expressible in FO + LFP with order.  

Hence the predicate f(x ̅) = l  is expressible in FO + LFP with order. 
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                 §5.  Interpolation and definability for polynomial time logic 

   According to §1, many famous and important theorems about first-order logic 
fail in the case of finite structures. What happens to those theorems in the case 
of logic tailored for polynomial time? We concentrate here on the interpolation 
and definability principles for polynomial time logic and show that these 
principles are equivalent to natural complexity principles whose status is 
unknown. 

   Let PTL  (for Polynomial Time Logic) be the logic FO + LFP with order, or 
the logic FO + IFP with order, or an algebra of PTIME computable functions 
from [Gu3].  It will be important that PTL expresses precisely PTIME 
computable global predicates.  The exact syntax of PTL will not be important. 

   Definition.  A partial function f from {0, 1}* to {0, 1}*  is polynomially 

bounded if there is a natural number k such that  |f(x)| ≤ |x|k  for all x�Domain(f)  
with  |x| > l.  Here  |x|  is the length of x.  More generally, a binary relation B 
over {0, l}* is polynomially bounded  if there is k such that B(x, y) and |x| >1 
imply |y| ≤ |x|k . 

   We identify a nonempty word x = a0a1 . . . al-1,  in {0, 1}* with the structure 
with universe {0, 1, . . . , l-1}  and one unary predicate X = {i:  ai = l}.  If  l >2, 
m = l  for some k and y is a word  b0, b1 , . . . , bm-1  in {0, 1}*, we identify the 
pair  (x, y) with the extension of the structure x by a k-ary predicate 

   Y={ (i1 , . . . , ik):  if j  is the number whose notation in the positional system of 
base l  is i1 . . . ik  then   bj = l.}  

   Lemma  1.  For every  NP set A  of  nonempty words over {0, 1}* there is a 
PTL sentence φ  such that 

   A = {x�{0, l}*: x is the reduct of a model of φ}. 

   Proof.   Without loss of generality, every x�A is of length at least 2.  There are 
a natural number k and a PTIME computable polynomially bounded binary rela-

tion B over {0, 1}*  such that A = {x:  (x, y)�B for some y}, and  (x, y)�B 

implies  |y| = |x|k.  The desired sentence φ expresses  (x, y)�B.                            □ 
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   The analogue of Craig's Interpolation Theorem for PTL will be called the 
Interpolation Principle  for PTL.  This principle states that for every valid (in all 
relevant finite structures) PTL sentence φ1 → φ2  there is a PTL sentence θ such 
that 

                           vocabulary(θ) � vocabulary(φ1) ∩ vocabulary(φ2)  

and the implications φ1→ θ,  θ → φ2 are valid. 

   Theorem 1 .  The following two statements are equivalent : 

   (1)  The Interpolation Principle for  PTL, and 

   (2)  The following separation principle for NP:  for every pair of disjoint NP 
subsets  A1, A2  of  {0, l}* there is a  P subset  B  of  {0, l}* such that  B 
includes  A1  and avoids  A2. 

   Proof.  First suppose (1) and let A1, A2  be disjoint NP subsets of {0, 1}*. 
Without loss of generality neither A1  nor A2  contains the empty word.  By 

Lemma 1 there are PTL sentences φ1, φ2 such that Ai = {x�{0, l}*:  x is the 
reduct of a model of φi} for  I = l, 2. Without loss of generality, the only 
common non-logical constant of φ1, φ2 is the unary predicate variable X.  
Obviously, the implication φ1 →  ¬φ2 is valid.   Let θ be an appropriate 
interpolant.  The set of models of θ is the desired set B. 

   Next suppose (2) and let φ1 → φ2 be a valid PTL sentence.  Let σ be the 
common part of the vocabularies of  φ1, φ2.  For i =l, 2  let 

          Ai = {x:  x  is the binary code for the σ-reduct of a model of φi}.      

By (2) there is a P set B that includes A1  and avoids A2.  The desired interpolant 

θ  expresses x�B.                                                                                                   □ 

   Note that the Interpolation Principle for PTL implies NP ∩ co-NP = P. 

   The analogue of Beth Definability Theorem for PTL will be called the 
Definability  Principle  for PTL.  This principle states the following.  Let σ be a 
vocabulary,  P be an additional predicate variable of some arity l and φ(P) be a 

PTL sentence of the vocabulary σ � {P}.  Suppose that for every σ-structure S 

and all P1, P2 ��S
l,  φ S(P1)  and φ S(P2)  imply P1 = P2.  Then there is a PTL 

formula ψ of the vocabulary σ with l  free variables such that for every 
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σ-structures    S    and every    P1 ��S
l, 

                           φ S(P1)   implies     P1 =  ψS. 

The Weak Definability Principle  for PTL is the result of strengthening the 
antecedent  of  the  Definability  Principle  for  PTL  as follows:   for every             

σ-structure S there is a unique P1 ��S
l  such that φ S(P1)  holds. 

   Definition  (cf. [Val]).  A nondeterministic Turing machine M is unambiguous 
if for every input x there is at most one accepting computation of M on x.  An 
NP subset A of {0, 1}*  is UNAMBIGUOUS if there is  an unambiguous Turing 
machine that accepts A. 

   Theorem 2.  The following statements  (l) - (4) are  equivalent. 

   (1)  The Definability Principle for PTL. 

   (2)  For  every  polynomially bounded partial function  f  from  {0, l}*   to   
{0, 1}*, if the graph of  f  is  in P  then  f  is  PTIME  computable. 

   (3)  For  every  polynomially  bounded  partial  function  f  from  {0, 1}* to 
{0, 1}*, if  th e graph  of  f  is  in P  then  the domain  of  f    is  in P. 

   (4)  UNAMBIGUOUS = P. 

   Proof.  (1) →  (2) .  Suppose (1) and let f  be a polynomially bounded partial 
function from {0, 1}* to {0, 1}* with PTIME computable graph.  It suffices to 
construct a PTIME algorithm for calculating  f(x)  for x of length at least 2.  Let  
x  range over words of length at least 2.   Without loss of generality there is k 
such that   |f(x)| = |x|k  for all x in  Domain(f).  There is a PTL sentence φ(X, Y)  
with a unary predicate variable X  and a k-ary predicate variable Y  that 

expresses  (x, y)�Graph(f).  By (1) there is a PTL formula ψ such that if φ(X, Y)  
holds in the structure  (x, y)  then 

                                  Y = {(i1, . . . , ik):  ψ(i1, . . . , ik)  holds in x}. 

   Here is a PTIME algorithm for calculating f(x).   View x as a structure in the 
vocabulary {X}.  Compute 

                                   Y = {(i1, . . . , ik):  ψ(i1, . . . , ik)  holds in x}. 
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The extension of the structure x by the predicate Y corresponds to a pair (x, y) 
for some word y of length  |x|k .  Check whether φ(X, Y)  holds in the extended 
structure.  If yes then y = f (x) . 

   The implications (2) → (3) and (3) → (4) are trivial. 

   (4) → (1). Suppose (4) and let σ be a vocabulary 

variable of  some  arity  i  and   φ(P)  be  a  PTL  sentence  such  that for every 
σ-structure S  there is at most one PCS  satisfying φS(P) . Set 

                       K =  {(S, c̅): S is a σ-structure, c�Sl  and 

                                                      there is P � Sl  such that φS(P;)  

                                                      holds and c̅�P}. 

   Obviously,  K  is UNAMBIGUOUS.  By (4),  K is P.  The desired PTL 

formula ψ(v1, . . . , vl)  expresses (S, v1, . . . , vl)�K.                                             □ 

   The following theorem was established in a discussion with Neil Immerman.  
(It succeeded Theorem 1 but preceded Theorem 2.) 

   Theorem 3. The following statements  (1) - (3) are equivalent. 

   (1)  The Weak Definability Principle for  PTL. 

   (2)  For every polynomially bounded function f:{0, l}* → {0, 1}*,  if the 
graph of  f  is in  P then  f  is  PTIME  computable. 

   (3)  UNAMBIGUOUS ∩ co-UNAMBIGUOUS = P. 

   Proof.  The case (1) → (2) is similar to the case (1) → (2) in the proof of 
Theorem (2) . 

   (2) → (3).  Suppose (2) and let A0, A1  be complementary UNAMBIGUOUS 
subsets of {0, 1}*.  There are unambiguous nondeterministic Turing machines 

M0, M1  accepting A0, A1 respectively.  For i = 0, l and x�Ai  let  f(x)  be the 
digit  I followed be the binary code for the accepting computation of M1 on x.  
By (2),  f  is PTIME computable.  Hence A0  and A1  are P. 

   (3) → (1).  Suppose (3) and let  σ, P, φ(P)  and K  be as in the case (4) → (1) 
of  the  proof  of Theorem 2  except  now  for  every σ-structure S  there  is  a 

unique  P ��Sl  satisfying    φS(P).   Obviously  K  is  UNAMBIGUOUS  and  
co-UNAMBIGUOUS.   By (3), K is P.  The desired PTL formula ψ(v1, . . . , vl) 

expresses  (S, v1, . . . , vl)�K.                                                                                     □ 
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   As we saw in §1, the Interpolation Principle for first-order logic implies the 
Definability Principle for first-order logic.  The  same  proof shows that the 
Interpolation Principle for  PTL  implies  the Definability Principle for PTL.  If  
P = NP then the Interpolation Principle for PTL is obviously true.  It is easy 
however to construct an oracle for which even the Weak Decidability Principle 
for PTL fails. 

   Claim (Andreas Blass) .  There is an oracle for which the Weak Definability 
Principle for  PTL  fails. 

   Proof.  By Theorem 3 it suffices to construct an oracle A and a function f from 
{0, 1}* (or from a P subset of {0, 1}*) to {0, 1}* such that f is not PTIME 

computable relative to A whereas the graph of f is.  We construct A �{0, l}*, 
containing  exactly  one  word   wn  of  each length  n, such that the function 
f(0n) = wn  is not PTIME computable relative to A. 

   Enumerate all (deterministic)  PTIME bounded query machines.  Let Pk,  be 
the time bound for a machine Mk.  We define A in stages, choosing finitely many 
wn' s at each stage. The kth stage will ensure that Mk

A does not compute f. 

   Stage  k.  Fix a natural number d that is larger than any n for which wn has 
already been chosen and so large that  pk(d) ≤ 2d -2.  Set wn = 0  for all n < d  for 
which  wn  was  not  previously chosen.    Run  Mk  with  input  0d  and  oracle 
{wn :  n < d}.   Let B  be the set of queries during the computation.  By the time 

bound,  |B| ≤ pk(d) ≤ 2d -2.  Choose wd in {0, 1}d -B  such that wd  differs from 

the output  (if any) of   Mk.   If   d < l  and   l < |x|  for  some  x�B  chose wl  in 
{0, 1} l -B.   It is easy to see that Mk

A will not compute wd, on input 0d.              □ 

   The computational status of Craig's Interpolation Theorem for prepositional 
logic was explored by Mundici [Mu] . 
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                             Appendix 1.  Monotone versus positive. 

   This appendix is devoted to an important theorem about first-order logic 
whose status in the finite case is unknown. 

   Definition.  Let σ be a vocabulary,  P be an additional predicate variable of 

arity l and φ(P, x1, . . . , xr) be a first-order formula in the vocabulary σ �{P} 
with free individual variables as shown.  The formula φ is monotonically 
increasing  in P  if every σ-structure S   satisfies the following for every l-ary 
predicates   P1, P2  on  S. 

             if �x1 . . .��xl [P1(x1, . . . , xl) → P2(x1, . . . , xl)] 

             then �x1 . . .��xr [φ(P1, x1, . . . , xr) → φ(P2, x1, . . . , xr)]. 

   Define in the obvious way the following:  φ  is monotonically decreasing in  P, 
φ  is monotonically increasing in  P on finite structures (or, in the finite case), φ 
is monotonically decreasing in  P on finite structures. We restrict our attention 
to monotonically increasing behavior; the generalization for monotonically 
decreasing behavior will be obvious.  We say "monotone" for "monotonically 
increasing". 

   We say that a first-order formula φ is positive in  a predicate symbol P if every 
appearance of  P in φ is positive.  A precise definition of positive appearances of 
a predicate symbol in a first-order formula can be found in [CK].  It is easy to 
see that φ is monotone in P if φ is positive in P. 

   Theorem 1.  If a  first-order formula  φ   is  monotone  is a  predicate symbol  
P then there is a first-order formula φ'  such that  φ '  is equivalent to  φ and 
positive in  P. 

   I do not know who was the first to formulate this theorem but it is an obvious 
consequence of the Lyndon Interpolation Theorem [CK]. 

   Conjecture.  Theorem 1 fails in the case of finite structures. 

   The rest of this appendix contains a few remarks related to the conjecture. 
First we exhibit a sentence which is monotone in a unary predicate symbol  P on 
finite structures but which is not monotone in  P  in general. Let  f  be a unary 
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function symbol.  The desired sentence (with equality) says that f is one-to-one 
and that P is closed under f-predecessors if P is closed under f-successors. 

   Claim 1.  Let P be a  predicate variable. The following problems are 

undecideable: 

(i) Given a  first-order sentence φ tell whether φ is monotone in P, and  

(ii) Given a  first-order sentence φ tell whether φ is monotone in P on 
finite structures. 

   Proof.  Without loss of generality P is just a propositional variable.  Let ψ be a 
first-order sentence that does not mention P.  It is valid (resp. valid in the finite 
case) iff the sentence P → ψ is monotone (resp. monotone on finite structures) in 
P.                                                                                                                           □ 

   Corollary 1.  Let P be a  predicate variable.  There is no recursive function f 
from first-order sentences to first-order sentences such that an arbitrary first-
order sentence φ  is monotone in P if and only if the sentence f(φ)  is positive in 
P. 

   Corollary 2.  Let P be a  predicate variable.  There is no partial recursive 
function f from first-order sentences to first-order sentences such that an 
arbitrary first-order sentence φ is monotone in P on finite structures if and only 
if f(φ)   is positive in P. 

   In the case of a propositional variable P there is a simple function that, given a 
first-order sentence φ(P), produces a first-order sentence φ'(P) such that φ'(P)  is 
positive in P and φ'(P) is logically equivalent to φ(P)  if φ(P)  is monotone in P.  

The desired φ'(P)  is φ(False) � [P & φ(True)]. 

   On the other hand, a routine coding, given an arbitrary first-order formula with 
a predicate variable P, produces a first-order formula φ' in the vocabulary {E,Q} 
such that E is a binary predicate symbol, Q is a unary predicate symbol and φ is 
monotone (respectively, positive) in P iff φ'  is monotone  (respectively, positive 
in Q.  Moreover, it can be ensured that φ'  has a conjunct saying that E is 
symmetric and irreflexive. 
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   I have also checked that Theorem 1 remains true in the case of finite structures 
if φ is an existential sentence, a universal sentence, a prenex sentence with 

prefix �n
� or a prenex sentence with prefix �n

�.  Andreas Blass observed that if 
φ(P)  is positive (resp. monotone, monotone on finite structures) in P then so is 
¬φ(¬P).  Thus, if Theorem 1 is true in the finite case for prenex sentences φ with 
certain prefixes then it is true in the finite case for prenex sentences with the 
dual prefixes. 

                  Appendix 2.  Transitive closure is not first-order expressible. 

   Theorem.  Connectivity of a  given graph is not first-order expressible in the 
case of finite structures (even in the presence of 1inear order). Hence the transi-
tive closure of a  given binary relation is not first-order expressible in the case 
of finite structures (even in the presence of linear order). 

   Proof.  For every positive integer n let Sn  be the set {0,1, . . . ,n-l} with the 
natural order and  En(x, y)  be the following binary relation on {0,1, . . . ,n-l }: 
either y = x+2 or  x = n-l and y = 0. Note that a graph (Sn, En)   is connected iff n 
is even, and a relation En  is obviously and uniformly in n expressible in the 
first-order language of order.  Now use Lemma(ii) in §1.                                    □                 

   The theorem (without mentioning linear order) is due to Fagin [Fa2] and was 
reproved several times.  Gaifman and Vardi wrote even a special paper [GV] 
with a specially short proof and a brief review of other known proofs. Fagin's 
proof actually gives more:  connectivity is not expressible by an existential 
second-order sentence where all quantified predicate variables are unary.  
Yiannis Moschovakis noticed that all those proofs do not work in the presence 
of linear order and expressed an interest in such results in the presence of linear 
order. 
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                   Appendix 3. The fixed point operators can be powerless. 

   Provisos 1-3 of §3 are in force here because we will consider structures as 
inputs for algorithms.  On the other hand the natural order of elements of a given 
structure is not a logical constant here, so that isomorphisms can break the order 
of elements. We are interested more in isomorphism types of structures than in 
specific representations. 

   Definition.  A global  l-ary predicate it of some vocabulary a is invariant 

if for every isomorphism f from a σ-structure A onto a σ-structure B and 

every l-tuple a̅�A , π A(a̅	  is equivalent to it π B(f a̅). 

   Any first-order expressible global predicate is invariant as well as any global 
predicate expressible in FO + LFP or FO + IFP.  All these global predicates are 
PTIME computable.  They do not exhaust, however, the PTIME computable 
global predicates. The following theorem provides plenty of counterexamples.  
It speaks about FO + IFP because FO + IFP subsumes FO + LFP.  Recall that a 
first-order theory T is called ω -categorical if all countable models of T are 
isomorphic. 

   Theorem 1.   Let T be an ω-categorical first-order theory of some vocabulary 

σ.  Then for every formula φ(x̅)  in  FO + IFP there is a first-order formula φ'(x̅) 

such that the global predicates φ(x̅)  and φ'(x̅)  coincide on the finite models of 
T. 

   Remark.   Actually, the global predicates φ(x̅) and φ'(x̅) will coincide on all 
models of T but we do not care here about infinite models. 

   Proof.   Without loss of generality the given formula φ'(x̅)  is 

                                        IFP(P, y̅; P(y̅) ��ψ(P, y̅), x̅) 

where ψ is first-order.  Let α0(x̅) = FALSE and let each αi+1(x ̅) = αi(x̅) � ψ(αi, x̅). 

By Ryll-Nardzewski's Theorem, there is a finite p such that αp+1(x̅)   is equiv-

alent to αp(x̅) on the infinite models of T.  By the compactness theorem, there is 

a finite m such that αp+1(x̅)  is equivalent to αp(x̅)  on all models of T of 
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size at least m.  Hence there is a finite q such that αq+1 (x̅)  is equivalent to αq (x̅) 
in T.  The first-order formula αq  is the desired ψ.                                               □ 

   Now we are ready to show that some polynomial time computable invariant 
predicates are not expressible in FO + IFP. 

    Example 1.  The first-order theory of equality is ω-categorical.  The predicate 

                                                          0   if  |A|   even 
                                      π (A)  =  {      
                                                          1   otherwise 

is not first-order (see Lemma in §1).  By Theorem 1, it is not expressible in FO 
+ IFP.  (Cf. [CH2, Theorem 6.2].) 

   Example 2.  Let F be a finite field.  Let T be the first-order theory of 

vector spaces over F.  Obviously,  T is  ω-categorical.  Let π be the global 

predicate such that for every structure A  of the vocabulary of  T,   πA = 1  if A is 

a model of T and dimension(A) is even, and πA = 0 otherwise.  Using 
Ehrenfeucht games [Eh] it is easy to check that π is not first-order.  By Theorem 
1 it is not expressible in FO + IFP. 

   It is not difficult to extend FO + LFP in such a way that the predicates of 
Examples 1 and 2 are expressible in the extended logic and only polynomial 
time computable invariant predicates are expressible in the extended logic.  Still, 
the problem to design a logic that expresses exactly polynomial time computable 
invariant global predicates is open. 
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