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Abstract. Whereas first-order logic was devel oped to confront the infiniteit is
often used in computer science in such away that infinite models are
meaningless. We discuss the first-order theory of finite sructuresand
alternativesto first-order logic, especially polynomial time logic.

Introduction

Turning to theoretical computer science alogician discovers with pleasure an
important role of first-order logic. One of the fashionable programming
languages — PROLOG — is based on first-order logic; variants of first-order logic
—Tuple Calculus, Relational Algebra, Domain Calculus — are used as query
languages to retrieve information from relational databases; et cetera

The database applications of first-order logic are of special interest to ushere
In this connection let us mention that relational databases are not asideissuein
thedatafield. Therelationa data model together with the network and the
hierarchical data models are "the three most important ‘datamodels, the models
that have been used in the great bulk of commercial database systems' [UI,
Section 1.4]. Thereational datamodel brought a Turing Award to itsinventor
E.F. Codd. The three query languages, mentioned above, were also introduced
by Codd and areimportant: "A languagethat can (at |east) simulate tuple
calculus, or equivalently, relationa algebra or domain calculus, is said to be
complete” [UI, Section 6.1].

Some of the new applications of first-order logic are unusual in that only finite
structures are of interest. In particular, relational databases can be seen as finite
first-order structures (for the purpose of this paper), and the query languages,
mentioned above, express exactly the first-order properties of relational
databases. The question arises how good is first-order logic in handling finite
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structures. It was not designed to deal exclusively with finite structures. Ina
sense the contrary istrue. 1t was developed as atool in Foundations of
Mathematics, especially when mathematicians and philosophers confronted
paradoxes of the Infinite.

We do not question here the greatness of first-order logic of not necessarily
finite structures. Taking into account how elegant, natural and expressive firgt-
order logicis, it isactually amazing that formulastruein all structures (of an
appropriate vocabulary) are exactly the ones for which thereexist proofsin a
specific formal system. (Let usalsorecall the unique character of first-order
logic [Lin].) But what happens to recursive axiomatizability, compactness and
other famous theorems about first-order logic in the case of finite structures? We
address this question in 81. Our fedlings about the answer are expressed in the
title of 81 Failure of first-order logic in the case of finite sructures.

In 82 we address a certain ineffectiveness of famous theorems about first-order
logic. Consder for example Craig's Interpolation Theorem: for each valid
implication p—y thereis an interpolant 6 such that

vocabulary (0) € vocabulary(p)N vocabulary(y)

and theimplicationsp—0 and 06— arevalid. No total recursive function
constructs an interpolant from the given implication [Kr]. Thereisno recursive
bound on the size of the desired interpolant in terms of the size of the given
implication [Fr]. Moreover, weaken the interpolation theorem by replacing "the
implications p—06 and 06—y arevalid" by "theimplicationsp—0 and 60—y
are validin al finite structures of appropriate vocabularies'. Still thereisno
recursive bound on the size of the desired interpolant in terms of the size of the
given implication.

What is the use of criticizing first-order logic if we cannot come up with a
reasonable alternative? We think here about applications where one needs at
least the expressive power of first-order logic, like PROLOG or reational query
languages. "It isthe case that most all modern query languages embed within
them on of the three notations' [UI, Section 6.1]. (Thethree notations are the
tuple cdculus, therelational agebra, and the domain calculus.)
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Onewould liketo enrich first-order logic so that the enriched logic fits better
the case of finite structures. Thefirg temptation of alogician would beto
regain recursive axiomatizability. But no extension of the first-order theory of
finite structuresisrecursively axiomatizable. (Satisfiability of first-order
formulas on finite structures isrecursively axiomatizable. But this axiomatiza-
bility provides only a criterion of existence of aformal proof for existence of a
finitemodel. Itisnotinteresting. The whole point of axiomatizability was to
provide an existential criterion for a universal statement.)

Another temptation is to consider second-order logic (without third-order
predicates or functions) or its fragments (like existential second-order logic) as
an alternative to first-order logic. Confining ourselves to finite structures, we
consider thisaternativein 83.

Second-order logic is certainly elegant, natural and much more expressive than
first-order logic. Second-order logic itself becomes more éttractive in the case
of finite structures. no nonstandard models, no digtinction between the weak
and the strong versions of second-order logic, etc. Thereishowever one
important - from the point of view of computer science — property of first-order
logic that islost in the transition to second-order logic. For every first-order
sentence ¢ thereisan algorithm that, given a presentation of a structure Sof the
vocabulary of ¢, computes the truth-value of ¢ on Swithin time bounded by a
polynomial in the cardinality |§ of S (and within working space bounded by
log |9). In other words, first-order propertiesare PTIME (and LOGSPACE)
computable. Second-order properties and even existential second-order
properties are not PTIME computable unless P = NP. If one takesthe popular
point of view that feasible computations are PTIME bounded and that P is
probably different from NP then second-order logic isnot a good alternative to
first-order logic.

Let us mention that computer scientists do fedl that first-order logicis
unreasonably restrictive. PROLOG does have non-first-order features, and it
was suggested to augment the essentidly first-order query languages by
different operators preserving feasible computability of queries. Of coursethe
notion of feasibility varies with applications. From the point of view of PTIME
computability,
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the least fixed point operator LFP [AU] appeared to be especially important. It
preserves PTIME computability and has great expressive power.

A natura idea arises to extend first-order logic in such away that exactly
PTIME (LOGSPACE, etc.) computable properties of structures are expressible
in the extended logic. Chandraand Harel [CH2] considered the extension FO +
LFP of first-order logic by LFP from that point of view and discovered that FO
+ LFP does not capture PTIME. It turned out, however, that FO + LFP does
capture PTIME in the presence of linear order [IM1, Var]. In 84 we discuss
fixed points and logics with order (asalogical constant) tailored for PTIME.

In 85 we return to some of the famous theorems about first-order logic and
consider whether their anal ogues hold in the ease of logic specially designed for
PTIME. More specifically, we consider the analogues of Craig's Interpolation
Theorem, Beth's Definability Theorem and the Weak Beth Definability Theorem
for polynomial timelogic. These ana ogues happen to be equivalent to natura
complexity principles whose status is unknown.

A lot of interesting problems arise. Design alogic that captures PTIME even
in absence of linear order, or prove that there isno reasonable such logic if P #
NP. What isalogic? What isacomplexity class? Can every reasonable
complexity class be captured by alogicin the presence of linear order? Capture
LOGSPACE, NLOGSPACE, LOG’SPACE, LOG*SPACE N PTIME, ec. in
the presence of linear order. What are complexity tailored logics good for? Are
complexity bounded programming languages useful ? Some answers can be
found in [Im2] and [Gu3].

Our terminology is more or less standard. We use the term "vocabulary" rather
than "signature" or "similarity type", and we use the term "structure” rather than
"mode" or "algebraic system". Our vocabularies are always finite.

Acknowledgements. | am very grateful to Andreas Blass and Neil Immerman
for very useful discussionsrelated to this paper.
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81. Failureof first-order logic in the case of finite structures

We examine famous theorems about first-order logic in the case when only
finite structures are allowed. The terms formula and sentence will refer in this
section to first-order formulas and first order sentences. Asusual, a sentenceisa
formulawithout free individua variables.

Recall that aformulag is called valid (or logically true) if it istruein every
structure of the vocabulary of ¢, aformulag (resp. aset ® of formulas) issaid
toimply aformula v logically if y istruein every model of ¢ (resp. of @)
whose vocabulary includes that of y and formulas @, y are called logically
equivalent if each of them logically implies the other. Wewill say that a
formulag isvalid inthefinite caseif it istruein every finite structure of the
vocabulary of @, aformulag (resp. a set @ of formulas) impliesaformulay in
thefinite case if y istruein every finite model of ¢ (respectively of ®) whose
vocabulary includesthat of y, and formulas o, y are equivalent in the finite case
if each of them implies the other in the finite case.

The Soundness and Completeness Theorem is formulated usually for a
specific logical calculus. It states that aformulaisvaidiff itis provablein the
calculus. The cal culus-independent meaning of thistheorem isthat first-order
logic isrecursively axiomatizable, which boils down to the fact that valid
formulas arerecursively enumerable. Trakhtenbrot [Tr] proved that the
formulas vdid in the finite case are not recursively enumerable. Therefore first-
order logic isnot recursively axiomatizable in the finite case, and the Soundness
and Compl eteness Theorem fails for any logical calculusin the finite case.

Remark. Tiny fragments of first-order logic are not axiomatizable recursively
in the case of finite Sructures. For example, let ¢ be a vocabulary that consists

of one binary predicate symbol. The 3*v* ¢-sentences (i.e. the prenex o-
sentences with prefixes 3°v"), that are valid in the finite case, are not enum-
erablerecursively [Gul, Ko]. Summaries of results of that sort can be found in

[Gu2]. Goldfarb claimsthat even 3%v* ¢-sentences with equality, valid in the
finite case, are not enumerablerecursively [GO].
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The Compactness Theorem for first-order logic statesthat if a set ® of
formulas logically implies another formulay then some finite subset of ©
logically impliesy. Thetheorem failsin thefinite case. Let for example ® =
{on : n>I} where every sentence o, states existence of at least n different
edements, and let y be any logically false formula. Then ® impliesy in the finite
case; however no finite subset of ® implies y in thefinite case.

The Craig Interpolation Theorem statesthat if aformula ¢ logically impliesa
formulay then thereisaformula® (an interpolant) such that

vocabulary (0) € vocabulary () N vocabulary (v) ,
¢ logically implies 6, and 6 logically implies .

The interpolation theorem implies the Beth Definability Theorem that states
thefollowing. Suppose that a sentence ¢(P) defines an I-ary relation P
implicitly i.e. if P'isanew |-ary predicate symbol then o(P) and ¢(P) imply

VX Y (PXg, oo X)) = P(Xg, - .2 0X)

Then thereisan explicit first-order definition of the samerelation i.e. thereisa
formulad(x,, . .. ,x) such that

vocabulary (0) € vocabulary (¢(P)) —{ P}
and o(P) logically implies
VX1 .. X (P(Xg, -2 X) < 0(Xy, - .., X).

If (P) and P are asinthe antecedent of the Beth Definability Theorem
then o(P) & P(Xy, . .. ,x) logicdly implies ¢(P) — P(Xy, . . . X)), and the
corresponding interpolant isthe desired explicit definition. The same proof
shows that the finite case version of the interpolation theorem impliesthe finite
case version of the definability theorem.

The Weak Definability Theorem istheresult of strengthening the antecedent
of the Beth Definability Theorem. The antecedent of the Beth Definability
Theorem states that for every structure of the vocabulary

o = vocabulary (p(P) ) —{P}
thereisat most onerelation P that satisfies o(P). The antecedent of the Weak
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Definability Theorem states that for every o-structure thereis a unique relaion
P that satisfies ¢(P).

Theorem 1. The Craig Interpolation Theorem, the Beth Definability Theorem
and the Weak Definability Theoremfail in the finite case.

Proof. Let usrecall the definition of the quantifier depth of a formula:

g.d. (aquantifier-free formula) = 0

g.d. (aBoolean combination of formulasay, . . ., on ) = max{q.d.(ay), . . .,
q.d.(om)}

g.d. (vxa) = g.d. (Ixa) =1 + g.d. (o).
Lemma.

(i) Supposethat o isa sentencein thevocabulary {<} of order, n isthe
quantifier depth of o, and A, B arefinite linear orders of cardinalities |A|, |B| >
2". Then o does not distinguish between A and Bi.e. A satisfy o iff B
satisfies a.

(if) Thereisno sentence o inthe vocabulary {<} such that an arbitrary finite
linear order S satidfies a. iff the cardinality |5 iseven.

(iii) Thereisnoformula 6(x) inthevocabulary {<} suchthatif Sisa

finiteorder &y <a <...<g, then{x: Sk 1=06(x)} ={ac¢ k iseven}.

Proof of Lemma.

(i) We usethe Ehrenfeucht games [Eh]. It suffices to exhibit awinning
strategy for player 11 in the Ehrenfeucht game G,(A, B). Without |oss of
generality no element is picked twice during the game. The proposed strategy is
toensurethefollowing. Letay <a <...<a and by <b,<...<b bethe
elementschosenin Aand B respectively during thefirst k steps of the game.

Let Ag, Ay ..., Ax bethesegments [min(A), a], [&, &), ..., [& max(A)] of
A and let By, By ...,Byx betherespective segmentsof B. Then for every
i=1,...,k thedementsa, by were chosen at the same step of the game, and

either |A|=|Bi| or |A|l, | Bi|> 2" for 0<i<k, and either |Aj|=|Bi| or A,

| Bi| > 2™ for i€{0,...k}.

(ii) The statement follows from (i).
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(iii) If 6(x) definesthe set of even elementsin every finitelinear order then
the sentence

Ix (x ismaximal and 6(x))

holdsin an arbitrary finite linear order Siff |S] iseven. m

Since the interpol ation theorem implies the definability theorem and the
definability theorem implies the weak definability theorem, it suffices to refute
the weak definability theorem. It is easy, however, to construct separate
counterexamplesto all three theorems.

Write asentence o stating that < isalinear order, let P, Q be distinct unary
predicates. Write asentence B(P) inthe vocabulary {<, P} suchthatif Sisa
finitelinear order & <& <...<a, and SsatisfiesB(P) then {x: Sk P(x)} =
{a: kiseven}. (Writethat P does not contain thefirst element, and the
successor of an element x belongsto P iff x doesnot belongto P.) Obvioudy
a & B(P) & P(X) implies(Q) — Q(x) inthefinitecase. If theinterpolation
theorem were true in the finite case then the interpolant would violate the
statement (iii) of the Lemma.

Obvioudy, o & B(P) defines P implicitly in finite structures. If the defin-
ability theorem were true in the finite case then the explicit definition of P
would violate the statement (iii) of the Lemma. Finally, the sentence

(a— B(P)) & (o — ~IxP(x))

defines P uniquely in thefinite case. If the weak definability theorem were true
in the finite case then the explicit definition would violate the statement (iii) of
the Lemma. Theorem 1 is proved.

Remark. Theformulap(P) in the proof of Theorem 1 can be smplified if we
use an individual constant for the first el ement in the order and an additional
binary predicate symbal for the successor relation. The Lemmaremainstrue for
thericher vocabulary if 2" is changed to 2!  (with an obvious changein the
prooaf).

A sentence ¢ issaid to be preserved under substructuresif every substructure
of amodel of ¢ isamodel of ¢. According to the Substructure Preservation
Theorem [CK, 8§3.2], a sentence ¢ is preserved under substructuresiff it is
logically equivalent to a universal sentence.
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Theorem 2 (Tait) . The Substructure Preservation Theorem failsin the case
of finite structures. In other words, there isa sentence ¢ such that any substruc-
ture of a finite model of ¢ isa model of o, yet ¢ isnot equivalent to any
universal sentencein the finite case.

Proof. Let (¢, bethe universal closure of the conjunction of the following

formulas (wherex <y abbreviatesx=y v x<y):
(X<y&y<z)— x<z

= (X <X),
X<y Vv y<X,
0<x,

[S,y) & y#0] = [x<y& (z<sx v y<7)],
S(x,0) = y<x.

¢, statesthat < isalinear order, 0isthe minimal element, and Sy implies
that either y isthe successor of x or elsexisthemaxima eementandy =0. Let

02 be Vx3dy S(x, y), and let ¢ be 9, & (9, — Ix P(X)) whereP isaunary
predicate symbol.

First we check that ¢ is preserved under substructures of finite models.
Supposethat Aisafinitemodd of ¢ and B isasubstructureof A. Then B
contains 0 and satisfies ;. If B does not satisfy ¢,, then it satisfies the second
conjunct of ¢ by default. If B satisfies ¢, then B=A and B satisfies ¢.

Next, let o beasentence VX, . . . ¥Xn B(Xy, . . ., Xn) Where B isquantifier-free.
Let A beamode of ¢:& ¢, such that the vocabulary of A includes that of o,A
has at least n+2 elementsand Pisempty in A, so that ¢ failsin A. If aistruein
Athen it isnot equivalent to ¢ in thefinite case. Supposethat aisfalsein A.
Then B(cy, . . ., ¢y isfasein Afor somec,, . . ., ¢, Choose deA different from
0,¢;,...,Cy, and putdinto P. Theresulting structure B satisfies ¢. However
B(cy, ..., Gy remainsfalsein B. Hence aisfalsein B, and ais not equivaent to
¢ inthefinite case. o

| did not perform an exhaugtive study of important theorems about first-order
logic in the finite case. Some theorems become meaninglessin the finite case.
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Some theorems do survive: the game criterion for two structuresto be
indistinguishable by sentences of a given quantifier depth  [Eh], composition
theorems of the sort found in [FV], etc. Moreover, some theorems were
specifically proved for the finite case: the 0-1 Law Theorem for example
[GKLT, Fa]. Too often however we see the familiar pattern: the proof uses a
kind of compactness argument and the theorem failsin the finite case.
Sometimes aweaker version of the theorem in question survives. Hereisan

example. Recall that an V*3* sentenceisa prenex sentence with a prefix v™3".

Theorem 3 (Compton). Let ¢ be an V*3* sentence without function symbols.

If ¢ ispreserved by substructures of itsfinite models then it is equivalent to
some universal sentence in the finite case.

Proof. First let usrecall ardativized version of the Substructure Preservation
Theorem:

Let To be afirst-order theory, and o be a sentence in the language of To.
Suppose that for every model A of Ty and for every substructure B of Athatisa
model of Ty, if Aisamode of o then Bisamodd of a. Then aisequivalentin
To to some universal sentence.

The usua proof of the Substructure Preservation Theorem iseasly
relativizable: just take A to be the set of all sentences, that are equivalent in Ty
to universal sentences, in the proof of Theorem 3.2.2 in [CK].

In our application T isthe first-order theory of finite structures of the
vocabulary of . Let A bea(possibly infinite) model of T, that satisfies . Let
B be a substructure of A that isalso amode of To. It suffices to provethat B
satisfies .

First, we show that an arbitrary finite substructure A of A satisfies ¢. Write
an exigential sentence o stating existence of elements that form a sructure

isomorphicto Ag. Thesentence a & ¢ hasafinite model A;: otherwise Tok

=(o & @) which contradictsthe fact that Aisamodel of To, o and . Since A,
satisfies o it has a substructure isomorphic to Ag. Now use the fact that ¢ holds
in A; and is preserved by substructures of finite structures.
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Recall that ¢ is

VX1 .o o Y dYr e AV WX, -y XY - - -2 Yh)

for some quantifier-free formulay. We argue by reduction ad absurdum.
Suppose that B failsto satisfy 9. Thentherearedementsa,, . . ., a, such that
the universal formula

VY1 VY (@, .., 8m Vi, - Yn)

holdsin B. Thisuniversal formulalogicaly implies -¢ and holdsin the sub-
structure Ag={ &, . . ., an} of B (because universal formulas are preserved by
substructure) . Thusa finite substructure of A failsto satisfy ¢ whichis
impossible. m

Note that the counterexampl e to the Substructure Preservation Theorem,

constructed in the proof of Theorem 2 islogically equivalent to an 3*V*
sentence. Thus Theorems 2 and 3 delimit each other.

Historical Remarks. | am not the first to discover that Craig's Interpolation
Theorem and Beth's Definability Theorem fail in thefinite case. (A question of
Steve Simpson led me from Craig's Theorem to Beth's Theorem.) Ron Fagin
knew about the failure. It was probably discovered long ago though | do not
have any reference.

Theorem 2 was proved in [Ta]. The proof above is due to Gurevich and Shelah
(that were not aware[Ta]). Theorem 3 was formulated and proved by Kevin
Compton in aletter [Co] to me.
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82. Anineffective side of first-order logic

We saw in 81 that Craig's Interpol ation Theorem, Beth's Definability
Theorem, the Weak Definability Theorem and the Substructure Preservation
Theorem fail in the case of finite structures. One may be tempted to allow
infinite structures (to allow infinite reational databases in database theory) in
order to regain these wonderful theorems, see[Va] for example. Thereis
however a catch there. Let us speak, for example, about the weak definability
theorem. Even if you happen to know that ®(P) implicitly defines arelation P
in every —finite or infinite — structure and even if you are interested in an
explicit definition of the samereation P in finite structures only, still
constructing the desired explicit definition from the given implicitly definition
may be most problematic. Thisisthe point of the present section. Again, the
terms formula and sentence mean first-order formulas and first-order sentences.
The length of aformula o is denoted |o|.

So then, how constructive are the wonderful theorems mentioned above? In
acertain sensetheinterpolation theoremis very constructive. The desired
interpolant for avalid implication (¢ — ) iseasly constructible from a proof
of (¢ — ) inan appropriate predicate caculus [Cr]. In the same sensethe
definability theorem is very constructive because the desired explicit definition
can be found as an interpolant for an implication that is easily built from the
given implicit definition, see 81.

Thereare dso partia recursive functionsf and g such that if (p — ) isa
valid implication then f(p — ) isaninterpolant for (p — ), andif ¢(P) isan
implicit definition of areation P then g(p(P)) isan explicit definition of the
samerelation. However, there are no total recursive functions f and g with the
same properties [Kr]. Moreover, thereare no tota recursive functions that
bound the length of the desired interpolant or explicit definition in terms of the
length of agiven formula [Fr]. Even the weak definability theorem is
ineffective in that sense: the length of the desired explicit definition isnot
bounded by any recursive function of the length of a given implicit definition.
The next theorem gives a straightforward proof of this result of Friedman and
strengthensit in away related to finite structures.
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Theorem 1. For every total recursive function f thereisa sentence o(P) such
that

(i) o(P) implicitly definesarelation Pin every structure of the vocabulary
o = vocabulary (p(P)) - {P}, and

(ii) if ¢ is an explicit definition of the samerelation P in every finite
o-structure, then |y|> f( Jo(P)]).

Proof. Given atotal recursive function f we construct an auxiliary total
recursve function g. The exact definition of g will be given later. Let M bea
Turing machinethat computes g. We suppose the following about M. Its
internal datesare, ..., gn hereqp istheinitial state and qg,, isthe halting
state. The only tape of M is one-way infinite, the tape a phabet is{0, 1} where 0

isasotheblank. Aningruction of M is a5-tuple giagbd where de{-l, O, I}

indicates whether the head of M will move to the left, stay ill or move to the
right. If & moment O the state of M is g, thehead isin cell 0 and the tape word
is1" then M will eventually halt in the halting state ., with the tape word 1%" .

In order to describe computations of M by formulas we introduce unary
predicates qo(t) , . . ., gm(t) toindicate the state at moment t, a binary predicate
H(x, t) toindicate that theheadis in cell x at moment t, a binary predicate
C(x, t) toindicatethat the content of cell x at momenttis 1, and unary
predicates D.4(t), Do(t), D.(t) to indicate the move of the head that the machine
isingructed at moment t to perform.

In order to use all these predicates properly, we need binary predicates <, S
and an individua constant 0. Let a sentence pp Satethat < isalinear order, O
istheminima element, S isthe corresponding successor relation, and every
nonmaximal element has a successor.

A sentence ¢," describestheinitial configuration of M with theinput 1". Itis
the conjunction of sentences

do(0), H(0,0),
IXg . . . Xy [Xo= 0 and Ajcn S(X;, Xi+1) and Ai<, C(X;, 0) and =C(x,,,0)],

VYxVy [-C(x, 0) and x <y imply =C(y, 0)].
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A sentence 9, describes one computationa step. It isthe universal closure of
a quantifier-free conjunction. Every instruction gagjbd contributes the conjunct

(G (1) & H(x, 1) & Cix, 1) & S(t, t) implies g (') & Co(x, t) & Da(t)]

where C; ,Cy are C, -C respectively. In addition the quantifier-free part of ¢,
has the following conjuncts:

[-a () or —qi ()] for O<I<j<m,

[H(x, t) and H(y, t) imply x = y],

[-Dg (t) or = Dg (t)] for -I<d<ex<l,

[Do(t) & H(x, t) & S(t, t') implies H(x, t)],

[Da(t) & H(x, 1) & S(t, ') & S(x, X) impliesH(x', t')],
[D-1(t) & S, t) & S(x, X) & H(x', t) impliesH(x, t)],
[=H(x, t) and S(t, t') imply (C(x, t") <= C(x, t)].

A sentence 93 describes what happens after halting. It isthe universal closure
of theformula

[am(t) and t<u imply (A <m=Gi(u) and =H(x, u)
and ~C(x,u) and (A .1<g<1 ~“Dg(W))] .

Lemma. For every model A of ¢, and for every natural number nthere are
unique predicates

q01 sy Qma H1 C1 D-11 D01 Dl
on Athat satisfy ¢1" & 92 & @s.

Proof is straightforward. In particular, the sentences ¢, 91", ¢ and @3
imply that for every t there isa unique x with H(x, t): the head does not dip
from the tape because M computes atotal function, and if Dy(t), H(X, t), S(t, t)
holdthenx <t <t andthereisx such that S(x, x), H(x', t") hold.

Let P be aternary predicate symbol. Write asentence 9" (P) that statesthe
following. If @, failsor there are at most n+3 elementsthen P isempty. If ¢
holds and there are more than m+3 elements then

(@ 01", 92, 93 hold where g(t), Dy(t), H(x, t), C(x, t) abbreviate P(0, i, 1),
P(0, m+2+d, 1), P(l, x, t), P(2, X, t) respectively, and
(b) P(O, x,t) fails for x >m+3, and P(x, y, t) fals for x> 2.
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When numbers 1, 2, etc. appear asargumentsof P they mean of course the
successor of 0, the successor of the successor of 0, etc. Itiseasy to seethat ¢"
implicitly defines arelation P in every structure of the vocabulary ¢ = {<, 0, S}.
Let y" be an explicit definition of the samerelation in every finite c-structure.

Note that ¢," and the quantifier depth of ¢ " do not depend on the choice of g.
Define g(n) to be the power of 2 such that

logog(n) = f (jos"| + n) + q.d.(e") + 1.

¢4 istheonly part of " that dependson n. It occursin ¢ " only once. Thusthe
number k= Jo"| - | 9," | doesnot dependonn. Let o= ¢* andp= y*. Then

log2g(k) = f (lo]) + g.d.(9) + 1.
Let o be the sentence

[o(y) and ton(t)].

Every modd of o reflects the whole computation M and has at least g(k)
elements. By the Remark following the Lemmain §1, g(k) < 2'*%%®, Hence

q.d.(o) + 1 = 1ogz g(k) = f(lo]) +g.d.() + |
But g.d.(0) <qg.d.(p) + g.d.(w). Hence |y|>q.d.(y) > f(jw|). O

Remark 1. Itiseasy to makethereation P of Theorem 1 unary. Theideais
to use auxiliary elementsto code triples of real elements.

Remark 2. Mundici exhibitsin [Mu] short valid implications (¢ — y) whose
interpolants are enormously long. The proof of Theorem 1 can be used for
ana ogous purposes.

Theorem 2. For every total recursive function f thereisa sentence ¢ such
that
(i) ¢ ispreserved by substructures, and

(i) if yisauniversal sentence that isequivalent to ¢ in every finite sructure
of the vacabulary af ¢ then |y| > f(|op]). O

Proof. Letf beatota recursive function. Asin the proof of Theorem 1, let g
be an auxiliary total recursive function (specified later) and let M be a Turing
machinethat computes g. Once again we describe computations of M by
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first-order sentences. However, we take some additional care to makethe
desired description preserved under substructures.

Ingtead of the sentence g in the proof of Theorem 1 we use sentences ¢4, 9,
from the proof of Theorem 2in 81. We call them 9y, and g here. We split the
sentence ;" from the proof of Theorem 1 into a conjunction @11 & ¢1," where
912" isthe existential conjunct of ¢"; and @14 isthe conjunction of the two
other conjuncts of ¢,". Let ¢ " bethe sentence

D1 & P11& P2& O3 & [Po2 & 912" — Tt IX (O(t) & X <t & QX))

where ¢, and 93 arethe sentences from the proof of theorem 1 and Q isanew
unary predicate.

First we check that every ¢ " is preserved by substructures. Let A be amode
of ¢". Every substructure B of A contains 0 and satisfies the sentences
Qo1, P11, P2, P3  because universal sentences are preserved by substructures. |If
B does not satisfy po; or 12" then it satisfiesthelast conjunct of ¢" by defaullt.
Supposethat " satisfies po, and 91" Since B satisfies ¢, itisclosed in A
under successors. If Aisfinite then Bisequa to A and satisfies ¢ ". Suppose A
isinfinite. Then B includesthe least substructure of A closed under successors
whose e ements can be identified with natural numbersin the obvious way.
Since B satisfies the exigtential sentence ¢y," the structure A satisfies 45" too. It
is easy to see that A reflects the whole computation of the machine M on input 1.
If M haltsat moment T(n) then gn(T(n)) holdsin A. In virtue of g3 thereisno
eement u>T(n) in Athat satisfies q,. Since A satisfies ¢" thereissome x <
T(n) in Athat satisfies Q. Both T(n) and x belong to B; hence B satisfies ¢ "

Note that ¢4, does not depend on the choiceof g. Define g(n) =f (o1 | +
n). Since ¢.." istheonly part of " that dependson n, the number k=|p"|
- | 9" | doesnot dependonn. Letp=¢* Thengk)=f (o] .The
computation of M on input 1° halts at certain moment that will be denoted
T(K) .

Finaly let v beauniversal sentence Vx; ... VX v'(x, ..., X) thatisequiv-

denttoginthe finitecase. Herey'isquantifier-free. Let A bethe modd of
001 & P02 & P11 & 91 & ©,& @3 withtheuniverse (0,1, ..., T(k)) and
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the intended interpretation of the predicates. First we define Q to be empty in A.
Theresulting structure A, doesnot satisfy  ¢; hence it does not satisfy y and
-y'(Cy, ..., q) holdsin A for somecy,...,q. If 1<T(k) choose

ceA-{0, ¢y, ..., ¢} and put cinto Q. Theresulting Sructure A; satisfies ¢

yet ¢, ..., ¢ dill withessfailure of yin A; which isimpossible. Thus
> 12> T(k) > g(k) > f(lo ). o
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83. Firgt-order logic versus second-order logic

In spite of the criticism in Sections 1 and 2, first-order logic is still a very good
logic even in the case of finite structures. It isnot without reason that first-order
logicisused in computer science. It iselegant, natural and fairly expressive.
However, if degance, naturality and expressiveness are that important why
wouldn't we turn to second-order 1ogic? Second-order logic is elegant and
natural aswell, and it is much more expressive.

Second-order logic isnot very popular among logicians. The objection againgt
second-order logic isthat it isnot well manageable. However some fragments
of second-order logic are much better manageable. One of them isweak
second-order logic, which alows quantification over finite predicates only. In
thefinite case, of course, thereis no difference between the two versions of
second-order logic.

Aswe saw in 81 the theorems that made first-order logic so much preferable
to second-order logic often fail or become meaninglessin thefinite case. Is
there any important advantage of first-order logic versus second-order logicin
the finite case? We take a computationa point of view and answer this question
positively.

Proviso 1. Theterm"structure” refersto finite structuresif the contrary has
not been stated explicitly.

A structure will be viewed as certain data, as an input to agorithms. A
seeming difficulty isthat el ements of a structure are not necessarily constructive
objects. We areinterested however in the isomorphism type of a given structure
rather than in the nature of its elements. Recall that |S| isthe cardinality of a
structure S

Proviso 2. The universe of a gructure S consists of numbers 0, 1, . . ., [S-1.

Proviso 2 by itsalf does not turn structuresinto inputs. We till have to choose
away to represent basic relations and functions. For example, agraph (V,E)
may be represented as the lexicographically ordered list of edges or as an array

AG,j) where AG, j) =1 if (i,j)<E and A, j) = 0 otherwise.

Proviso 3. A reasonable standard way to represent structuresis chosen.
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We introduce global predicates. Let ¢ beavocabulary. An l-ary
o-predicate isafunction = that assignsto each ¢-gructure San I-ary
gpredicatenn® on' S (The superscript Swill be usually omitted.) A zero-ary

o-predicate n assigns atruth value to each c-structure and therefore can be
viewed astheset {S: Sisaoc-structureand n ° istrue). Every first-order
formulain the vocabulary ¢ with | free variables gives an |-ary o-predicate. A
global predicateisac-predicate for somec.

Examples. Let o ={E} where E isa binary predicate symbol. Note that
o-structures are graphs. Thefirst exampleisa binary c-predicate n; such that
for any graph G and any dementsx, y of G, my(X,y) holdsin Giff thereisan
E-path from xtoy. A more usua way to describen; isjust to say that m; isthe
binary c-predicate "Thereis an E-path from x to y". The second exampleisthe
set 1, of symmetric graphs. In other words, n, isa zero-ary o-predicate such
that m, holdsin agraph G iff G issymmetric. Notethat every relational query is
aglobal predicate.

With each global predicate = we associate the problem of computing (or
recognizing) x. Itisadecision problem. An instance of this decision problem

isapair (S, X) where Sisastructure of the vocabulary of = and X isatuple of
edementsof S whose length isthe arity of =. The corresponding question is
whether n(X) holdsin S In order to avoid trivialities we suppose that the length
of the presentation of Sisat least [

Theorem 1. A Boolean combination of PTIME recognizable global
predicatesisa PTIME recognizable global predicate. If @ (X, ...,X ,Y) is

an (I + 1)-ary PTIME recognizable global predicatethen 3y n(Xy, ..., X ,Y)

isan l-ary PTIME recognizable global predicate (with an obvious meaning).
Every first-order global predicateis PTIME recognizable.

Proof. The first statement is obvious. The computethetruth value of
dyr (X, y) in S compute successively thetruth valuesfor = (X, 0), n (X, 1), ...,

7 (X, |S-1) inS Since atomic first-order predicates are PTIME computable
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(here we need reasonabl e standard representations of structures), the third
statement follows from the first two. O

Some second-order global predicates are NP-complete. For example, the set
of 3-colorable graphs —a well-known NP-complete set —is definable by a

second-order sentence AX3AY3Zy(X, Y, Z) where X, Y, Z are unary predicate

variables and v isfirst-order. Attaching little gadgetsto vertices it is easy to
construct an NP-complete set of graphs definable by a second-order sentence

IXy(X) where Xisaunary predicate variable and v isfirst-order. Thusthere

are second-order global predicatesthat are not PTIME recognizable unless
P=NP.

It isamost a consensus in Theoretical Computer Science that PTIME
computations are feasible whereas superpolynomial time computations are
intractable, see [GJ], [HU]. In particular, Hopcoft and Ullman write the
following. "Although one might quibble that an n®" step algorithm is not very
efficient, in practice we find that problems in P usually have low-degree
polynomial time solutions”.

Thus first-order global predicates appear to be feasibly recognizable, whereas
recognizing a second-order global predicate may be intractable. From our point
of view, explicit PTIME recognizability is a decisive advantage of first-order
logic versus second order logic.

Remark. Theorem 1remainstrueif "PTIME" isreplaced by "LOGSPACE".
The same proof proves the new (and stronger) version of the theorem: just
represent numbersin binary. Theorem 1 and the stronger version of it are well-
known.
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84. Fixed pointsand polynomial timelogic
Provisos 1-3 of 83 arein force.

Aswe saw abovein 83, firs-order global predicates are PTIME computable
and even LOGSPACE computable. Unfortunately neither of these two
statements can bereversed. For example, the property of graphsto be of even
cardindity is recognizable by an obvious algorithm in linear time and
logarithmic space. In virtue of the Lemmain 81 this property is not first-order.

A natura ideaarises. to augment first-order logic by additional operatorsin
order to express exactly the PTIME (LOGSPACE, etc.) computable global
predicates. Thisistheideareflected in thetitle: given a complexity level to
tailor alogic expressing exactly the global predicates computable within the
complexity level. Neil Immerman uses the word "capture” [Im2]. The problem
isto capture agiven complexity level by logical means. This section is devoted
mainly to logic tailored for PTIME.

Remark. Actually it makes sense to generalize the notion of global predicate
to the notion of global function and try to capture exactly the global functions
computable within a given complexity level. Restricting attention to global
predicatesiseven ridiculousif we see our logic as a notation system for
algorithms or a potential programming language. Just imagine a programming
language such that each program outputs only a boolean value. Global functions
and functiona (rather than predicate) logics are explored in [Gu3].

Let us gart with anote that firs-order expressible global predicates apparently
do not form anatural complexity class. They certainly do not form a complexity
class defined by Turing machines with bounds on time and/or space (see again
the even cardinality example). A computational model which is much closer to
first-order logic isthat of uniform sequences of boolean circuits of constant
depth, unbounded fan-in, and polynomial size. Modest extensions of first-order
logic do capture natural circuit complexity classes, see [Im2] and especially
[GL] in this connection.
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If we consider NP, co-NP and higher levels of the polynomial hierarchy [St]
as genuine complexity classes then second-order logic and some of its natural
sub-logics do capture complexity classes. (When we speak about second-order
logic we suppose that there are no third-order predicates or functions.)

Recall that an existential second-order formulais a second-order formula

¢ = 3IXy, ..., IXyy wherey isfirst-order and xy, . . ., X¢ arepredicate (or

function) variables. The formulay may have free predicate and function
variables aswell asfreeindividua variables.

Theorem 1. A global predicate iscomputable in polynomial time by a
nondeterministic Turing machine if and only if it is expressible by an existential
second-order formula.

Theorem 1isdueto Fagin [Fa] and isreadily generalizable to capture co-NP
and higher levels of the polynomial hierarchy. Actually Fagin did not seek to
characterize NP. It wasjust the other way around. He sought to characterize
existential second-order sentences (generalized spectrain his terminol ogy).
Theorem 1 grew from investigations on spectra ;of first-order sentences [Be, JS,
Fal, Bo]. It looks pretty obvious today, and nondeterministic polynomial time
computable global predicates are not necessarily feasible. However existentia
second-order logic does capture exactly the nondeterministic polynomial time
computable global predicates and this fact inspired attemptsto capturein a
similar way determinigtic PTIME computable global predicates. (About
extending Fagin'sresult to richer logics and higher complexity classes see [St]
and [CKS].)

Meantime Codd proposed the relational database model and used variations of
first-order logic (relational algebra, relational calculus) as query languages [UI].
Therelational mode was a big success. However, the firg-order query
languages were proven to be too restrictive in many applications. Attempts were
made to enrich those languages by additional operators, most notably by the
trangitive closure operator [ZI] and the least fixed point operator [AU].

Thetransitive closure of abinary global predicate a(x, y) of some vocabulary ¢
isaglobal c-predicate p(x, y) such that for every o-structure Sthe
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relation B° isthetransitive closure of therelation a°. More generally one can
speak about the transitive closure of a global predicate a(X, y) whereX, y are
tuple of individual variables of the same length [Im2]. In additiontoX andy, o
may have individua parameters. First-order expressible global predicates are
not closed under the transitive closure operator; see Appendix 2.

In a conversation with Andreas Blass the question of notation for the transitive

closure of a(p, X, y) was raised. The naive notation TCa(p, X, y) isambiguous.
A possible unambiguous notation is

TCX, Y, a(p, X, y), u,v) or TCxy (. (B, X, ¥), G, V) .

HereX andy aretuples of bound variables, p isatuple of parameters, and T, v
are tuples of new free variables.

Let usdefine the least fixed point operator for global predicates. It will be
convenient to view global predicates as global sets: aglobal I-ary predicate o of
avocabulary ¢ assignsaset «° € S to each o-structure S We order global I-ary

o-predicates by inclusion: a < B if a°< B° for every o-structure S We say that
aglobal c-predicate a.isempty if o isempty for every o-structure S

Definition. Let ¢ be avocabulary, P bean additiona predicate variable of

some arity |, and = (P) be aglobal |-ary predicate of the vocabulary ¢ U{ P} .
View x (P) asan operator that, given aglobal I-ary c-predicate «, produces a
global I-ary c-predicaten (o). A global I-ary o-predicate o isafixed point for
n(P) if a==n(a), and aistheleast fixed point for = (P) if it isafixed point
and o < B for every fixed point  for = (P) .

Recall the notion of monotonicity of afirst-order formulain a predicate
variable defined in Appendix 1. Thisnotion obvioudy generalizes to
monotonicity of a global predicate in a predicate variable.

Clam1l. Let ¢,P, 1 and n(P) beasin the definition above. Supposethat
7 (P) ismonotonein P. Then thereisauniqueleast fixed point for = (P).
Moreover, let o, oy, ap, . . . beglobal |-ary c-predicates such that ogis
empty and every o equals m (o). If B is theleast fixed point for = (P)

and S is o-structurethen 5= o>, where m=|g|'. Thus the least fixed point



198 Y. Gurevich
for x (P) is PTIME computableif = (P) is.

The proof isclear. The claim appearsin [AU] in terms of relational algebra. A
trangfinite induction generalizes the claim to infinite structures. In either form
the clam isaspecial case of the classical theorem of Tarski [Tar].

Example 1 [AU]. Thetransitiveclosure of aglobal predicate E(x, y) isthe
least fixed point with respect toP  for

E(x,y) v 3z[P(x, 2) & P(z, y)].

Example 2. The semigroup generated by a set Aistheleast fixed point with
respect to P for

A(X)vIZIY[Py) & P(2) & x=y* 7]

A possible notation for the least fixed point for aglobal |-ary predicate = (P)
with freeindividual variables xy, . . ., X/ is

LFP(P, X1, .. ., X1} T Y1, - -+, YD)-

It reflects the fact that LFP binds P and x4, . . ., X;. Thenew individual variables
Vi, ..., Y aefree

By the definition, LFP applies only to global predicatesthat are monotonein a
given predicate variable. By Claim 1in Appendix 1 the decision problem
whether agiven first-order formulais monotone in a given predicate variable, is
unsolvable. This poses a difficulty in defining the extension of first-order logic
by LFP. To overcome this difficulty Chandraand Harel [CH2] use positivity
instead of mono-tonicity.

Let FO + LFP be the extension of first-order logic by the following formation
rule. (For the sake of definiteness we assume that substitution of terms for free
occurrences of individua variablesis one of the first-order formation rules.)

LFPformationrule. Let P beapredicate variable of somearity | and let
o(P, X4, ..., X)) be awedl-formed formula. If al free occurrences of Pin ¢ are
positiveand yy, ...,y arenew individual variables then

LFP(P, X1, ..., X ; (P, Xg, - .., %), Y1, - - -, V1)
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isawell-formed formula. All occurrencesof Pand Xy, ..., X inthenew
formulaarebound. If Q isapredicate variable different from P then every free
(resp. bound) occurrence of Q in ¢ remains free (resp. bound), and every
positive (resp. negative) occurrence of Q in ¢ remains positive (resp. negative).
The only occurrences of individual variablesyy, . . .,y in the new formulaare
bound. (p may have individual parameters. They remain free.) The meaning of
the new formulaisthat thetuple (yi, . . ., yi) belongs to the least fixed point for
o(P, Xg, .. ., X).

Remark. Allowing individual parameters does not increase the expressive
power of FO + LFP. For example, the formula

LFP (P, y; E(u, y) v 3z (P(2) & E(z, Y)), X).

is equivalent to the formula

LFPQ, w, y; E(w, y) v 32 (Q(w, 2) & E(z, y)), U, X).
More generdly,

LFP(P, y; o(P, u, ), X)
isequivalent to

LFP(Q, w, y; 0(Quw, W, Y) ,u, X)

where Q,(2) = Q(w, z). However, parameters may be useful from the
computationa point of view.

Sometimes logi cians speak about logic with equality. In those casesthe
equality relation isalogical constant. The equality sign isinterpreted asthe
identity relation on the elements of a given structureand it isnot listed asa
member of a given vocabulary. By Proviso 2 our structures are built from
natural numbers. Thisallows us to introduce the natural order of eementsasa
logical constant and to speak about logic with order.

Theorem 2 [Iml, Var]. A global predicateis PTIME computableif and only
if it is expressiblein FO + LFP with order.

The"if" implication of Theorem 2 follows from Theorem 1 in §3 and from
Claim 1. A sketch of a proof of the"only if* implication can be found in [Iml].
An dternative proof of the "only if* implication will be indicated later in this
section.
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Aho and Ullman [AU] define a generalization of LFP whaose application is not
restricted by monotonicity. A similar idea was independently explored by
Livchak [Lil]. Unaware of developmentsrelated to the least fixed point operator
Livchak (who happened to be aformer Ph.D. student of mine) proposesto
augment the definition of first-order formulas by the following additional
formation rule:

If F(X), G(X) and H(X) are well-formed formulas with the same free

individual variablesX = (Xy, . .., %) then L(F(X), G(X), H(X)) isanew wdll-
formed formulawhose meaning is the infinite disunction

Fo() v Fi(X) v F(X) v . ...

where Fo(X) isH(X) and each F.1(X) isthedigunction of Fy(X) and the result
of replacing each subformula G(y,, . .., yi) of F(X) by Fi(ys, ..., V).

The extengon of first-order logic with order by Livchak'srule captures PTIME
[Li2]. Weincorporate thisfact into Theorem 3. But fird let usreformulate
Livchak'srule.

Definition. Let ¢ be avocabulary, P bean additiona predicate variable of

some arity |, and n(P) be aglobal I-ary predicate of the vocabulary ¢ U{ P} .
View n(P) asan operator that, given aglobal I-ary ¢-predicate a, produces a
global |-ary o-predicaten (o) . Thisoperator n(P) isinflationary if o <n(c) for
every global o-predicate a. Let oy, oy, €tC. beasequence of globa I-ary
o-predicates where o, is empty and each a;.;  equalstox (o). A fixed point p
fc;r n(lz) isaniterativefixed pointif for every o-structure Sthereisani with
B =i,

Clam?2. Let ¢, P, I, n(P) and oy, oy, etc. be asin the definition above.
upposethat o(P) is inflationaryin P. Then thereisa unique iterative fixed
point p for m(P). Moreover, for every o-structure S, p5= o, where m=|g/' .

Thus theiterative fixed point for =(P) is PTIME computableif n(P) is.

Theproof isclear. Notethat if P and n(P)are asin the definition above then

P v n(P) isinflationary. Let FO + IFP be the extension of first-order logic by
the following formation rule.
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IFP formation rule. Let P beapredicate variable of some arity |, and let
o(P, X) beawdl-formed formulawhose free individual variables are al or

some membersof X=(Xy,...,X). If y=(vi,...,¥) isatupleof new
individual variables then

IFP(P, X; P(X) v 9(P, X), y)
isawell-formed formula. The meaning of the new formulaisthat y isin the
iterative fixed point for P(X) v ¢(P, X).

Claim 3. FO + IFF expresses exactly the global predicates expressible in first-
order logic augmented by Livchak' srule.

Proof. We consider the extension of first-order logic by both formation rules
and show that either rule can be diminated. Theformula

IFP(P, X; P(X) v ¢(P, %), y)
isequivalent to

L(e(P. ), P(y), FALSE()).

Given aformulaL(F, G, H) with freeindividua variablesX = (xy, ..., X))
and an additional |-ary predicate variable P write down aformula F(P, X) such
that F(X) = F(G, X). Using P, F(P, X), H(X) and first-order means write down a

formulap(P, X) saying the following:
If =3X H(X) then F(P,X),
dseif -IX P(X) then H(X),
dseF (P, X).
It iseasy to check that L(F(X) ,G(X, H(X)) isequivalent to
IFP(P, Y; P(Y) v o(P, ), X)

wherey isatuple of new individua variables. o

Theorem 3. Letit beaglobal predicate. The following statements are
equivalent:

(1) = isPTIME computable,
(2) = isexpressiblein FO + LFP with order, and

() n is expressiblein FO + IFF with order.
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Proof. Theimplication (1) — (2) followsfrom Theorem 2. Theimplication

(3) — (1) fdllowsfrom Claim 2. To provetheimplication (2) — (3) note that if

aglobal |-ary predicate (P, X) ismonotonein an I-ary predicate variable P then

LFP(P, X; n(P, X), )

isequivalent to

IFP(P, X; P(X) v = (P, X), V). o

Chandra and Harel show that FO + LFP without order isnot able to express
the global zero-ary predicate "The cardinadity of a given structureis even"
[CH2]. Their argument can be extended to show that FO + |FF without order is
not able to express the same global predicate. Our Appendix 3 gives an
alternative proof of the fact that FO + |FP without order isnot able to express
some PTIME computable order-independent global predicates .

Weturn our attention to global functions.

Definition. A global partial function f of vocabulary o, arity | and co-arity r
assigns to each o-structure Sapartia function f° fromS to S.

Example 3. Let ¢ consist of one binary predicate variable E (for "edge"), so
that o-structures are (directed) graphs. Let f(x, y) be the length of a shortest path
fromxtoy. If Sisagraph and f° isdefined at (x, y) then f(x, y) < |S| and
therefore f5(x, y) isan element of S

Example 4. Let again ¢ be the vocabulary of graphs. For every graph Sand

every xeSlet f(x) bethe pair (y, z)eS’ such that thereare exactly y » |3 + z
eements u with an edge from x to u.

Aswas mentioned above, we are interested in logics (or agebras) that capture
PTIME (LOGSPACE, etc.) computable global functions. Inasense FO + LFP
with order does capture PTIME computable functions. it allows one to speak
about the graph of a PTIME computable function f and about digitsin the binary
notation for f (X). We prefer to speak about global functions directly. See [Gu3]
in this connection. Here we mention only the resultsrelated to PTIME.
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Let usignore singleton structures (alternatively we may allow boolean
variables). Seethe definition of recursive global partial functionsin [Gu3].

Theorem 4 [Gu3, Sa]. A global partial functionis PTIME computable if and
onlyifitisrecursive.

Two algebras of recursive global partia functionswere given in [Gu3] by
some initial members and certain operations. Let ARF  (for "Algebra of
Recursive Functions") be either of them.

Theorem 5[Gu3]. A global partial functionis PTIME computable if and
only if it belongsto ARF.

An important advantage of (the proof of) Theorem 5 versus (the proof of)
Theorem 2 is preserving essential time bounds.

Remark. Itiseasy to prove directly that the graph of every functionin ARF is
expressiblein FO + LFP with order. Thistogether with Theorem 5 gives an
alternative proof of the"only if" implication of Theorem 2. Let n(X) bea

PTIME computable global predicate and let f(X ) bethe characteristic function
for n(x) i.e. f(X) =1 if =(x) holdsand f(X) = 0 otherwise. By Theorem 5, f is
in ARF. Hencethe predicate f(X) =y is expressiblein FO + LFP with order.
Hence the predicate f(X) =1 isexpressiblein FO + LFP with order.



204 Y. Gurevich
85. Interpolation and definability for polynomial time logic

According to 81, many famous and important theorems about first-order logic
fail in the case of finite sructures. What happens to those theorems in the case
of logic tailored for polynomial time? We concentrate here on the interpolation
and definability principles for polynomia time logic and show that these
principles are equivalent to natural complexity principles whose statusis
unknown.

Let PTL (for Polynomial Time Logic) be the logic FO + LFP with order, or
thelogic FO + IFP with order, or an adgebra of PTIME computable functions
from [Gu3]. It will beimportant that PTL expresses precisdy PTIME
computable global predicates. The exact syntax of PTL will not be important.

Definition. A partial function f from {0, 1}* to {0, 1}* ispolynomially
bounded if thereisanatural number k such that [f(x)] < x| for al xeDomain(f)
with |x| > 1. Here |x| isthelength of x. More generally, abinary relation B
over {0, I}* is polynomially bounded if thereis k such that B(x, y) and |x| >1
imply Iyl < x|*.

We identify anonempty word X = apa; . . . &.1, in{0, 1}* with the structure
with universe {0, 1, ...,1-1} and oneunary predicate X ={i: g=1}. If | >2,
m=1| for somekandyisaword by, by, ..., byt in{0, 1}*, weidentify the
pair (x,Y) with the extension of the sructure x by a k-ary predicate

Y={ (i1, ...,i: ifj isthe number whose notation in the positiona system of
basel isiy...ix then b=1}

Lemma 1. For every NP set A of nonempty words over {0, 1}* thereisa
PTL sentence @ such that

A = {xe{0, I}*: xisthereduct of amode of p}.

Proof. Without loss of generdity, every xeA isof length at least 2. Thereare
anatural number k and a PTIME computabl e polynomially bounded binary rela-

tion B over {0, 1}* suchthat A ={x: (X, y)<B for somey}, and (X, y)<B

implies |y| = [x|*. The desired sentence ¢ expresses (X, y)eB. o
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The analogue of Craig's Interpolation Theorem for PTL will be called the
Interpolation Principle for PTL. This principle states that for every valid (in all
relevant finite structures) PTL sentence ¢, — ¢, thereisa PTL sentence 6 such
that

vocabulary(0) € vocabulary(p;) N vocabulary(py)
and theimplications p;— 0, 6 — o, arevalid.
Theorem 1. The following two statements are equivalent :
(1) Thelnterpolation Principlefor PTL, and

(2) Thefollowing separation principle for NP: for every pair of digoint NP
subsets Ay, A, of {0, I}* thereisa Psubset B of {0, I}* suchthat B
includes A; and avoids A,.

Proof. Firgt suppose (1) and let A;, A, be digoint NP subsets of {0, 1} *.
Without loss of generality neither A; nor A, containsthe empty word. By

Lemma lthereare PTL sentences ¢4, ¢, such that A; = {x<{0, I}*: xisthe

reduct of amodd of ¢;} for 1 =1, 2. Without loss of generality, the only
common non-logical constant of ¢4, @, isthe unary predicate variable X.
Obvioudy, theimplication p; — -, isvalid. Let 6 be an appropriate
interpolant. The set of models of 6 isthe desired set B.

Next suppose (2) and let ¢p; — ¢, beavalid PTL sentence. Let ¢ bethe
common part of the vocabularies of ¢4, ¢p. Fori=l, 2 let

Ai={x: x isthebinary code for the c-reduct of amodd of o;}.
By (2) thereisa P set B that includes A; and avoids A,. Thedesired interpolant
0 expresses xeB. o
Note that the Interpolation Principle for PTL implies NP N co-NP = P.

The analogue of Beth Definability Theorem for PTL will be called the
Definability Principle for PTL. Thisprinciple statesthe following. Let ¢ bea
vocabulary, P bean additiona predicate variable of some arity | and ¢(P) bea

PTL sentence of the vocabulary ¢ U {P}. Suppose that for every o-structure S

andal P, P,€ S, ¢5P) and ¢ 5(P,) imply P,= P,. ThenthereisaPTL
formulay of the vocabulary ¢ with | free variables such that for every
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o-structures S andevery P, €S,
o3(P) implies P= y°

The Weak Definability Principle for PTL istheresult of strengthening the
antecedent of the Definability Principle for PTL asfollows. for every
o-structure Sthereisaunique P, € S such that o 5(P,) holds.

Definition (cf. [Vd]). A nondeterministic Turing machine M is unambiguous
if for every input x thereis at most one accepting computation of M on x. An

NP subset A of {0, 1}* isUNAMBIGUOUS Iif thereis an unambiguous Turing
machine that accepts A.

Theorem 2. The following statements (1) - (4) are equivalent.
(1) The Definability Principle for PTL.

(2) For every polynomially bounded partial function f from {0, 1}* to
{0, 1}*,if thegraph of f is inP then f is PTIME computable.

(3) For every polynomially bounded partial function f from {0, 1}* to
{0, 1}*,if thegraph of f is inP then thedomain of f isinP.

(4) UNAMBIGUOUS = P.

Proof. (1) — (2). Suppose (1) and let f be apolynomially bounded partial
function from {0, 1}* to {0, 1}* with PTIME computable graph. It sufficesto
construct a PTIME algorithm for calculating f(x) for x of length at least 2. Let
X range over words of length at least 2. Without loss of generality thereisk
suchthat [f(x)| = [x[* for al xin Domain(f). ThereisaPTL sentence ¢(X, Y)
with aunary predicate variable X and ak-ary predicate variable Y that
expresses (X, y)eGraph(f). By (1) thereisa PTL formulay such that if (X, Y)
holdsin the structure (x,y) then

Y ={(y, ...,i): Wiy ..., iy holdsinx}.

Hereisa PTIME agorithm for calculating f(x). View x asastructurein the
vocabulary { X}. Compute

Y ={(y,...,i): Wiy ..., i) holdsinx}.
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The extension of the structure x by the predicate Y corresponds to a pair (x, y)
for someword y of length [x[. Check whether p(X, Y) holdsin the extended
structure. If yestheny =1 (x) .

Theimplications (2) — (3) and (3) — (4) aretrivid.
(4) — (1). Suppose (4) and let o be avocabulary

variable of some arity i and o¢(P) be a PTL sentence such that for every
o-structure S thereis at most one PCS satisfying ¢3(P) . Set

K = {(S,©): Sisac-structure, ceS and

thereisP< S such that o5(P))

holds and c<F} .
Obvioudy, K isUNAMBIGUOUS. By (4), KisP. Thedesired PTL
formulay(vy, ..., V) expresses(S, vy, ..., V)eK. o

Thefollowing theorem was established in a discussion with Neil Immerman.
(It succeeded Theorem 1 but preceded Theorem 2.)

Theorem 3. The following statements (1) - (3) are equivalent.
(1) The Weak Definability Principle for PTL.

(2) For every polynomially bounded function f:{0, I}* — {0, 1}*, if the
graph of f isin Pthen f is PTIME computable.

(3) UNAMBIGUOUS N co-UNAMBIGUOUS = P.

Proof. Thecase (1) — (2) issdmilar to the case (1) — (2) in the proof of
Theorem (2) .

(2) — (3). Suppose (2) and let Ay, A1 be complementary UNAMBIGUOUS
subsets of {0, 1}*. There are unambiguous nondeterministic Turing machines
Mo, M1 accepting Ag, A; respectively. Fori =0, 1 and xeA; let f(x) bethe
digit | followed be the binary code for the accepting computation of M, on x.
By (2), f isPTIME computable. Hence Ay and A; areP.

(3) — (2). Suppose(3) andlet o, P, p(P) andK beasinthecase (4) — (1)
of the proof of Theorem 2 except now for every c-structure S there is a
unique P< S saisfying ¢5(P). Obvioudy K is UNAMBIGUOUS and
co-UNAMBIGUOUS. By (3), KisP. Thedesired PTL formulay(vy, ..., V)
expresses (S, vy, . . ., )ekK. o
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Aswe saw in 81, the Interpolation Principle for first-order logic implies the
Definability Principle for first-order logic. The same proof shows that the
Interpolation Principlefor PTL implies the Definability Principle for PTL. If
P = NP then the Interpolation Principle for PTL isobvioudy true. Itiseasy
however to construct an oracle for which even the Weak Decidability Principle
for PTL fails.

Claim (Andreas Blass) . There isan oracle for which the Weak Definability
Principlefor PTL fails.

Proof. By Theorem 3 it suffices to construct an oracle A and afunction f from
{0, 1}* (or from aP subset of {0, 1}*) to{0, 1} * such that f isnot PTIME
computable relative to A whereasthe graph of f is. We construct A €{0, I} *,

containing exactly one word w, of each length n, such that the function
f(0") =w, isnot PTIME computable relative to A.

Enumerate dl (deterministic) PTIME bounded query machines. Let Py, be
the time bound for amachine M. We define A in stages, choosing finitely many
W, s at each stage. Thekth stage will ensurethat M,/* does not compute f.

Stage k. Fix anatural number d that islarger than any n for which w, has
aready been chosen and so largethat p(d) <2°-2. Setw, =0 foradln<d for
which w, was not previously chosen. Run M, with input 0" and oracle
{wn: n<d}. LetB betheset of queries during the computation. By thetime
bound, |B|< pi(d) <2°-2. Choosewyin {0, 1}¢-B such that wy differsfrom
theoutput (if any) of M. If d<I and | < |x| for some xeB chosew,; in
{0,1}'-B. Itiseasy toseethat M, will not compute wg, on input 0°. o

The computational status of Craig's Interpolation Theorem for prepositional
logic was explored by Mundici [Mu] .
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Appendix 1. Monotone ver sus positive.

This appendix is devoted to an important theorem about first-order logic
whose status in the finite case is unknown.

Definition. Let ¢ be avocabulary, P bean additiona predicate variable of

arity l and o(P, Xy, . . ., X;) be afirst-order formulain the vocabulary ¢ U{ P}

with free individual variables as shown. The formulap is monotonically
increasing in P if every o-structure S satisfies the following for every |-ary
predicates P, P, on S.

if VX1. .. VX [Pi(Xq, - - ., X)) = Pa(Xq, .+ .., X)]

then ¥Xy. .. YX [0(Py, Xg, . - ., %) = 0(Po, Xg, - . ., X)].

Definein the obvious way the following: ¢ ismonotonically decreasingin P,
¢ ismonotonically increasingin P on finite structures (or, in the finite case), ¢
is monotonically decreasing in P on finite structures. We redtrict our attention
to monatonically increasing behavior; the generaization for monotonicaly
decreasing behavior will be obvious. We say "monotone” for "monotonically
increasing".

We say that afirg-order formula g is positivein apredicate symbol P if every
appearance of Pin g ispositive. A precise definition of positive appearances of
a predicate symbol in a first-order formula can be found in [CK]. It iseasy to
seethat ¢ ismonotonein P if ¢ ispositivein P.

Theorem 1. If a first-order formula ¢ is monotone isa predicate symbol
P then thereisafirst-order formula ¢' suchthat ¢ ' isequivalentto ¢ and
positivein P.

| do not know who was the first to formulate this theorem but it is an obvious
consequence of the Lyndon Interpolation Theorem [CK].
Conjecture. Theorem 1 failsin the case of finite structures.

Therest of thisappendix contains afew remarksrelated to the conjecture.
Firgt we exhibit a sentence which is monotone in a unary predicate symbol P on
finite structures but which isnot monotonein P ingenerd. Let f beaunary
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function symbol. The desired sentence (with equality) says that f is one-to-one
and that P is closed under f-predecessors if P is closed under f-successors.

Clam 1. Let Pbea predicatevariable. The following problemsare
undecideable:
(1) Given a first-order sentence ¢ tell whether ¢ is monotonein P, and

(i) Given a first-order sentence ¢ tell whether ¢ is monotonein P on
finite structures.

Proof. Without loss of generality P isjust apropositional variable. Let v bea
first-order sentence that does not mention P. Itisvalid (resp. valid in thefinite
case) iff the sentence P — y is monotone (resp. monotone on finite structures) in
P. m]

Corollary 1. Let Pbea predicate variable. Thereis no recursive function f
fromfirst-order sentencesto first-order sentences such that an arbitrary first-
order sentence ¢ is monotonein P if and only if the sentence f(¢) is positivein
P.

Corollary 2. Let Pbea predicate variable. Thereisno partial recursive
function f fromfirst-order sentencesto first-order sentences such that an
arbitrary first-order sentence ¢ is monotonein P on finite structures if and only
if f(p) ispositiveinP.

In the case of a propositional variable P thereisa simple function that, given a
first-order sentence ¢(P), produces afirst-order sentence ¢'(P) such that ¢'(P) is
positivein P and ¢'(P) islogically equivalent to o(P) if ¢(P) ismonctonein P.

Thedesired ¢'(P) ise(False) v [P & o(True)].

On the other hand, aroutine coding, given an arbitrary first-order formulawith
apredicate variable P, produces a first-order formula o' in the vocabulary { E,Q}
such that E isa binary predicate symbol, Q isaunary predicate symbol and ¢ is
monotone (respectively, positive) in Piff ¢' ismonotone (respectively, positive
in Q. Moreover, it can be ensured that ¢' hasa conjunct saying that E is
symmetric and irreflexive.
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| have also checked that Theorem 1 remainstrue in the case of finite structures
if ¢ isan existential sentence, a universal sentence, a prenex sentence with

prefix 3"V or a prenex sentence with prefix V'3, Andreas Blass observed that if

o(P) ispositive (resp. monotone, monatone on finite sructures) in P then sois
=-p(=P). Thus, if Theorem listruein thefinite case for prenex sentences ¢ with
certain prefixesthen it istruein the finite case for prenex sentences with the
dual prefixes.

Appendix 2. Transitive closureisnot first-order expressible.

Theorem. Connectivity of a given graph is not first-order expressiblein the
case of finite structures (even in the presence of linear order). Hence the transi-
tive closure of a given binary relation isnot first-order expressible in the case
of finite structures (even in the presence of linear order).

Proof. For every positiveinteger nlet S, betheset {0,1, ... ,n-1} with the
natural order and E,(X, y) bethefollowing binary relationon {0,1, ... ,n-l }:
either y=x+2or x =n-l andy = 0. Note that agraph (S,, E) isconnected iff n
iseven, and areation E, isobvioudy and uniformly in n expressible in the
first-order language of order. Now use Lemma(ii) in §1. m

The theorem (without mentioning linear order) is due to Fagin [Fa2] and was
reproved several times. Gaifman and Vardi wrote even a special paper [GV]
with a specially short proof and a brief review of other known proofs. Fagin's
proof actually gives more: connectivity is not expressible by an existentia
second-order sentence where all quantified predicate variables are unary.
Yiannis Moschovakis naticed that all those proofs do not work in the presence
of linear order and expressed an interest in such resultsin the presence of linear
order.



212
Appendix 3. The fixed point operators can be powerless.

Provisos 1-3 of 83 arein force here because we will consider structures as
inputsfor algorithms. On the other hand the natural order of elements of a given
structureisnot alogical constant here, so that isomorphisms can break the order
of dements. We are interested more in i somorphism types of structuresthan in
specific representations.

Definition. A global |-ary predicateit of some vocabulary aisinvariant
if for every isomorphism f from a o-structure A onto a ¢-structure B and
every I-tupleacA , (@) isequivaenttoitx B(f 3).

Any first-order expressible global predicate isinvariant aswell as any global
predicate expressible in FO + LFP or FO + IFP. All these global predicates are
PTIME computable. They do not exhaust, however, the PTIME computable
global predicates. The following theorem provides plenty of counterexamples.
It speaks about FO + | FP because FO + | FP subsumes FO + LFP. Recall that a
first-order theory T is called o -categorical if al countable models of T are
isomorphic.

Theorem 1. Let T be an w-categorical first-order theory of some vocabulary
o. Thenfor every formula ¢(X) in FO + IFPthereisafirst-order formula ¢'(X)
such that the global predicates p(X) and ¢'(X) coincide on the finite model s of
T.

Remark. Actually, the global predicates ¢(X) and ¢'(X) will coincide on all
models of T but we do not care here about infinite models.

Proof. Without loss of generdlity the given formulag'(X) is

IFP(P,y; P(Y) v w(P. ). X)

wherey isfirs-order. Let ag(X) = FALSE and let each 0j.1(X) = oi(X) v y(a, X).
By Ryll-Nardzewski's Theorem, thereis afinite p such that op.1(X) isequiv-
alent to o(X) on theinfinite models of T. By the compactness theorem, thereis
afinite m such that a,.,(X) isequivalent to oy(X) on all models of T of
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szeat least m. Hencethereisafinite g such that aq. (X) isequivalent to og (X)
in T. Thefirst-order formula o, isthe desired . o

Now we are ready to show that some polynomial time computable invariant
predicates are not expressiblein FO + IFP.

Example 1. Thefirst-order theory of equality is m-categorical. The predicate

0 if |JA] even
r(A) = { :
1 otherwise
isnot first-order (see Lemmain 81). By Theorem 1, itisnot expressiblein FO
+ IFP. (Cf. [CH2, Theorem 6.2].)

Example 2. Let F beafinitefield. Let T be the first-order theory of
vector spaces over F. Obvioudy, Tis w-categorical. Let n be the global
predicate such that for every structure A of thevocabulary of T, =1 if Ais

amodel of T and dimension(A) is even, and ©* = 0 otherwise. Using
Ehrenfeucht games [Eh] it is easy to check that = isnot first-order. By Theorem
litisnot expressiblein FO + IFP.

Itisnot difficult to extend FO + LFP in such away that the predicates of
Examples 1 and 2 are expressible in the extended logic and only polynomial
time computable invariant predicates are expressible in the extended logic. Still,
the problem to design alogic that expresses exactly polynomial time computable
invariant global predicatesis open.
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