
INFORMATION AND CONTROL 61, 65-74 (1984)

A Logic for Constant-Depth Circuits

YURI GUREVICH*

University of Michigan, Ann Arbor, Michigan

AND

HARRY R. LEWIS t

Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts

Consider a family of boolean circuits C~, C2,..., C,,..., constructed by some
uniform, effective procedure operating on input n. Such a procedure provides a
concise representation of a family of parallel algorithms for computing boolean
values. A formula of first-order logic may also be viewed as a concise represen-
tation of a family of parallel algorithms for evaluating boolean functions. The
parallelism is implicit in the quantification (a formula gx q~(x) is true if and only if
each of the formulas q~(a) is true, and all these formulas can be checked
simultaneously), and universes of different sizes give rise to boolean functions with
different numbers of inputs (the boolean values of the formula's predicates on
various combinations of elements of the universe). This note presents an extended
first-order logic designed to be exactly equivalent in expressiveness to polynomial-
size, constant-depth, unbounded-fan-in circuits constructed by Turing machines of
bounded computational complexity. © 1984 Academic Press, Inc.

Several papers (Chandra et al., 1983a; Chandra et al., 1982; Chandra et
al., 1983b; Furst et al., 1981; Sipser, 1983) have recently dealt with the
computational power of boolean circuits with unbounded fan-in to the gates.
This model cannot be physically realized but is mathematically natural for
many applications and has been studied extensively. To the extent that its
computational power can be cleanly characterized in other ways, it is also a
"limiting case" for the power of physically realizable limited fan-in circuits
(see Sipser, 1983, for a further discussion of the rationale for the model). It
is therefore reasonable to seek an alternative formalism which captures
exactly the computational strength of such circuits. In this note we describe
an extension of first-order logic which can be used to characterize exactly the
functions computable by some families of circuits of this type. This proposal

* Supported in part by NSF Grant MCS83-8301022.
t Supported in part by NSF Grants MCS82-03482 and MCS80-05386-A01.

65
0019-9958/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

66 GUREVICH AND LEWIS

is part of a more general program to find logical characterizations of various
computational complexity classes (Gurevich, in press; Immerman, 1983).

To understand the general goal, consider the problem of evaluating a fixed
first-order formula • over an arbitrary finite structure of cardinality n. This
can be done by transforming the formula into a circuit: each universal quan-
tifier becomes an n-ary A gate, each existential quantifier an n-ary V gate,
and the inputs are associated with boolean values of the atomic formulas in
the given interpretation. This transformation yields for various n circuits of
fixed depth (equal to the maximum syntactic nesting of operators and quan-
tifiers in the formula) and similar structure, which can be constructed in
O(log n) space by a fixed Turing machine on input n (written in unary).
However, the circuits so constructed from a first-order formula seem not to
form any natural class of computational devices. We therefore seek to enrich
the logical language so that the families of circuits constructed by this
process form a computationally natural class. That is, any circuit family of
this class can be constructed by an effective, uniform process, and it is a
consequence of our main result that any circuit family so constructed can be
described by a single formula of our extended logic.

For concreteness let S be the set of all mappings computable in space
O(log n), where n is the length of the input. We mention other possibilities
for S later. Our logic is parametrized by S and includes, roughly speaking,
all predicates in S as primitives. That is, if ~ is a formula of our logic and
contains an occurrence of an atomic formula A(xl,..., Xk), where A is the
formal name of a predicate A in S, then when • is interpreted over the
universe {0 n - 1} each instance A(m 1,..., mk) of that atomic formula is
evaluated by computing the value of A on the integers m 1,..., ink.

To be precise, let k be a fixed integer >/0 and let A c_ N k÷ ~ be a relation
such that any (n, m 1 mk) E A satisfies n > m~,..., m k >/O. Then A is said
to be S-computable if the predicate "(n, ml,..., m~)E A" is in S, n being
written in unary notation. Note that under these circumstances (ml,..., mk)
can be interpreted as a single k-digit, base n numeral representing a number
in the range 0 n k - 1.

We define a logic L(S) which has the following symbols:

Individual variables: x, y, etc.

Logical constants: The symbols A, V, ~, V, ~. For each k) 0 and for
each (k + 1)-place predicate A in S, a k-place predicate symbol A.

Formulas of L(S) are the usual formulas of first-order logic within this
restricted language. They are intepreted over structures with universe
{0,..., n - 1 } for some n, and since the interpretations for all symbols are
fixed, the truth-value of an L(S) sentence is completely determined by the
value of n. We extend the language to include free predicate variables as
follows:

LOGIC FOR CONSTANT-DEPTH CIRCUITS 67

The logic L (S + F P V) has the individual variables and the logical
constants of L(S), and, in addition,

NonlogieaI symbols: For each k >~ 0 and each i >~ 0, a k-place predicate
symbol P~.

The formulas of L(S + FPV) are the formulas of first-order logic within this
expanded language.

We define below a class UC(S) of uniformly constructable families of
boolean circuits. The definition resembles Borodin's definition of uniformly
constructable circuit families (1977) but makes the complexity of the
construction explicit. (When S is of unrestricted complexity, this definition
reduces to the nonuniform case.) A Turing machine that constructs a circuit
family in UC(S) can evaluate a predicate A in S on any given tuple of
arguments and use the result of this evaluation to direct the construction of a
circuit. For this reason these predicates are included as no-cost extensions to
the corresponding first-order language L(S + FPV).

By the signature of a formula of L(S + FPV) we mean the set of its
nonlogical predicate symbols (the free predicate variables P~). An
L(S+FPV)- fo rmula whose nonlogical predicate symbols are in the
signature a we call an L(S + a)-formula.

Let a be a signature, i.e., a finite set of nonlogical predicate symbols. Then
a o-structure M consists of a universe IMI = {0,..., n - 1 } for some n, and for
each k-place predicate symbol P~ in a a subset P~ of IMI k. For example, i f a
contains a single binary predicate pZ, then p2 is the representation of a
directed graph. A formula of signature a is interpreted in a a-structure of
cardinality n in the natural way; in particular each logical constant A is
interpreted as the corresponding predicate A in S with the first component
fixed at n. Note that the interpretation of A in a structure M depends only on
the cardinality of M.

To specify the relation between formulas and circuits we need an
equivalence relation on boolean functions. Let f and g be boolean functions
of n and m boolean arguments, respectively, and let p = max(n, m). Then we
say that f is equivalent to g, in symbols f ~ g, provided that for any boolean
values x I , xp, f (x 1,..., xn) = g(x I , xm). That is, if n/> m, then the value
o f f is independent of its last n - m arguments and f agrees with g when its
first m arguments are the same as those of g; and symmetrically if m/> n.

Now let a be a signature with p; nonlogical predicates of arity dl. A
closed L(S + a)-formula q~ defines, for each n, a boolean function of
N , (n) = Y~pi naj arguments. Specifically, let F1,...,F~%~,) be the list, in
lexicographic order, of the N . (n) atomic formulas P(ml mj), where P is a
predicate variable of q~ and ml,..., mj < n. Then let q~n be the boolean
function of N . (n) arguments such that the value of q~ in a structure M of
cardinality n is the value of ~n(x~ , xN,~,)), where each xi is the truth value

68 GUREVICH AND LEWIS

of F~ in M. We say that a family f~, f2,..., of boolean functions is
L(S + FPV)-definable if there is a formula • of L(S + FPV) such that for
each n, fn ~ ~n.

EXAMPLES. If n > 0, and each of the n 2 numbers x~ , x12,...,Xnn is in
{0, 1}, then the sequence Xll x , , represents a binary relation R on
{1,...,n}, where R(i,j) holds iff x o = 1. Let f , be that function of n 2
arguments such that f , (x l l , Xlz,..., x , ,) = 1 if and only if the corresponding
relation R on {1,..., n} is transitive. Then the family {f,} is defined by the
L(S + {R})-formula

(Vx)(Vy)(Vz)(Rxy A gyz Rxz).

Let g, be that function of n 2 arguments such that gn(xl~,..., x , ,) = 1 if and
only if the directed graph with vertices {1,..., n} and with an edge from i t o j
if xij = 1 is monotone, i.e., has no edges from higher-numbered to lower-
numbered vertices. Then {g,} is defined by the L(S + {R})-formula

(Vx)(Vy)(Rxy :. x

Here ~< represents a logical constant in S. Finally, let h, be that function of
n3q - n 2 arguments that has the value 1 just in case the last n 2 arguments
represent a relation which is the projection of the relation represented by the
first n 3 arguments on the first two argument positions. Then h n is defined by
the L(S + {R, S})-formula

(Vx)(Vy)(sxy (3z) yz).

Note that in the examples just given, no logical constant from S is used
defining {fn} or {hn}; in the example of {g,}, S must contain ~.

Now we consider a circuit characterization of the L(S + FPV)-definable
formulas. Consider a Turing machine which, on input n (in unary), produces
via a mapping in S a circuit C~ of polynomial-bounded size, depth bounded
by a constant independent of n, and unbounded fan-in. (The size of a circuit
is the number of edges. Alternatively, the size of a circuit is the total size of
all its gates, where the size of a gate is its fan-in. Since our circuits have
polynomial-bounded size, both the total number of gates and the fan-in at
each gate are polynomial bounded. To be precise, the size of a circuit is at
most the product of the number of gates and the maximum fan-in. The depth
of a node is the length of the longest path from that node to the root, and the
depth of the circuit is the maximum depth of any node.) The complexity
class S should be sufficiently powerful that this notion of circuit construction
is robust and independent of details of the encoding, but for concreteness we
give a specific convention. Let p be a polynomial such that the circuit

LOGIC FOR CONSTANT-DEPTH CIRCUITS 69

produced on input n has at most p(n) gates. Also, let I n <~p(n) be the
number of inputs of circuit C n. Without loss of generality we may assume
that the Turing machine first enumerates the gates as numbers 1, 2, etc., up
to at most p(n), each with its associated boolean function (A, V, or NOT) or
a designation that it is an INPUT gate. We assume that the input gates are
numbered 1, 2,..., I n. Since p(n) is a polynomial of fixed degree, the gate
numbers can be written in base n notation as sequences of fixed length. The
Turing machine then lists the edges as ordered pairs of gate numbers. We
assume that the circuits are acyclic and have a distinguished output-- the
root. Thus such a Turing machine defines, for each n, a boolean function of
exactly I n boolean values, to wit, the values of the input gates 1, 2 I n. A
collection of boolean functions definable in this way we call uniformly S-
computable or UC(S).

Note that if S contains all log space computable mappings, then the
uniformly S-computable functions are in fact uniformly S-computable by
means of polynomial size, constant depth circuits that are "almost trees" in
the sense that their noninput nodes form trees. (Therefore readers who prefer
to think of trees rather than general circuits are free to do so.) To see this,
suppose the circuit produced on input n has size at most p(n), and therefore
has at most p(n) gates and p(n) edges, and is not an "almost tree." Let d be
the smallest depth such that there is at least one noninput node of depth d
with fan-out greater than 1. Replace each noninput node N at depth d having
fan-out b > 1 by b copies of itself, each having fan-out 1 and having fan-in
from the same nodes as did N. Clearly the resulting circuit computes the
same function and has no noninput nodes with fan-out greater than 1 at
depth less than d ÷ 1. Moreover the size of the resulting circuit is at most
p(n) 2. This construction can then be iterated for nodes of greater depth until
no noninput nodes remain that have fan-out greater than 1. If the depth of
the original circuit was D (independent of n) then the final circuit has depth
D and size at most p(n) 20, which is polynomial in n. Moreover this
construction can be carried out in log space.

Before stating and proving the main result it is worth pointing out that the
UC(S) families of functions are identical to a class of function families
computed by certain circuits with bounded fan-in. By DeMorgan's laws we
may assume that any occurrence of a NOT gate in a circuit is the parent of
an INPUT gate; such a circuit we call normalized. An alternation in a
circuit is an edge between an AND gate an an OR gate (the AND gate is the
parent of the OR gate or vice versa). The alternation depth of a circuit is the
maximum number of alternations on any path from the root to an input.
Then a collection of boolean functions is UC(S) if and only if it is the set of
functions computed by a collection of normalized circuits C1, Cz
constructed by a Turing machine of complexity S such that Cn, the circuit
constructed on input n, is of fan-in bounded by a constant, depth O(log n),

70 G U R E V I C H A N D L E W I S

and alternation depth bounded by a constant. For any subcircuit not
containing an alternation can be collapsed into a single gate of polynomial-
bounded fan-in, and the unbounded fan-in circuit that results from a maximal
application of this process has depth equal to the (bounded) alternation
depth of the original circuit. Conversely, a polynomial-bounded fan-in gate
can be expanded into O(log n) levels of gates each of constant fan-in.

THEOREM. Suppose that S contains all log space computable mappings
and is closed under composition. Then a family F of boolean functions is
L(S + FPV)-definable if and only if it is UC(S).

Proof. (I) IF F is L(S + FPV)-definable, then F is UC(S). Given a
formula of L(S + FPV), we can construct a Turing machine which on input
n generates the naturally corresponding circuit, with A and V being replaced
by A-gates, V and 3 being replaced by V-gates, ~,- by H-gates, and
occurrences of atomic formulas A(m 1 mk), where A is a logical constant,
by the constants 0 and 1 (these predicates can be evaluated within the given
complexity bound). The expansion of the formula as a circuit proceeds recur-
sively in depth-first fashion, so that at any time at most one binding for each
variable of the formula need be remembered. The resulting circuit is a tree
except at the bottom level, where some leaves are connected to several nodes
at levels above the bottom. At the bottom level, atomic formulas P~m 1 ... m k
become input nodes of the circuit. Different truth valuations of these atomic
formulas correspond to different assignments of boolean values to the circuit
inputs.

For example, Fig I shows the circuit that would be generated for the
formula Vy 3x (Pxy A Pyx A Ax) in case n = 2 and A0 = 1, A1 -- 0. This
circuit has 15 gates. The four input gates correspond to the values of the
atomic formulas P00, P01, P10, P l l ; there are five "and" and two "or"
gates; and there are four gates with constant values (0 or 1).

©

o o

PO0 | POl 0 PlO 1 P l l 0

FIGURE 1

L O G I C F O R C O N S T A N T - D E P T H C I R C U I T S 71

(II) I f F is UC(S), then F is L(S + FPV)-definable. Suppose that
Turing machine M operates within the complexity bound S and, for some
polynomial p and some constant d, produces on input n a circuit Cn of depth
d with I n inputs and with at most p(n) gates. Without significant loss of
generality let us assume that for some constant e, p(n)=n e. (This
assumption enables us to construct a formula with a single e-place predicate
letter P. I f p is not bounded by a monic polynomial, i.e., if p (1) > 1, then
several predicate letters need to be used in the construction. If the n = 1 case
is simply ignored, this assumption entails no loss of generality.) Thus each
gate g listed by M can be named by a sequence of e integers in the range
0,..., n - 1. We call this the internal name of M for g.

Moreover, there is a constant c such that, for each n, each gate of the
circuit produced on input n has fan-in at most n e. Thus each gate listed by
M can also be identified with one or more sequences integers, each in the
range 0,..., n - 1, by following paths from the root to the gate. I f the path
followed has length i, then the identifying sequence is of length ci; we call
such an identifying sequence an address of the gate in the circuit. The
address of the root is the empty sequence () and, if gate g has address
(m 1 , mci) by a path of length i, and gate g ' is the k ' th child of g, where
k = q l nc-1+q2 n c - z + ' ' ' + q e (O~ql,...,qe<~ n - l) , then gate g ' has
address (m 1 mei, q~ qe). The same gate may have several addresses
since there may be several different paths from the root to a gate. Not every
sequence (m 1,..., met) need be the address of a gate. The only gates with 0
children are input gates and gates with the constant value 0 or 1.

We claim that for each i--0, . . . , d, the following predicates are S-
computable:

Addresst(n, m~ mei): (m 1 , mei) is the address of a gate

Andi(n, ml,...,mei): There is a gate in C n with address (m~,...,mci)
which is an "and" gate.

Ori(n, ma,..., mci): There is a gate in C n with address (m~,..., rnei) which
is an "or" gate.

Noti(n, ml,...,m~i): There is a gate in C n with address (m~ ,mei)
which is a "not" gate.

Inputi(n, ml,...,mei): There is a gate in C n with address (m~ m~i)
which is an input gate.

Onei(n,m 1 ,rnei): There is a gate in C n with address (ml rnci)
which has the constant value 1.

Equivi(n,m ~ ,mei,pl,...,pe): There is a gate in C n with address
(m 1 , met) and with internal name (Pl,-..,Pe).

To see that these are all S-computable predicates, note that, given our
standard presentation of C n, each of them can be computed in the process of

72 GUREVICH AND LEWIS

constructing C, itself by using O(log n) space. Also, note that if there is a
gate in C, with address (m I ,..., mci) which is an "and," "or," or "not" gate,
then there is also at least one gate in Cn with address of length c(i + 1) and
beginning with ml,..., mcl , i.e., of the form (ml,..., mci, mci+l,..., mcti+l)) for
s o m e mci+l. . . , mc(i+l).

We now construct a formula ~0 of the logic L(S + FPV) with one unin-
terpreted e-place predicate letter P such that the value of • under an inter-
pretation with universe {0,..., n - 1 } is the same as the value of the circuit
Cn, when the atomic formula PPl "'" Pe has the same truth-value as the input
gate of C~, if any, with internal name @1,...,Pc). (As mentioned above, if the
number of input gates of C n is not a monic polynomial in n, then more than
one nonlogical predicate P would have to be used in the construction of ~0.)
~0 is the last of a sequence ~d, '" , ~0, where ~i has ci free variables and
gives the value of a gate with an address of length i in terms of the values of
gates with longer addresses.

~d(Xl Xcd) is
Oned(xl ,..., x~a) V

3Yl "'" ye(Inputa(Xl ,x~d) A
Equivd(Xl ,..., Xed, Yl , ' " , Ye) A PYl "'" Ye);

and for i < dq)i(x 1 Xci) is

Onet(x 1 xc~) V
(~Yl "'" Ye(lnput~(xl ,..., xoi) A

Equivi(xl Xci, Yl ,'",Ye) A PYl " '" Ye)
V (Andi(x I ,..., Xci) A

VXci+l"'" Xcti+ 1)(Addressi+ 1(x1 ,..., Xc(i+ 1)) =:::> I~i+ 1(Xl ,...~. Xc(i+ 1))))
V(Ori(x 1 ,..., x~i) A

~xci+ l "'" xc,+ 1)(Addressi+ 1(xl,..., xc,+ 1)) A ~i+ l(Xl,..., x~<i+ 1))))
V (Noti(x 1,..., Xei) A ~dPi+ I(X1 ,..., Xci , 0 0)) .

This completes the construction. At stage i of the construction, quantification
over c individual variables Xc~+ 1,..., xc , + 1) serves to represent the fan-in of a
gate with an address of length i from at least one, but at most n ~, gates with
addresses of length i + 1. The boolean function to be computed at that gate
is determined by the predicates Ands, Or~, and Not~ and is then rendered in
the logical formula by restricted universal or existential quantification
or by negation. Quantification is restricted by the condition
Addressi+ l(Xl Xc~i+l)) to child gates that actually exist. The fact that ~d,
qt'd 1,'", ~0 have the correct values follows by induction, using the
previously stated semantics for the predicates Addressi, And i, Or~, Not~,
One i, and Equiv i. To be precise, N,o(n) = n e, and ~0 is a boolean function
of the n ~ boolean values for the atomic formulas P P l " " P e , where
0 <~Pl,'",Pe < n, and more specifically of the values of the first I~ atomic

LOGIC FOR CONSTANT-DEPTH CIRCUITS 73

formulas P P l " " P e (those such that for some i, ml,...,mei, both
Inputi(n, m I , rnci) and Equivi(n, m I mci, Pl , P e) hold). The size of the
formula is independent of n and is determined by the constants c, d, and e
which give the degrees of the polynomials limiting the fan-in, depth, and
number of gates of the circuit. It is therefore polynomially related to the size
of the circuit, which is O(n~). |

The proof of the theorem requires of S somewhat less than is stated in the
hypothesis. All that is really required is that the composition of any logspace
computable mapping with any mapping in S is also in S, so that in the proof
of (II) the application of a logspace mapping to the construction of C n is a
mapping in S. The theorem and its proof are valid for many classes of
mappings, e.g., for the classes of mappings computable in polynomial time,
or polynomial space, or O(log 2 n) space, or polylog space, etc.

Also, we may take S to be the set of all mappings, computable or
otherwise. Then UC(S) contains all nonuniform families of polynomial-size,
constant-depth circuits. In other words, let C1, Cz,..., be any sequence of
polynomial-size, constant-depth circuits. Say the size of C n is O(n k) and its
depth is d, independent of n. Then the construction described above yields a
formula ~0 of L(S + FPV) containing predicates Equiv i, A n d i, etc., which
are in general uncomputable. The size of ~0 depends on k and d only.
Compare in this connection the note on nonuniform circuit complexity in
Immerman (1983).

The theorem also provides a characterization, albeit a fairly complex one,
of L(S), the logic without free predicate variables and with logical contants
for the S-computable mappings only. However, in several cases L(S) can be
presented in a more elegant way. As a concrete example let us return to the
case of S = the logspace computable mappings. According to Immerman
(1983), L(S) can be described as the extension of the first-order theory of
linear order by means of the so-called deterministic transitive closure
operation.

Another way to extend the language of first-order logic to define the log
space computable predicates is to allow definition of functions by the
primitive recursion schema. Gurevich (1983) shows that if numbers up to n k
are presented by k-tuples of digits less than n, then the logspace computable
functions are exactly those obtainable from a few base functions by
composition and the schema

f(x, 0) = g(x)

f(x, t + 1) = h(x, t ,f(x, t)).

Either characterization of L(S) obviously gives rise to a more elegant version
of L(S ÷ FPV).

74 GUREVICH AND LEWIS

One final remark. L (L O G S P A C E + F P V) is a relat ively modes t ex tens ion

of f irst-order logic which is compu ta t i ona l ly na tura l . In this connec t ion it

would be interest ing to extend first-order logic as little as possible while still

ob ta in ing a compu ta t i ona l ly na tu ra l system.

ACKNOWLEDGMENTS

We thank the referee for a correction to a previous version of this paper. We are grateful to
S. Tucker Taft for assistance with the preparation of the manuscript.

RECEIVED: August 22, 1983; ACCEPTED: July 1984

REFERENCES

BORODIN, A. (1977), On relating time and space to size and width, S I A M J. Comput. 6,
733-744.

CHANDRA, A. K,, FORTUNE, S., AND LIPTON, R. (1983a), Unbounded fan-in circuits
and associative functions, in "Proc. 15th Annual ACM Sympos. Theory of Comput.,"
pp. 52-60.

CHANDRA, A. K., STOCKMEYER, L. J., AND VISHKIN, U. (1982), A complexity theory for
unbounded fan-in parallelism, in "Proc. 23rd Annual IEEE Sympos. Found. Comput.
Sci.," pp. 1-13.

CHANDRA, A. K., STOCKMEYER, L. J., AND VISHKIN, U. (1983b), "Constant Depth
Reducibility," IBM Technical Report.

FURST, M., SAXE, J. B., AND SIPSER, M. (1981), Parity, circuits, and the polynomial-time
hierarchy, in "Proc. 22nd Annual IEEE Sympos. Found. Comput. Sci.," pp. 260-270.

GUREVICH, Y. (in press), Toward a logic tailored for computational complexity, in "Proc.
1983 European Logic Colloquium," Springer-Verlag, Berlin/New York.

GUREVICH, Y. (1983), Algebras of feasible functions, in "Proc. 24th Annual IEEE Sympos.
Found. Comput. Sci." pp. 210-214.

IMMERMAN, N. (1983), Languages which capture complexity classes, in "Proc. 15th Annual
ACM Sympos. Theory of Computing," pp. 347-354.

SIPSER, M. (1983), Borel sets and circuit complexity, in "Proc. 15th Annual ACM Sympos.
Theory of Computing," pp. 61-69.

Printed in Belgium

