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Consider a family of boolean circuits C~, C2,..., C,,..., constructed by some 
uniform, effective procedure operating on input n. Such a procedure provides a 
concise representation of a family of parallel algorithms for computing boolean 
values. A formula of first-order logic may also be viewed as a concise represen- 
tation of a family of parallel algorithms for evaluating boolean functions. The 
parallelism is implicit in the quantification (a formula gx q~(x) is true if and only if 
each of the formulas q~(a) is true, and all these formulas can be checked 
simultaneously), and universes of different sizes give rise to boolean functions with 
different numbers of inputs (the boolean values of the formula's predicates on 
various combinations of elements of the universe). This note presents an extended 
first-order logic designed to be exactly equivalent in expressiveness to polynomial- 
size, constant-depth, unbounded-fan-in circuits constructed by Turing machines of 
bounded computational complexity. © 1984 Academic Press, Inc. 

Several papers (Chandra et al., 1983a; Chandra et al., 1982; Chandra et 
al., 1983b; Furst et al., 1981; Sipser, 1983) have recently dealt with the 
computational power of boolean circuits with unbounded fan-in to the gates. 
This model cannot be physically realized but is mathematically natural for 
many applications and has been studied extensively. To the extent that its 
computational power can be cleanly characterized in other ways, it is also a 
"limiting case" for the power of physically realizable limited fan-in circuits 
(see Sipser, 1983, for a further discussion of the rationale for the model). It 
is therefore reasonable to seek an alternative formalism which captures 
exactly the computational strength of such circuits. In this note we describe 
an extension of first-order logic which can be used to characterize exactly the 
functions computable by some families of circuits of this type. This proposal 
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is part of a more general program to find logical characterizations of various 
computational complexity classes (Gurevich, in press; Immerman, 1983). 

To understand the general goal, consider the problem of evaluating a fixed 
first-order formula • over an arbitrary finite structure of cardinality n. This 
can be done by transforming the formula into a circuit: each universal quan- 
tifier becomes an n-ary A gate, each existential quantifier an n-ary V gate, 
and the inputs are associated with boolean values of the atomic formulas in 
the given interpretation. This transformation yields for various n circuits of 
fixed depth (equal to the maximum syntactic nesting of operators and quan- 
tifiers in the formula) and similar structure, which can be constructed in 
O(log n) space by a fixed Turing machine on input n (written in unary). 
However, the circuits so constructed from a first-order formula seem not to 
form any natural class of computational devices. We therefore seek to enrich 
the logical language so that the families of circuits constructed by this 
process form a computationally natural class. That is, any circuit family of 
this class can be constructed by an effective, uniform process, and it is a 
consequence of our main result that any circuit family so constructed can be 
described by a single formula of our extended logic. 

For concreteness let S be the set of all mappings computable in space 
O(log n), where n is the length of the input. We mention other possibilities 
for S later. Our logic is parametrized by S and includes, roughly speaking, 
all predicates in S as primitives. That is, if ~ is a formula of our logic and 
contains an occurrence of an atomic formula A(xl,..., Xk), where A is the 
formal name of a predicate A in S, then when • is interpreted over the 
universe {0 ..... n -  1} each instance A(m 1,..., mk) of that atomic formula is 
evaluated by computing the value of A on the integers m 1,..., ink. 

To be precise, let k be a fixed integer >/0 and let A c_ N k÷ ~ be a relation 
such that any (n, m 1 ..... mk) E A satisfies n > m~,..., m k >/O. Then A is said 
to be S-computable if the predicate "(n, ml,..., m~)E A" is in S, n being 
written in unary notation. Note that under these circumstances (ml,..., mk) 
can be interpreted as a single k-digit, base n numeral representing a number 
in the range 0 ..... n k -  1. 

We define a logic L(S)  which has the following symbols: 

Individual variables: x, y, etc. 

Logical constants: The symbols A, V, ~, V, ~. For each k ) 0  and for 
each (k + 1)-place predicate A in S, a k-place predicate symbol A. 

Formulas of L(S) are the usual formulas of first-order logic within this 
restricted language. They are intepreted over structures with universe 
{0,..., n -  1 } for some n, and since the interpretations for all symbols are 
fixed, the truth-value of an L(S) sentence is completely determined by the 
value of n. We extend the language to include free predicate variables as 
follows: 
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The logic L ( S + F P V )  has the individual variables and the logical 
constants of L(S), and, in addition, 

NonlogieaI symbols: For each k >~ 0 and each i >~ 0, a k-place predicate 
symbol P~. 

The formulas of L(S + FPV) are the formulas of first-order logic within this 
expanded language. 

We define below a class UC(S) of uniformly constructable families of 
boolean circuits. The definition resembles Borodin's definition of uniformly 
constructable circuit families (1977) but makes the complexity of the 
construction explicit. (When S is of unrestricted complexity, this definition 
reduces to the nonuniform case.) A Turing machine that constructs a circuit 
family in UC(S) can evaluate a predicate A in S on any given tuple of 
arguments and use the result of this evaluation to direct the construction of a 
circuit. For this reason these predicates are included as no-cost extensions to 
the corresponding first-order language L(S + FPV). 

By the signature of a formula of L(S + FPV) we mean the set of its 
nonlogical predicate symbols (the free predicate variables P~). An 
L(S+FPV)- fo rmula  whose nonlogical predicate symbols are in the 
signature a we call an L(S + a)-formula. 

Let a be a signature, i.e., a finite set of nonlogical predicate symbols. Then 
a o-structure M consists of a universe IMI = {0,..., n - 1 } for some n, and for 
each k-place predicate symbol P~ in a a subset P~ of IMI k. For example, i f a  
contains a single binary predicate pZ, then p2 is the representation of a 
directed graph. A formula of signature a is interpreted in a a-structure of 
cardinality n in the natural way; in particular each logical constant A is 
interpreted as the corresponding predicate A in S with the first component 
fixed at n. Note that the interpretation of A in a structure M depends only on 
the cardinality of M. 

To specify the relation between formulas and circuits we need an 
equivalence relation on boolean functions. Let f and g be boolean functions 
of n and m boolean arguments, respectively, and let p = max(n, m). Then we 
say that f is equivalent to g, in symbols f ~  g, provided that for any boolean 
values x I .... , xp, f ( x  1,..., xn) = g(x  I .... , xm). That is, if n/> m, then the value 
o f f  is independent of its last n - m arguments and f agrees with g when its 
first m arguments are the same as those of g; and symmetrically if m/> n. 

Now let a be a signature with p; nonlogical predicates of arity dl. A 
closed L(S + a)-formula q~ defines, for each n, a boolean function of 
N , ( n ) =  Y~pi  naj arguments. Specifically, let F1,...,F~%~, ) be the list, in 
lexicographic order, of the N . ( n )  atomic formulas P(ml  ..... mj), where P is a 
predicate variable of q~ and ml,..., mj < n. Then let q~n be the boolean 
function of N . ( n )  arguments such that the value of q~ in a structure M of 
cardinality n is the value of ~n(x~ .... , xN,~,)), where each xi is the truth value 
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of F~ in M. We say that a family f~, f2,..., of boolean functions is 
L(S + FPV)-definable if there is a formula • of L(S + FPV) such that for 
each n, fn ~ ~n. 

EXAMPLES. If n > 0, and each of the n 2 numbers x~ ,  x12,...,Xnn is in 
{0, 1}, then the sequence Xll ..... x , ,  represents a binary relation R on 
{1,...,n}, where R(i,j) holds iff x o =  1. Let f ,  be that function of n 2 
arguments such that f , (x l l  , Xlz,..., x , , ) =  1 if and only if the corresponding 
relation R on {1,..., n} is transitive. Then the family {f,} is defined by the 
L(S + {R})-formula 

(Vx)(Vy)(Vz)(Rxy A gyz Rxz). 

Let g, be that function of n 2 arguments such that gn(xl~,..., x , , ) =  1 if and 
only if the directed graph with vertices {1,..., n} and with an edge from i t o j  
if xij = 1 is monotone, i.e., has no edges from higher-numbered to lower- 
numbered vertices. Then {g,} is defined by the L(S + {R})-formula 

(Vx)(Vy)(Rxy :.  x 

Here ~< represents a logical constant in S. Finally, let h, be that function of 
n3q - n 2 arguments that has the value 1 just in case the last n 2 arguments 
represent a relation which is the projection of the relation represented by the 
first n 3 arguments on the first two argument positions. Then h n is defined by 
the L(S + {R, S})-formula 

(Vx)(Vy)(sxy (3z)  yz). 

Note that in the examples just given, no logical constant from S is used 
defining {fn} or {hn}; in the example of {g,}, S must contain ~. 

Now we consider a circuit characterization of the L(S + FPV)-definable 
formulas. Consider a Turing machine which, on input n (in unary), produces 
via a mapping in S a circuit C~ of polynomial-bounded size, depth bounded 
by a constant independent of n, and unbounded fan-in. (The size of a circuit 
is the number of edges. Alternatively, the size of a circuit is the total size of 
all its gates, where the size of a gate is its fan-in. Since our circuits have 
polynomial-bounded size, both the total number of gates and the fan-in at 
each gate are polynomial bounded. To be precise, the size of a circuit is at 
most the product of the number of gates and the maximum fan-in. The depth 
of a node is the length of the longest path from that node to the root, and the 
depth of the circuit is the maximum depth of any node.) The complexity 
class S should be sufficiently powerful that this notion of circuit construction 
is robust and independent of details of the encoding, but for concreteness we 
give a specific convention. Let p be a polynomial such that the circuit 
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produced on input n has at most p(n) gates. Also, let I n <~p(n) be the 
number of inputs of circuit C n. Without loss of generality we may assume 
that the Turing machine first enumerates the gates as numbers 1, 2, etc., up 
to at most p(n), each with its associated boolean function (A, V, or NOT) or 
a designation that it is an INPUT gate. We assume that the input gates are 
numbered 1, 2,..., I n. Since p(n) is a polynomial of fixed degree, the gate 
numbers can be written in base n notation as sequences of fixed length. The 
Turing machine then lists the edges as ordered pairs of gate numbers. We 
assume that the circuits are acyclic and have a distinguished output-- the 
root. Thus such a Turing machine defines, for each n, a boolean function of 
exactly I n boolean values, to wit, the values of the input gates 1, 2 ..... I n. A 
collection of boolean functions definable in this way we call uniformly S- 
computable or UC(S). 

Note that if S contains all log space computable mappings, then the 
uniformly S-computable functions are in fact uniformly S-computable by 
means of polynomial size, constant depth circuits that are "almost  trees" in 
the sense that their noninput nodes form trees. (Therefore readers who prefer 
to think of trees rather than general circuits are free to do so.) To see this, 
suppose the circuit produced on input n has size at most p(n), and therefore 
has at most p(n) gates and p(n) edges, and is not an "almost tree." Let d be 
the smallest depth such that there is at least one noninput node of depth d 
with fan-out greater than 1. Replace each noninput node N at depth d having 
fan-out b > 1 by b copies of itself, each having fan-out 1 and having fan-in 
from the same nodes as did N. Clearly the resulting circuit computes the 
same function and has no noninput nodes with fan-out greater than 1 at 
depth less than d ÷ 1. Moreover the size of the resulting circuit is at most 
p(n) 2. This construction can then be iterated for nodes of greater depth until 
no noninput nodes remain that have fan-out greater than 1. If  the depth of 
the original circuit was D (independent of n) then the final circuit has depth 
D and size at most p(n) 20, which is polynomial in n. Moreover this 
construction can be carried out in log space. 

Before stating and proving the main result it is worth pointing out that the 
UC(S)  families of functions are identical to a class of function families 
computed by certain circuits with bounded fan-in. By DeMorgan's laws we 
may assume that any occurrence of a NOT gate in a circuit is the parent of 
an INPUT gate; such a circuit we call normalized. An alternation in a 
circuit is an edge between an AND gate an an OR gate (the AND gate is the 
parent of the OR gate or vice versa). The alternation depth of a circuit is the 
maximum number of alternations on any path from the root to an input. 
Then a collection of boolean functions is UC(S)  if and only if it is the set of 
functions computed by a collection of normalized circuits C1, Cz .... 
constructed by a Turing machine of complexity S such that Cn, the circuit 
constructed on input n, is of fan-in bounded by a constant, depth O(log n), 
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and alternation depth bounded by a constant. For any subcircuit not 
containing an alternation can be collapsed into a single gate of polynomial- 
bounded fan-in, and the unbounded fan-in circuit that results from a maximal 
application of this process has depth equal to the (bounded) alternation 
depth of the original circuit. Conversely, a polynomial-bounded fan-in gate 
can be expanded into O(log n) levels of gates each of constant fan-in. 

THEOREM. Suppose that S contains all log space computable mappings 
and is closed under composition. Then a family F of boolean functions is 
L(S + FPV)-definable if and only if it is UC(S). 

Proof. (I) IF F is L(S + FPV)-definable, then F is UC(S). Given a 
formula of L(S + FPV), we can construct a Turing machine which on input 
n generates the naturally corresponding circuit, with A and V being replaced 
by A-gates, V and 3 being replaced by V-gates, ~,- by H-gates, and 
occurrences of atomic formulas A(m 1 ..... mk), where A is a logical constant, 
by the constants 0 and 1 (these predicates can be evaluated within the given 
complexity bound). The expansion of the formula as a circuit proceeds recur- 
sively in depth-first fashion, so that at any time at most one binding for each 
variable of the formula need be remembered. The resulting circuit is a tree 
except at the bottom level, where some leaves are connected to several nodes 
at levels above the bottom. At the bottom level, atomic formulas P~m 1 ... m k 
become input nodes of the circuit. Different truth valuations of these atomic 
formulas correspond to different assignments of boolean values to the circuit 
inputs. 

For example, Fig I shows the circuit that would be generated for the 
formula Vy 3x (Pxy A Pyx A Ax) in case n = 2 and A0 = 1, A1 -- 0. This 
circuit has 15 gates. The four input gates correspond to the values of the 
atomic formulas P00, P01, P10, P l l ;  there are five "and" and two "or"  
gates; and there are four gates with constant values (0 or 1). 

© 

o o  

PO0 | POl 0 PlO 1 P l l  0 

FIGURE 1 
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(II) I f  F is UC(S), then F is L(S + FPV)-definable. Suppose that 
Turing machine M operates within the complexity bound S and, for some 
polynomial p and some constant d, produces on input n a circuit Cn of depth 
d with I n inputs and with at most p(n) gates. Without significant loss of 
generality let us assume that for some constant e, p(n)=n e. (This 
assumption enables us to construct a formula with a single e-place predicate 
letter P. I f p  is not bounded by a monic polynomial, i.e., if p ( 1 ) >  1, then 
several predicate letters need to be used in the construction. If  the n = 1 case 
is simply ignored, this assumption entails no loss of generality.) Thus each 
gate g listed by M can be named by a sequence of e integers in the range 
0,..., n - 1. We call this the internal name of M for g. 

Moreover, there is a constant c such that, for each n, each gate of the 
circuit produced on input n has fan-in at most n e. Thus each gate listed by 
M can also be identified with one or more sequences integers, each in the 
range 0,..., n - 1, by following paths from the root to the gate. I f  the path 
followed has length i, then the identifying sequence is of length ci; we call 
such an identifying sequence an address of the gate in the circuit. The 
address of the root is the empty sequence ( ) and, if gate g has address 
(m 1 .... , mci ) by a path of length i, and gate g '  is the k ' th  child of g, where 
k = q l  nc-1+q2 n c - z + ' ' ' + q e  (O~ql,...,qe<~ n - l ) ,  then gate g '  has 
address (m 1 ..... mei, q~ ..... qe). The same gate may have several addresses 
since there may be several different paths from the root to a gate. Not every 
sequence (m 1,..., met ) need be the address of a gate. The only gates with 0 
children are input gates and gates with the constant value 0 or 1. 

We claim that for each i--0, . . . ,  d, the following predicates are S- 
computable: 

Addresst(n, m~ ..... mei): (m 1 .... , mei ) is the address of a gate 

Andi(n, ml,...,mei): There is a gate in C n with address (m~,...,mci) 
which is an "and" gate. 

Ori(n, ma,..., mci): There is a gate in C n with address (m~,..., rnei ) which 
is an "or"  gate. 

Noti(n, ml,...,m~i): There is a gate in C n with address (m~ .... ,mei ) 
which is a "not" gate. 

Inputi(n, ml,...,mei): There is a gate in C n with address (m~ ..... m~i ) 
which is an input gate. 

Onei(n,m 1 .... ,rnei): There is a gate in C n with address (ml ..... rnci) 
which has the constant value 1. 

Equivi(n,m ~ .... ,mei,pl,...,pe): There is a gate in C n with address 
( m  1 . . . .  , met ) and with internal name (Pl,-..,Pe). 

To see that these are all S-computable predicates, note that, given our 
standard presentation of C n, each of them can be computed in the process of 
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constructing C, itself by using O(log n) space. Also, note that if there is a 
gate in C, with address (m I ,..., mci ) which is an "and," "or," or "not" gate, 
then there is also at least one gate in Cn with address of length c(i + 1) and 
beginning with ml,..., mcl , i.e., of the form (ml,..., mci, mci+l,..., mcti+l) ) for 
s o m e  mci+l. . .  , mc(i+l). 

We now construct a formula ~0 of the logic L(S + FPV) with one unin- 
terpreted e-place predicate letter P such that the value of • under an inter- 
pretation with universe {0,..., n - 1 } is the same as the value of the circuit 
Cn, when the atomic formula PPl "'" Pe has the same truth-value as the input 
gate of C~, if any, with internal name @1,...,Pc). (As mentioned above, if the 
number of input gates of C n is not a monic polynomial in n, then more than 
one nonlogical predicate P would have to be used in the construction of ~0.) 
~0 is the last of a sequence ~d, '" ,  ~0, where ~i has ci free variables and 
gives the value of a gate with an address of length i in terms of the values of 
gates with longer addresses. 

~d(Xl ..... Xcd ) is 
Oned(xl ,..., x~a ) V 

3Yl "'" ye(Inputa(Xl .... ,x~d) A 
Equivd(Xl ,..., Xed, Yl , ' " ,  Ye) A PYl "'" Ye); 

and for i < dq)i(x 1 ..... Xci ) is 

Onet(x 1 ..... xc~ ) V 
(~Yl "'" Ye(lnput~(xl ,..., xoi) A 

Equivi(xl  ..... Xci, Yl ,'",Ye) A PYl  " '"  Ye) 
V (Andi(x I ,..., Xci ) A 

VXci+l"'" Xcti+ 1)(Addressi+ 1(x1 ,..., Xc(i+ 1)) =:::> I~i+ 1(Xl ,...~. Xc(i+ 1)))) 
V(Ori(x 1 ,..., x~i ) A 

~xci+ l "'" xc,+ 1)(Addressi+ 1(xl,..., xc,+ 1)) A ~i+ l(Xl,..., x~<i+ 1)))) 
V (Noti(x 1,..., Xei ) A ~dPi+ I(X1 ,..., Xci , 0 ..... 0 ) ) .  

This completes the construction. At stage i of the construction, quantification 
over c individual variables Xc~+ 1,..., xc ,  + 1) serves to represent the fan-in of a 
gate with an address of length i from at least one, but at most n ~, gates with 
addresses of length i + 1. The boolean function to be computed at that gate 
is determined by the predicates Ands, Or~, and Not~ and is then rendered in 
the logical formula by restricted universal or existential quantification 
or by negation. Quantification is restricted by the condition 
Addressi+ l(Xl ..... Xc~i+l) ) to child gates that actually exist. The fact that ~d,  
qt'd 1,'", ~0 have the correct values follows by induction, using the 
previously stated semantics for the predicates Addressi, And  i, Or~, Not~, 
One i, and Equiv i. To be precise, N,o(n ) = n e, and ~0 is a boolean function 
of the n ~ boolean values for the atomic formulas P P l " " P e ,  where 
0 <~Pl,'",Pe < n, and more specifically of the values of the first I~ atomic 
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formulas P P l " " P e  (those such that for some i, ml,...,mei, both 
Inputi(n, m I . . . .  , rnci ) and Equivi(n, m I ..... mci, Pl . . . .  , P e )  hold). The size of the 
formula is independent of n and is determined by the constants c, d, and e 
which give the degrees of the polynomials limiting the fan-in, depth, and 
number of gates of the circuit. It is therefore polynomially related to the size 
of the circuit, which is O(n~).  | 

The proof of the theorem requires of S somewhat less than is stated in the 
hypothesis. All that is really required is that the composition of any logspace 
computable mapping with any mapping in S is also in S, so that in the proof 
of (II) the application of a logspace mapping to the construction of C n is a 
mapping in S. The theorem and its proof are valid for many classes of 
mappings, e.g., for the classes of mappings computable in polynomial time, 
or polynomial space, or O(log 2 n) space, or polylog space, etc. 

Also, we may take S to be the set of all mappings, computable or 
otherwise. Then UC(S) contains all nonuniform families of polynomial-size, 
constant-depth circuits. In other words, let C1, Cz,..., be any sequence of 
polynomial-size, constant-depth circuits. Say the size of C n is O(n k) and its 
depth is d, independent of n. Then the construction described above yields a 
formula ~0 of L(S + FPV) containing predicates Equiv i, A n d  i, etc., which 
are in general uncomputable. The size of ~0 depends on k and d only. 
Compare in this connection the note on nonuniform circuit complexity in 
Immerman (1983). 

The theorem also provides a characterization, albeit a fairly complex one, 
of L(S), the logic without free predicate variables and with logical contants 
for the S-computable mappings only. However, in several cases L(S) can be 
presented in a more elegant way. As a concrete example let us return to the 
case of S = the logspace computable mappings. According to Immerman 
(1983), L(S) can be described as the extension of the first-order theory of 
linear order by means of the so-called deterministic transitive closure 
operation. 

Another way to extend the language of first-order logic to define the log 
space computable predicates is to allow definition of functions by the 
primitive recursion schema. Gurevich (1983) shows that if numbers up to n k 
are presented by k-tuples of digits less than n, then the logspace computable 
functions are exactly those obtainable from a few base functions by 
composition and the schema 

f(x,  0) = g(x) 

f(x,  t + 1) = h(x, t ,f(x,  t)). 

Either characterization of L(S) obviously gives rise to a more elegant version 
of L(S ÷ FPV). 
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One  final  remark.  L ( L O G S P A C E  + F P V )  is a relat ively modes t  ex tens ion  

of  f irst-order logic which  is compu ta t i ona l ly  na tura l .  In  this connec t ion  it 

would  be interest ing to extend first-order logic as little as possible  while still 

ob ta in ing  a compu ta t i ona l ly  na tu ra l  system. 
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