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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 49, Number 4, Dec. 1984 

A DECIDABLE SUBCLASS OF THE MINIMAL GODEL 
CLASS WITH IDENTITY 

WARREN D. GOLDFARB, YURI GUREVICH AND SAHARON SHELAH 

The minimal Gddel class with identity (MGCI) is the class of closed, prenex 
quantificational formulas whose prefixes have the form Vx1 Vx2x3 and whose 
matrices contain arbitrary predicate letters and the identity sign " = ", but contain no 
function signs or individual constants. The MGCI was shown undecidable (for 
satisfiability) in 1983 [Go2]; this both refutes a claim of Gddel's [Gd, p. 443] and 
settles the decision problem for all prefix-classes of quantification theory with 
identity. 

In this paper, we show the decidability of a natural subclass of the MGCI.1 The 
formulas in this subclass can be thought of as exploiting only half of the power of 
the existential quantifier. That is, since an MGCI formula has prefix VX1 VX2 3x3, in 
general its truth in a model requires for any elements a and b, the existence of both a 
witness for <a, b> and a witness for <b, a>. The formulas we consider demand less: 
they require, for any elements a and b, a witness for the unordered pair {a, b}, that is, a 
witness either for <a, b> or for <b, a>. 

More precisely, the subminimal Godel class with identity (SGCI) is the class of 
MGCI formulas whose matrices have the form K v K *, where K* is obtained from 
K by interchanging the variables x1 and x2. If F = VX1 VX2 ]x3H is in the SGCI, and 
if a, b, and c are elements of a structure %, then % # H[a, b, c] iff % #= H[b, a, c]. 
Thus, if % t H[a, b, c] we may call c a witness for {a, b}; and F will be true in % iff 
there exists a witness for each unordered pair of elements. 

In ?1 we give a condition sufficient for an MGCI formula's having a finite 
model. Using this condition, in ?2 we show that the SGCI is finitely controllable; 
that is, every satisfiable formula in the SGCI has a finite model. (Finite controll- 
ability implies decidability.) Our proof yields a computable function that bounds 
the size of the smallest finite model of an SGCI formula; but this function is not 
primitive recursive. We do not know whether this bound is optimal. Finally, in ?3, 
we show that our proof can easily be extended to yield the finite controllability 
of the class of formulas FA Vy3z1 ... 3znJ, where F is in the SGCI and J is 
quantifier-free. 

Received November 22, 1983. 
We obtained this result in 1980, three years before the undecidability of the MGCI was established. 
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?1. Let F = Vx1Vx2]x3H be a formula in the MGCI. We may assume that the 
matrix H implies x3 # x1 A X3 # X2, for if H does not, we may replace it with 
X3 # X1 A X3 # X2 A (H v H1 v H2), where H6 is obtained from H by replacing X3 
with x,; the resulting formula will be equivalent to the original formula over all 
universes of cardinality > 2. Given F, we use 91 and 93 to range over structures 
appropriate to the language of F, and use A and B for the universes of these 
structures. By a k-type we shall always mean a quantifier-free k-type. Thus, for any 
9, if a,,..., ak E A and C c A, then the k-type over C realized by al,.. ., ak in %1, 
abbreviated tpw(al,...., ak; C), is the set of quantifier-free formulas J such that 
9 1 J[al, .. ., ad, where J is constructed from predicate letters of F, the identity 
sign, variables among x ,. .. ., Xk, and constants representing the members of C. Note 
that if C is finite, then a k-type over C is essentially a finite object, since it is 
completely determined by its atomic formulas. 

The core of the undecidability proof in [Go2] is the construction of a formula in 
the MGCI that is satisfiable but has no finite models. In every model 9 for this 
formula there exist elements a,, a2, ... such that tp,(al; 0) is realized in 9 only by 
a1 and, for each k > 1, tpw(ak+l; {a1,.. . ,ak) is realized in 9 only by ak + In fact, 
a satisfiable MGCI formula F will have a finite model unless every model for 
it contains such elements, as is implied by the following proposition: 

(t) Suppose there is a model 91 for F and a finite C c A such that every 1-type over C 
that is realized by an element of A-C is realized by at least two elements of A-C. Then 
F has afinite model. 

(Indeed, proposition (t) holds for any F in the full Gddel class with identity, i.e., 
any F with prefix Vx1Vx2]x3 3.. ) 

To prove the finite controllability of the SGCI we shall exploit a proposition like 
(t) but stronger. Let C be a set and t a k-type over C. For i,. .., ij < k, let [t I i .ij] 
be the uniquej-type t' over C with the following property: for any structure 9 with 
C c A and any al , . . ., ak E A, if tp ,(al , . . ., ak; C) = t then tpu(ai , . . ., aij; C) = t'. 

For any 9 and any C c A, a set Q of consistent 2-types over C is said to be closed 
(with respect to 9) iff 

(1) for all a, b E A there exists t E Q with [t I 1] = tp,(a; C) and [t 1 2] = tp5(b; C); 
(2) for each t E Q, Et I 1] and [t 1 2] are realized in 9; and 
(3) for each t e Q there exists a consistent 3-type s over C such that [s I 1 2] = t, the 

matrix H of F is a member of s and, for all i, j E {1, 2,3}, [s ij] E Q. 
A 1-type to over C is replicable iff there exists a closed set Q of 2-types over C that 

contains a t with [tIl ]= [t 2] = to and x1 # x2 E t. 
Note that the set T of all 2-types over C that are realized in 9 is closed. (Obviously 

clauses (1) and (2) are satisfied. If t - tps(a, b; C) E T, then the 3-type s demanded by 
clause (3) may be taken to be tp91(a, b, e; C) for any e such that 91 # H[a, b, e]; such 
an e exists since 91 k F.) Thus if a 1-type over C is realized by a least two members of 
A-C, it is replicable. 

LEMMA 1. Suppose there is a model 91for F and afinite set C c A such that every 1- 
type over C that is realized by a member of A- C is replicable. Then F has afinite model. 

PROOF. Let P = {tpa(a; C) I a E A-C}, and let Q be the union of all sets of 2-types 
over C that are closed (with respect to 9). Note that Q is closed and that Tc Q, 
where T is the set of 2-types over C realized in 9. Let k > 0, Uk = P x { 1,..., k}, and 
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Bk = C u Uk. We assume fixed some linear ordering of Uk. Let Ok be the set of 
structures 93 with universe Bk such that 

(a) for each b E Uk, tp3(b; C) =7r b, and 
(b) for all b1, b2 E Bk, tp3(b1, b2; C) E Q. 
Ok is nonempty. Indeed, suppose 9 is any structure over Bk obtained thus: let 

tp3(b; C) =72t b for each b in Uk; if K is an atomic formula whose arguments include 
at least three distinct members of Uk, choose at random whether 93 # K; and, for all 
distinct b1 and b2 in Uk with b1 earlier than b2 (in the assumed linear ordering), 
choose any t E Q with [t I 6] =ir, bb, i = 1, 2, and let tp,(b1, b2; C) = t. The existence 
of such a t is guaranteed by clause (1) of the definition of "closed" if mTb1 j7 zb2, 
and by the replicability of m1b, if m1b, =7r1b2. It follows that 93 E Ok. Indeed, 
condition (a) is obviously fulfilled, as is (b) whenever b1 and b2 are distinct elements 
of Uk with b1 earlier than b2. If b1 and b2 are distinct elements of Uk with b2 earlier 
than b1, then tp,(b1, b2; C) = [t 1 2 1] for some t E Q; and by clause (3), [t 1 2 1] E Q 
whenever t E Q. Finally, if b1 = b2 or if at least one of b1, b2 is in C, then condition (a) 
implies that tp,(bl, b2; C) E T. Thus 93 fulfills condition (b) for all b, and b2. 

We show that for sufficiently large k, some member of Ok is a model for F. We 
consider Ok as a probability space with Prob[O = 10] = l/I?kI for each fixed 

0 E Ok. We show that there is an ? < 1 not dependent on k such that, for all b1 and 
b2 in Bk, 

(I) Prob[93 hO 3x3H[b1, b2]] < k 

From this it follows at once that 

Prob[O3 # -iVx1Vx23x3H] < (lBk1)2 -2. 

Now IBkI = ICI + FPl * k. Hence, for all sufficiently large k, (lBkI)2%k2 will be less 
than 1. For such k, then, Prob[93 # m F] < 1, so that some member of Ok will be a 
model for F. 

To prove (I), let b1 and b2 be any members of Bk, and let 93 be a random member of 
Ok. By (b), since Q is closed, there exists a consistent 3-type s over C such that H E s, 
[sI 12] = tpo(b1, b2; C), and [sI ij] E Q for all i, j e {1,2,3}. 

Case 1. For some c E C, X3 = C E S. Since s is consistent, it follows that 
tp(b1, b2, c; C) = s. Hence 93 # H[bl, b2, c], so that 

Prob[93 # i3X3H[bj,b2]] = 0. 

Case 2. For each c E C, X3 = c E s. Let d be any element of Uk such that d = bl, 
d =A b2, and t1 d = [s 1 3]. We show that, for suitably specified E < 1, 

(II) Prob [tp,(bl, b2, d; C) =A s] < e. 

Since [s I 3] E Q for i = 1,2, if b6 ? C then Prob[tp,(b6, d; C) = [s I 3]] > 1/1QI. 
If b. E C, then since tpo(d; C) = [s 3] and s is consistent, Prob[tp3(b., d; C) = 
[s I K 3]] = 1. Moreover if b1 = b2or if b1 E C or b2 E C, then tp(b1, d; C) = [s 1 3] 
and tp,(b2, d; C) = [s 2 3] together imply tpE,(bl, b2, d; C) = s. If b, 7 b2 and 
bl, b2 ? C, then for each atomic formula J containing constants from C and 
the variables X1, X2, X3, 

Prob[O3 1= J[b1, b2, d] iff J E s] = 1/2. 



1256 WARREN D. GOLDFARB, YURI GUREVICH AND SAHARON SHELAH 

In any case, then, 

Prob[tp,(b1, b2, d; C) = s] > (/IQI)2(N1/2)r 

where r is the number of such atomic formulas J. Let E = 1- (1/I Q1)2(1 /2)r; then (II) 
follows. 

There are at least k - 2 distinct members d of Uk such that d =A b1, d =A b2, and 
7 1 d = [s 1 3]. Moreover, for distinct such d the events [tp,(b 1, b2, d; C) =A s] are 
independent. Thus (II) implies 

Prob[tp,(b1, b2, d; C) 7& s for all such d] < 8k-2. 

Now if tpz(b1,b2,d;C) = s then 3 t H[b1,b2,d], so that 03 = 3x3H[bl,b21. 
Hence 

Prob[3 1= m ]x3H[b1, b2]] < 8k- 2, 

and (I) is proved.2 D 
Note that the k needed so that k must contain a model for F can be calculated 

elementarily from , I Cl, and I P1. Moreover, c and I P1 can be bounded elementarily 
in F and ICl. Hence, the size of the smallest finite model for F is an elementary 
function of F and ICl. 

Lemma 1 implies that a satisfiable formula F in the MGCI has no finite model 
only if each model W for F contains an infinite sequence a1, a2, . . . of elements such 
that tpw(a1; 0) is not replicable, and, for each k, tpw(ak+l; {al,...,ak }) is not 
replicable. Thus, to show that F does have a finite model, it suffices to pick some 
model W of F and show that for any sequence a1, a2, . . . of its elements there is a k 
such that tpw(ak; {a,,..., ak) is replicable. Moreover, if this k can be bounded by 
some function p of F, then the set C required for Lemma 1 will have cardinality 
< 9(F). This will then yield a function elementary in p that bounds the size of the 
smallest finite model for F. 

?2. THEOREM. The subminimal Gbdel class with identity is finitely controllable. 
To highlight the central strategy of the argument, we first prove the theorem 

nonconstructively. Following that, we give the more intricate argument needed to 
calculate the size of finite models. Let F = Vx1Vx2]x3H be a satisfiable formula in 
the SGCI. 

NONCONSTRUCTIVE PROOF. Since F is satisfiable, it has an XI-saturated model 
W [CK, p. 216]. Pick any infinite sequence of members of A; for notational 
convenience, we identify this sequence with 1, 2, 3,. By Ramsey's theorem there 
exist integers r1 < r2 < r3 < ... such that 

(*) tp,(rj; {1,. . ri - 1}) = tpg(rk; {1, .. ., ri-1}) for all i, j, k with i < j < k. 

For let f be defined on triples < p, q, r> with p < q < r thus: f(p, q, r) = 0 if 

tp(q;{l,...,p - 1}) = tpw(r;{,...,p -1), 

2 The proof of Lemma 1 is a slight variant of the random models argument introduced in [GS] to 
obtain a straightforward proof of the finite controllability of the Godel class without identity. 
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and f(p, q, r) = 1 otherwise. It suffices to let {r1, r2, r3,... } be an infinite set that is 
homogeneous for f. 

For each i let Ri = 1 ... . , ri - 1}. We show the existence of an integer m such that 
tpw(rm + 1; Rm + 1) is replicable. 

By (*) and the N1-saturatedness of 91, there exist distinct d, e E A such that 
tpw(d; Ri) = tpa(e; Ri) = tpw(ri + 1; Ri) for each i > 1. We shall define a set Q of 2- 
types over Rm+ 1 by altering certain 2-types realized in W so as to make d and e into 
replicasa" of rm+1. Let do, d1,... and eo, e1,... be two sequences of members of A 
specified as follows: 

do = eo= a witness in 91 for {d, e}, 

di+1= a witness in 9 for {d,di}, 

e+-= a witness in W for {e,eI}. 

We truncate these sequences at the first place, if any, at which a member lies in URj. 
That is, if there is an i such that di E URj then let K be the least such i and let k be the 
least integer such that dK E Rk; and if there is no such i let c = w- and let k = 1. 
Similarly, if there is an i such that ej E URj then let i be the least such i and let I be the 
least integer such that eA e RI; and if there is no such i let A = a) and let I = 1. Finally, 
let m = max(k, 1). 

If t is any n-type over Rm+ 1 and i < n, let i(t) be the n-type over Rm+ 1 that is like t 
except that [Oi(t) I i] = tp%(rm+1; Rm+ ). Thus, t and Oi(t) agree on all atomic 
formulas except those whose only variable is xi. Now let Q be the set of 2-types over 
Rm+ i that contains: 

(a) tpw(a, b; Rm+ 1) for all a, b e A; 
(b) I1(tpQj(d, di, Rm+ 1)) and f2(tpj(di, d; Rm+ 1)) for each i < K; 

(c) f1(tp~a(e,ei;Rm+1)) and i2(tpw(ei,e;Rm+1)) for each i < ; 

(d) 4f1/2(tpa(d, e; Rm+ 1)) and f1 /2(tpw(e, d; Rm+ 1)). 
We claim that Q is closed. This implies that tpu(rm + 1; Rm + 1) is replicable, since Q 
contains the 2-type t-=012(tp%(d,e;Rm+l)) and we have [tl 1]=[t12] = 

tpg(rm+1;Rm+i) and x1 # x2 e t. 

That clauses (1) and (2) of the definition of "closed" are satisfied by Q is evident. 
Now let t e Q. If t = tpw(a, b; Rm+ 1) for a, b e A, then the existence of a 3-type s as 
required by clause (3) follows from the fact that 9 1 F, as was mentioned in ?1. If 
t = -f1(tpj(d,di;Rm+1)) for i < K, then let 

s = ai1(tpa(d, di, di+1; Rm+1)) 

Since tpu(d; Rm) = tpw(rm+ 1; Rm), s and tpw(d, di, di+ 1; Rm+ 1) differ only on formulas 
that contain constants from Rm+ 1- Rm. By the choice of di+ 1, 9 1 H[d, di, di+ 1 ], 
and H[d, di, di+ 1] contains no constants from Rm+ 1- Rm, since either di+1 URj 
or else di+1 e Rm. Hence H e s. Moreover, if i + 1 < K then it is immediate that 
[s jj'] eQ for all j,]' e {1,2,3}. If i + 1 = K, this is immediate in all cases but 
{j, j'} = {1, 3}. But here di+ 1 = q for some q < rm; since tpw(d; Rm) = tpw(rm+ 1; Rm), 

[s I 1 3] = tp(rm + 1, q; Rm + 1), 

which by (a) is a member of Q. Thus s satisfies the requirements of clause (3). 
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Similarly, we may let 

s = 0j(tp%(eei,ei+i;Rm+i)) when t = i0(tp%(eei;Rm+i)), 

and 

s = i1ii2(tp9(d,edo;Rm+i)) when t = i1ii2(tpw(d,e;Rm+i)). 

The t in Q not so far treated are identical to [t' I2 1] for some t' that has been shown 
to satisfy clause (3). Since F is in the SGCI, if a 3-type s over Rm + 1 contain H, then so 
does the 3-type [s 12 1 3]. Hence if s satisfies the requirements of clause (3) with 
respect to t', then [s | 2 1 3] satisfies them with respect to t. Thus clause (3) is satisfied 
in all cases. D 

CONSTRUCTIVE PROOF. We show how to replace the use of the infinite sequence 
r1, r2,. ... by the use of a finite sequence r1, r2,. . . , rN. For each k let %(k) be larger than 
the number of 2-types in the language of F over a set of cardinality k - 1. (We may 
take %(k) = 2yk for a suitable constant y that depends polynomially on F.) Let WI be 
any model for F, and let 1, 2, 3, ... be an infinite sequence of members of A. Let 
r1 < r2 < ... < rN be a sequence, with N 2 Z(r2) + X(rx(r2)), that has the following 
property: 

(**) tp(rj; Ri) = tpg(rk; Ri) whenever i < I < k < N. 

where Ri = 1 ... ., ri - 1} for each i. (As we have seen, that there is such a sequence 
can be shown nonconstructively. Latter on, though, we show how to calculate a 
bound on rN.) 

Let d = rN-, e = rN. Let dod1, ... and eoe1, ... be two sequences of witnesses 
defined as in the nonconstructive proof. 

LEMMA. There exist integers m, K, and A, with 1 < m < N - 1, such that 
(i)for each i < K, di 4 Rm+i, and either dK e Rm or else there exists p < K - 1 such 

that tp,(d, dK -1; Rm+ 1) = tpg(d, dp; Rm+ 1); and 
(ii) for each i < A, ei ? Rm + 1, and either e. e Rm or else there exists q < . - 1 such 

that tpg(e, e. 1; Rm+ 1) = tpw(e, ep; Rm+ 1) 
Before proving the lemma, we show that if m is as in the lemma then 

tpw(rm + 1; Rm + 1) is replicable. Let Q be the set of 2-types over Rm + 1 defined as in the 
nonconstructive proof. It suffices to show that Q is closed. The verification of this 
proceeds exactly as before, except that there are two new cases for clause (3), namely, 
t = lIjl(tp%(d, dK -1; Rm + )) when dK K Rm, and t = ,1 (tpw(e, e. - 1; Rm + )) when 

e. Rm. In the former case, there exists p < K - 1 such that 

tpj(d, dK -1; Rm + 1) = tpg(d, dp; Rm + ): 

hence t = if1 (tpw(d, dp; Rm+ 1)), so that (3) follows for t from its being satisfied for 

0 1 (tpw(d, dp; Rm+ 1)). In the latter case there exists q < . - 1 such that 

tpg(e, e -1; Rm+ i)) = tpw(e, eq; Rm+ J5 

so again (3) follows. Thus clause (3) is satisfied in all cases. 
PROOF OF THE LEMMA. Case 1. For all i < Z(r2) - 1, di ? R2 and ei s R2. By the 

choice of x and the pigeonhole principle, there exist p, x5 q, and . with 
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0 < p < K - 1 < Z(r2) - 1 and 0 < q < A - 1 < Z(r2) - 1 such that 

tp%(d,d,_ ;R2) = tpj(d,d,;R2) and tpj(e,eA_1;R2) = tp%(e,eq;R2). 

Thus the lemma holds for m = 1. 
Case 2. For some i < Z(r2) - 1, di or ei is in R2. Let k be the least such i; to fix ideas, 

suppose dk E R2. Letj be the least integer, 0 < j < k, such that di E R2 + (k -j)* If j = 0, 
then, since do = eo and N > Z(r2) + 1, the lemma holds for m = 2 + k and 
K = i = 0. Assume j > 0, and let I = 2 + (k -j). Note that I < Z(r2). 

Subcase 1. For each i < Z(r1+ 1) - 1, ej s R + 1. Then by the pigeonhole principle 
there exist q and {, 0 < q < { - 1 < Z(r+1) - 1, such that 

tpg(e, eA -_ 1; R + 1) = tpg(e, e1; R+ 1) 

Hence the lemma holds for m = 1, K = j, and this L. 
Subcase ii. For some i < Z(r1+ 1) - 1, di e R, + 1. By the pigeonhole principle there 

is an m, I + 1 < m < I + j + i, such that none of cO , ... , cj 1, d1, . . ,di1 is in 
Rm+I - Rm. Note that 1 + j + i = 2 + k + i < Z(r2) + X(rx(r2)) -1 < N -1. Hence 
the lemma holds for m, for K = the least q < j such that dq e Rm, and for . = the least 
p < isuchthat dp ERm. 

It remains only to compute a bound on rN. This can be done using the methods of 
[KS]; we briefly indicate how to apply them.3 Given any W and any sequence 
1,...,m of members of A, we may take W to induce a tree on {1,. ...,m} with the 
following property: if <p,,... ,p> is a branch in this tree, then 

tp(Pj; { I...Pi - 1}) = tpQ(pk; {1,... -Pi 1}) 

for 1 < i < j < k < 1; moreover, an integer q is an immediate successor of Pi in the 
tree, p, < q < m, iff 

tpg(q; {1, . _ I ., - 1}) = tpQ(p1;{1, ...Pll - 1}) 

and for no r < q is 

tp,(r;{1,. ,Pi-1}) = tpw(q; {1,..., P- 1}) 

(Thus the number of immediate successors of Pi is < X(Pi).) Now if <r1,.. ., rN > is a 
branch of the tree and N > Z(r2) + X(rx(r2)), then (**) is satisfied and we are done. 
Hence it suffices to compute an m such that any such tree on { 1, ... ., m} contains such 
a branch. By the proof of [KS, Theorem 5.6], it will suffice if { ,...,m} is 
(w++1 + _3 + c)-large, where c is a constant polynomially calculable from F. 

Moreover, by [KS, Theorem 4.8], it more than suffices to take m = 
Po+o+2(C) 

where 95 + o+ 2 is the function at level w + w + 2 of the Wainer hierarchy [W]. 
As a result of this and the remark that concluded ?1, we may conclude that there is 

an elementary function 11 such that, for each F in the SGCI, if F is satisfiable then F 
has a model of cardinality < (Pa)+()+2(ql(F)). This bound is not primitive recursive. 

3 A crude bound can be obtained by directly finitizing the use of Ramsey's theorem made in the 
nonconstructive proof. We are grateful to Robert Solovay for telling us that the finer bound given in this 
paragraph is sufficient. 
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We do not know whether the size of smallest models of SGCI formulas can be 
bounded primitive recursively, nor whether there exists a primitive recursive 
decision procedure for the SGCI.4 If in fact no such primitive recursive bound exists, 
then the SGCI would be the first known natural class of quantificational formulas 
that is finitely controllable but cannot be so bounded. 

?3. Let W be the class of formulas F A G, where F is in the SGCI and 
G = Vy3z1 ... 3znK, K quantifier-free. The above proof is easily extended to yield the 
finite controllability of W. The definitions of closed set of 2-types and of replicable 1- 
type remain as in ?1; that is, no account is taken of the formula G. The following 
strengthened version of Lemma 1 can then be shown: 

If there exist a model 91 for F A G and a finite set C c A such that every 1-type 
over C realized by a member of A - C is replicable, then F A G has a finite model. 

Given this, the argument of ?2 can then proceed without any change. To prove the 
strengthened lemma, it suffices to add a further argument to the proof in ?1, so as to 
show that for some v < 1 not dependent on k and each b E Bk, 

(III) Prob[93 1 i 3z1 ... 3znK[b]] < vm, 

where m = [(k - 1)/n]. From (III) and (I) it follows that 

Prob[93 = (n F v - G)] < (IBkI)2ek-2 + (lBkl)v'. 

For sufficiently large k, the quantity on the right is less than 1; for such k, then, ok 

contains a model for F A G. 
To prove (III), let b E Bk. Then there exists a E A with tpA(a; C) = tpQ3(b; C). 

Since 91I= J, there exist a1,...,ancEA such that W = K[a,al,...,an]. Let 
t = tp%(a, a , . .., an; C). Now if a , . . ., an E C u {a}, then there will exist b1, . . ., bn E 

C u {b} such that 

Prob[tpq(b,b1, . . .,bn; C) = t] = 1, 

so that Prob[tpo(b,b1,... .,bn; C) # t] = 0. If at least one of a1,.. .,an is not in 

C u {a}, then there will exist at least m distinct n-tuples <b1, ... , bn> of members of 

Bk such that for different n-tuples <b1,.. ., bn> among these the events 

[tpz(b5 bl,..., bn; C) #A t] 

are independent, and for each n-tuple <b1, .. ., > 

Prob[tp,(b,b1,. . . ,bn; C) = t] > (1/IQJ)q((/2)r, 

where q = n(n + 1)/2, and r is the number of atomic formulas containing constants 

from C and at least three distinct variables among y, z1, ..., zn. Let 

V = 1 - (11/Ql)q(1/2)r. 

Since = i ...z1 3znK[b] implies that tp,3(b, bl,. . ., b; C) # t for any b1, . . by 

(III) follows. 

4 The encoding of [Go 1] that yields the nonexistence of a primitive recursive decision procedure for 

the MGCI apparently cannot be carried out using just formulas in the SGCI. 
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