
Solving NP-Hard Problems on Graphs That Are Almost
Trees and an Application to Facility Location Problems

YURI G U R E V I C H

Untversity of Mtchtgan, Ann Arbor, Michtgan

A N D

LARRY STOCKMEYER A N D UZI VISHKIN

IBM Thomas J Watson Research Center, Yorktown Hetghts, New York

Abstract. A general technique is described for solving certain NP-hard graph problems in time that is
exponential in a parameter k defined as the maximum, over all nonseparable components C of the
graph, of the number of edges that must be added to a tree to produce C; for a connected graph, k is
no more than the number of edges of the graph minus the number of vertices plus one. The technique
is illustrated in detail for the following facility location problem: Given a connected graph G(V, E) such
that each edge has an associated positive integer length and given a positive integer r, place the minimum
number of centers on points of the graph such that every point of the graph is within distance r from
some center (a "point" is either a vertex or a point on some edge). An algorithm of time complexity
O(I El . (6r) rkm) is given. A parallel implementation of the algorithm, with optimal speedup over the
sequential version for a fairly wide range for the number of processors, is presented.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems--computations on discrete structures; G.2.2 [Discrete Mathematics|:
Graph Theory--graph algortthms; network problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Polynomial time algorithms, NP-complete problems, location
problems, parallel algorithms

1. Introduction

G i v e n a c o m p u t a t i o n a l p r o b l e m , a genera l p rac t ice in the t heo ry o f a l go r i t hms is
to classify the i n p u t d o m a i n for the p r o b l e m in to s u b d o m a i n s o n the bas is o f the
c o m p l e x i t y o f so lv ing the p r o b l e m w h e n res t r ic ted to the s u b d o m a i n . A typ ica l

The research of the first author was done in part at the IBM Thomas J. Watson Research Center while
visiting from the Mathematics Department, Ben-Gurion Umversity, Beer-Sheva, Israel. The research of
the third author was done in part at the IBM Thomas J. Watson Research Center as a World Trade
Visiting Scientist from the Department of Computer Science, Teehnion, Haifa, Israel. The general
outline of the algorithm was achieved by all three authors. The time bound was later improved by the
second two authors. The idea of using k as a parameter in bounding the running time is due to the third
author.
Authors' addresses: Y. Gurevich, Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor, MI 48109; L. Stockmeyer, IBM Research Lab. K51/281, 5600 Cottle Road,
San Jose, CA 95193; and U. Vlshkin, Department of Computer Science, Courant Institute of Mathe-
matical Sciences, 251 Mercer Street, New York, NY 104312.
Permission to copy without fee all or part of this material ~s granted provided that the copies are not
made or distnbuted for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0700-0459 $00.75

Journal of the AssoclaUon for Computmg Machinery, Vol 31, No 3, July 1984, pp 459-473

460 Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN

situation is that the problem is NP-complete for some subdomains and has efficient
algorithms for others. However, it is possible, as we demonstrate here, that there
are intermediate domains for which we are still able to give relatively efficient
algorithms. The pragmatic advantage of extending the theory to domains that do
not obviously have efficient algorithms in the narrow sense (polynomial time in
the length of the input) shouM be evident. Designers of algorithms need a library
of algorithms and algorithmic methods that cover the widest possible domains.
Several NP-complete graph problems, including vertex cover, dominating set, and
various facility location problems, can be solved in polynomial time for trees but
are NP-complete or NP-hard even for planar graphs of degree 3. This suggests that
we might extend the "feasible" input domain from trees to slightly denser graphs.
The obvious enumeration algorithms for NP-complete graph problems involve an
exponential term where the parameter appearing in the exponent is typically the
number of vertices or edges. If the problem can be solved in polynomial time for
trees, a first goal could be to replace this critical parameter by the number of edges
that must be added to a tree to produce the graph. For a connected graph with n
vertices and m edges, this number of additional edges is m - n + 1. The main
purpose of this paper is to obtain this goal, improve it, and illustrate it in detail for
a particular facility location problem.

One improvement is that the parameter in the exponent can be reduced from
the number of additional edges to a parameter k(G) defined as follows:

Find the maximal nonseparable components Cm Ct of the graph G; for
each C,, let k, be the number of edges that must be added to a tree to produce
C, (i.e., k, is the number of edges of C, minus the number of vertices of C, plus
one); then k(G) is the maximum of k, for 1 <_ i < t.

Certainly k(G) <_ the number of additional edges of G, and k(G) can be much
smaller if the additional edges are spread over several nonseparable components.
The idea behind this improvement is that two nonseparable components can
communicate through at most one vertex (an articulation vertex) so that choices
of solutions made in different components combine additively rather than multi-
plicatively. Essentially the same principle was used by Lipton and Tarjan [12]. By
applying the fact that any planar graph can be separated by o(,fn) vertices into
two pieces of roughly equal size [13], they show that typical NP-complete graph
problems can be solved in time O(exp(,fn)) for planar graphs.

A related message appears in Garey and Johnson's book on NP-complete
problems [8], where, for example, it is shown that the NP-complete partition
problem (given n positive integers am, a2 , an, partition them into two sets A
and B such that the sum of the numbers in A equals the sum of the numbers in B)
can be solved in time that is a polynomial in n multiplied by an exponential in the
number of bits needed to represent the largest ai. The message there is that although
it is convenient in theory to express the size of a problem instance as a single
number, the size of an instance is sometimes more accurately expressed in terms
of several independent parameters, and it may be useful to know the running time
of an algorithm as a function of more than one parameter.

We choose a particular facility location problem as our main example because
the way that two adjacent nonseparable components communicate through an
articulation vertex is somewhat involved (e.g., more complicated than in the case
of the vertex cover problem) and additional ideas are needed to handle the
communication cleanly. "Facility location" problems take place on an undirected

Solving NP.Hard Problems on Graphs That Are Almost Trees 461

graph (7(V, E). Each edge (u, v) E E has a given length l(u, v), a positive inleger.
We identify the edge (u, v) with a line segment of length l(u, v) in sueh ~i way we
can talk about points on (u, v) at distance x from vertex u and distance l(u, v) - x
from vertex v for all real x with 0 <_ x <- l(u, v). Let P(G) denote the set of all such
points of G. For ~, ~ E P(G), dO,, ~) denotes the length of a shortest path from v to
~. Given a graph G with edge lengths and a positive integer r, the continuous
location problem is to find the min imum number p and find points "rl, . . . , 3"p
P(G) such that for every ~ ~ P(G) there is a 3', such that d(~, 3"i) -< r. Intuitively,
we wish to locate the min imum number of "centers" such that every point is within
distance r from some center. One motivation is to place the min imum number of
emergency facilities on a network of roads such that every point on a road is within
a given distance from some facility. Depending on the motivation, another variation
of the location problem can be defined by requiring that only vertices must be
within distance r from centers. We prefer to describe our algorithm for the
continuous location problem as defined above since this case entails complications
that do not arise from the other variation. In the final section we outline how our
algorithm could be modified to handle the other variation. There is an extensive
literature on algorithms for solving these location problems. However, most of the
existing work deals only with two extremes of the complexity of the problem. At
one extreme, if G is a tree, these location problems can be solved in polynomial
time (e.g., see [3, 7, 11, 15]). In particular, Chandrasekaran and Daughety [3] give
a time O(n) algorithm for the continuous location problem where n is the number
of vertices in the tree. At the other extreme, for general graphs, integer programming
techniques have been applied (e.g., see [4, 9]). In general, it is unlikely that these
algorithms can find optimal solutions in polynomial time since the location
problems are NP-hard even when restricted to planar graphs of degree 3 with unit
edge lengths. This is proved by Kariv and Hakimi [l l] for the variation in which
only vertices must be close to centers. A similar proof shows that the continuous
location problem is NP-hard for planar graphs of degree 3, as the reader can easily
verify.

As described above, our purpose is to consider cases between these two extremes,
where G is a tree with additional edges. In Section 3, using the general idea outlined
above, we give an algorithm for the continuous location problem of time complexity
O(m. (6r) rk/21) where m is the number of edges and k = k(G). In Section 4 we show
that parallelism can be efficiently utilized in an implementation of the algorithm.
In fact, we get parallel time O(m. (6r)rk/21/p) for p <_ (6r)rk/21/k processors, which is
an optimal speedup over the sequential version. In the final section we conclude
by mentioning some related results and open questions. Two related results are
that the vertex cover problem and the independent set problem can be solved in
time O(m. 2k/2), and the dominating set problem can be solved in time O(m. 4k/2).
Coppersmith and Vishkin [5] have improved the time for vertex cover to O(m +
(k'/k). 2 k/3) where k' is the number of additional edges for the entire graph.

These results suggest that the parameter k is a reasonable parameter to use in
bounding the complexity of certain NP-complete graph problems. Once one has
settled on a reasonable parameter, another goal is then to reduce the exponential
dependence of the complexity on the parameter; for example, Tarjan and Troja-
nowski [18] give a time 0(2 "/3) algorithm for the independent set problem, whereas
the naive algorithm uses time 0(2"). We have taken a first step toward this goal
for the parameter k by giving algorithms with rk/2] in the exponent, where one
might expect to see k. It is also interesting to note that for connected regular graphs

462 Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN

of degree 3 (a class for which these problems remain NP-hard), we have k <_ n/2 +
1, which gives time O(n. 2 "/4) for vertex cover and independent set, therefore
improving upon [18] for this restricted class of graphs.

2. Preliminaries

Before presenting the algorithm, we first give some definitions and introduce some
basic concepts. Let G(V, E) be a given graph with edge lengths, and fix an r > 0.
We assume that G is connected and has no multiple edges or self-loops. Let "r, ~ E
P(G) and let _W be a finite subset of P(G). We say that "y covers ~ if d(% ~) _ r. _~'
covers ~ if there is a 3' E _W such that "r covers ~. 5~ is a cover of G if _W covers
every ~ ~ P(G).

A graph G(V, E) is said to have a separation vertex s (also called an articulation
vertex) if there exist vertices u and v, u # s and v # s, such that all the paths
connecting u and v pass through s. A graph that has a separation vertex is called
separable, and one which has none is called nonseparable. Let V' c_c_ V. The induced
subgraph G'(V', E') is called a nonseparable component if G' is nonseparable and
if for every larger V", V' C V" C V, the induced subgraph G"(V", E") is separable.
For brevity, "component" will mean "nonseparable component" in the sequel. Let
G , C 2 , . . . , Ct be the components of G and let sj, s2 sq be its separation
vertices. The superstructure G(V, E) is defined as follows:

17 = {Cj , C~ , C , , s~, s2 , sql,

/~ = {(C,, sj) lsj is a vertex of C,};

~(17, ~v) is a tree (see Figure 1).
The first phase of our algorithm finds the components, separation vertices, and

superstructure of G, using an algorithm of Tarjan [17]. The next goal is to place
centers to cover all the components, starting with components that are leaves of
the superstructure tree and working up the tree. Suppose we have the situation
shown in Figure 2a, where the component C is a leaf of the superstructure, and C
is connected to the rest of the graph, Grest, by the separation vertex s. Every point

~ P(C) having d(~, s) > r must be covered by a center placed on a point of C. A
set 5~ C_ P(C) that covers all points {~ E P(C) I d(~, s) > rl is called a partial cover
of C with respect to (w.r.t.) s. Given a partial cover ~, let P ' be the points of C not
covered by ~, and define

[sup{d(~, s) l~ E P'} if e ' # 4~,
debt(s, ~) = [min{d(3,, s) l~/E S~} - r otherwise.

When the partial cover 5~ is clear from context, we write simply debt(s). Note
that we always have - r _< debt(s) _< r. The reason for the name "debt" should be
clear. If debt(s) is positive, there are points of C that must be covered by centers
placed outside of (7. If debt(s) is negative, there are points of G~t that are covered
by centers placed in C. As an aid to the reader's intuition, the effect of a positive
debt b = debt(s) can be simulated by replacing the component C by a new
"auxiliary edge" of length b connecting s to a new vertex s' such that no center
can be placed on the auxiliary edge (see Figure 2b). The effect of a negative debt
- b = debt(s) can be simulated by replacing C by an auxiliary edge of length
r - b connecting s to a new vertex s' and such that there is a center on s' (see
Figure 2c).

Our procedures operate recursively on components of a graph. Initially the debts
• of all vertices are zero, but since a separation vertex could receive a nonzero debt

Solving NP-Hard Problems on Graphs That Are Almost Trees 463

FIG. 1. A graph with four nonseparable com-
ponents, and its superstructure.

c z ~ ~ c 3 ~ c 4

(a)

~ S ° ~S u
(b) (c)

FIG. 2. (a) C Is a leaf of the superstructure. (b) The effect of
a positive debt b. (c) The effect of a negative debt -b; x
denotes the presence of a center on s'.

and later become an internal vertex of some component , we must generalize the
definition o f partial cover to the case of a component with nonzero debts attached
to its vertices. It is also convenient to consider general graphs rather than compo-
nents. Let G be a graph and let v be a vertex o f G. Each vertex u o f G has an
associated debt(u) in the interval I - r , r]. Attach auxiliary edges to all vertices with
nonzero debt, as described in the preceding paragraph. Let Ga,,x be P(G) together
with all points on auxiliary edges. Let -f~,x be all centers placed on auxiliary edges.
A set _L ~ c._- P(G) is a partial cover ofG w.r.t, v i f ~ U _L~,x covers every point ~

464 Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN

6 3

= f ,
Y
10

(a)

6 2 3

\ y -
lO

(b)

FeG. 3. Illustration of UPDATE. (a) Debt(v) = -7.
(b) Debt(v) = 8.

Ga.x with d(~, v) > r. Let P ' be the points of Ga.x not covered by ~ O ~ . Define

~[sup{d(~, v)[~ E P'] if P ' ~ 4,
debt(v, ~)

[min[d(% v)l 'r E W U W=,xl - r otherwise.

Actually, our algorithm does not compute debts from the definition, it updates
debts. Suppose that b~ is the debt of a vertex at some time during the algorithm,
and suppose that the placement of new centers implies that the debt of the vertex
should be b2. The new debt is updated using the following formula.

{ i i if , b , . > [b 2 , ,
UPDATE(b~,b2)-- if]b~[=]b2[and b~_<0,

otherwise.

The correctness of UPDATE follows, after a little thought, from the definition
of debt. The following example, illustrated in Figure 3, may be helpful. Suppose
r = 10 and debt(v) = 6 originally. If there is a new center ~, such that d('r, v) = 3
then it implies a debt of - 7 at v. Since [- 7 [> [6[, the center "r also covers all
points ~ with d(~, v) _< 6 (see Figure 3a). Therefore, we update debt(v) = -7 . If at
some later time we find a vertex u with d(u, v) -- 2 and debffu) = 6, this implies a
debt of 8 at v. Since [8 [> [- 7 [, this leaves points that are not covered by the debt
o f - 7 (see Figure 3b). Therefore, we update debt(v) = 8.

Define the cost of a partial cover W of G w.r.t, v to be the pair (N, b), where N
is the cardinality of W and b = debt(v, 5f). We are looking for a partial cover of
minimum cardinality, and among those of minimum cardinality we prefer one
with minimum debt(v). Formally, we define a lexicographic order between costs as
follows: (Ni, bl) < (N2, b2), if'either N~ < N2 or both Ni -- N2 and b= < b2. The
correctness of this ordering should be obvious if N~ = N2. If N~ < N2, then from
the partial cover with cost (N~, b~) we can obtain another partial cover with cost
(N~ + 1, - r) by placing a center on the vertex v. But N~ + 1 _ N2 and - r < b2,
so (N~, hi) is no worse than (N2, b2).

The final preliminary step is to show that without loss of generality we can
assume that centers are placed only on half-integer points; that is, points whose
distance from a vertex is z/2 for some integer z -> 0. The proof of this fact was
discovered independently by the authors and by Hang Tong Lau, Brendan D.

Solving NP-Hard Problems on Graphs That Are Almost Trees

DISTANCE < r

u v w Y
f

=,To° A
w

(a)

465

u v w Y
-

(e e ,x O)

(b)

FIG. 4. Illustrating the proof of Lemma 2.t. (a) A path from (eo, xo) to (el, xi)
of the shortest length that passes through the endpoint v of e~ and the endpoint
w of e0. (b) An (e~, x2) E _~ from which (eo, x,) can be reached by a path of
length ~ r that passes through 7.

McKay, and Ioannis Tollis (personal communication). We give here the proof of
Lau, McKay, and Tollis, which is much simpler than our proof. To simplify
matters, suppose (without loss of generality, (w.l.o.g)) that all edges are unit length.
A point on edge e can be identified by the pair (e, x) where 0 _< x -< 1 is real. (The
"origin" endpoint (e, 0) is chosen arbitrarily.)

Given a cover S~ of G, form _~' thus: Replace each (e, x) ~ _~ by (e, x ') where

0 if O _ < x < ½
x ' = ½ if x = ½ ,

1 if ½ < x - - - 1.

LEMMA 12.1. - ~ ' is a cover of G.

PROOF. Let (eo, Xo) be an arbitrary point of P(G), and let (el, x0 be a closest
point in S~ ~ to (e0, Xo). Consider a path from (eo, Xo) to (el, x0 of shortest length,
and say that this path passes through the endpoint v of el and the endpoint w of eo
(see Figure 4a).

(1) If d(v, w) _ r - 2, then d((eo, Xo), (el, x~)) <_ r, and we are done.
(2) If(el, x0 = v, then (el, x0 = (el, x~), and we are done.
(3) Say then that d(v, w) = r - l and (el, xl) ~ v. Say that v is the origin of el

and y is the origin of eo. In this case, all points (eo, t) with 0 _~ t < xl cannot be
reached from (el, x0 by a path of length _ r that passes through w. Since (el, xl) is
a closest center to (eo, Xo), there must be an (e2, x2) ~ -~ from which (eo, xl) can
be reached by a path of length _<r that passes through y (see Figure 4b). (It is
possible that (el, x0 = (e2, x2).) Therefore, there is a path i of length <_ 2r from
(e~, x0 to (e2, x2) that uses edge eo. Consider the corresponding path i ' from
(e,, x~) to (e2, x~); i ' uses eo also.

Case (i)

(0 _ < x i < ½ or ½ < x l - < l) and (0 _ < x 2 < ½ or ½ < x 2 ~ l) .

length(if') < length(if) + ½ + ½ _< 2r + 1.

But length(if') is integer, so length(if') _< 2r.

466

FIG. 5. A graph whose optimal cover
requires that centers be placed on half-
integer points.

Y. GUREVICH, L STOCKMEYER, AND U. VISHKIN

,.-,%

Case (ii)

x , = ½ or x2=½.

length($') < length(S) + ½ _< 2r + ½.

But length(~') is half-integer, so length(6') _ 2r.

In any case, either (e , xf) or (e2, x~) has distance ___r from (eo, x0). []

Remark. The use of half-integer points in Lemma 2.1 is necessary, as the
example shown in Figure 5 illustrates. If r = 1 and all edges have length 1, the
minimum cover has three centers and the only way to achieve this minimum is to
place the centers on half-integer points as shown in Figure 5.

As a consequence of Lemma 2.1, we can restrict attention to covers and partial
covers where all centers are on half-integer points. Similarly, debts take on only
half-integer values in the interval [-r , r].

3. The Algorithm

In this section we describe an algorithm for the continuous location problem in
the case where r and all edge lengths are integers. The worst-case time complexity
of the algorithm is O(m. (6r) rk/21) where m is the number of edges of G and k =
k(G) is the parameter defined in the Introduction.

One subroutine SEP(G, v, T) takes a graph G and a vertex v of G and returns
G's superstructure as a rooted tree T. Furthermore, if v is a separation vertex of G,
then v is the root of T; if v is not a separation vertex, then the root of T is the
(unique) component C to which v belongs; in either case we say that v belongs to
the root of T. Tarjan [17] (see also [1, 6]) shows that SEP can be performed in time
O(m) where m is the number of edges of G. By starting the depth-first search at v,
we are assured that v belongs to the root of T.

Our algorithm is based on two procedures, GRAPH and COMP, that call each
other recursively. GRAPH(G, v, T, ~ , N) takes a graph G, the superstructure T,
and a vertex v that belongs to the root of T, and returns a minimum cost partial
cover .L# of G w.r.t, v; the number of centers in _L: is returned in N. COMP(C, v,
~, N) does the same, except that C is a component (so the superstructure is trivial).

The top level procedure for finding a minimum cover of G is

TOPLEVEL(G)
debt(u) , - 0 for all vertices u;
Let v be an arbitrary vertex;
SEP(G, v, T);
GRAPH(G, v, T, ~,, N);
If debt(v) > 0, then (~ <-- ~ U {v}; N~-- N + 1).

Given that GRAPH is correct, it should be clear that TOPLEVEL is correct.

Solving N P - H a r d Prob lems on Graphs That A re A l m o s t Trees 467

The procedure G R A P H is

GRAPH(G, v, T, _~, N)
-W .-- 4~;
N<-- 0;
While T is nonempty do
begin

Let C be a leaf component of T;
If C is the root of T, then s ~-- v,

else s ,--- the father of C in T;
COMP(C, s, ~, M);
_W,-- _W O ~ ;
N, , - -N + M;
Delete C from T;

end

A separation vertex is deleted from T at the t ime it becomes a leaf of T. Given that
COMP is correct, it should be clear that G R A P H is correct.

A concise description o f the procedure COMP is

COMP(C, s, ~, N)
If C is an edge (u, s), then EDGE(u, s, .W,, N); else
begin

6 0-- the maximum degree, relative to C, of a vertex in C - {s};
u <--- a vertex of C - {s} with degree 6;

Let v,, v2 , . . . , v~ be the vertices of Cincident on u;
Split(C, u) is the graph obtained from C by replacing vertex u by ~ vertices

ui, u2 , . . . , u~; the edge that connects u and v, in C now connects u, and v, in
Split(C, u), for 1 _< i <_ 6;

SEP(Split(C, u), s, T);
Let C(x, i) be Split(C, u) with

debt(u,) = UPDATE(debt(u), x), and
debt(uj) = UPDATE(debt(u), -x) for j # i;

For each half-integer x with 0 _< x _< r and
for each i with 1 _< i _< 6 do

GRAPH(C(x, i), s, T, _W,, N);
Among the partial covers w.r.t, s returned by GRAPH,

choose one with minimum cost;
end

In words, the procedure COMP(C, s, _W,, N) has two cases. I f C is an edge (u, s),
COMP calls the following procedure EDGE(u, s, ~ , N). The idea behind ED G E is
that we move from u toward s placing centers only when we have to. Thus, the
first center is placed at distance r - debt(u) from u, and thereafter centers are
placed at intervals of 2r. We do not place a center on s since, according to our
ordering o f costs, we prefer a cost o f (N, r) to one of (N + 1, - r) . Procedure
EDGE is

EDGE(u, s, .~, N)
N<--- [(l(u, s) + debt(u) - r)/2r];
b .--- l(u, s) + debt(u) - 2rN;
debt(s) <--- UPDATE(debt(s), b);
_W 0-- { ~ 13' is on the edge (u, s) and

d(u, ~1) = r -debt(u) + 2ri for i = 0, 1, 2 N - 1].

We define Ix] = 0 for - 1 < x _ 0. EDGE takes t ime O(1) provided that the set
.W is represented symbolically in terms of u, debt(u), r, and N; that is, we do not
have to store the points in _W explicitly.

468 Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN

Fro. 6. The transformation of C that ~ / ex~Ul u~2 T
shown.Pr°duces Split(C, u); the case ~ = 3 is u~

C SPLIT (C,u)
If C is not an edge, COMP(C, s, ~, N) finds a vertex u of C such that u # s and

the degree of u relative to C is maximum. COMP next forms the graph Split(C, u)
where u is replaced by vertices U l , . . . , u~ (see Figure 6). The reason for splitting C
is that we reduce its k.

LEMMA 3.1. k(Split(C, u)) <_ k(C) - 6 + 1.

PROOF. Let n and m be the number of vertices and edges, respectively, of C
and let n' and m' be the number of vertices and edges of Split(C, u). Since C is
nonseparable, k(C) = m - n + 1. Since Split(C, u) is connected, k(Split(C, u)) _<
rn' - n' + 1. But m' = m and n' = n + 6 - 1 so the result follows. 1"7

LEMMA 3.2

I f k (C)= 1, then 6 = 2 .
I f k (C) ~ 2 , then 6>_3.

PROOF. If k(C) = 1, C is a cycle, so obviously 6 = 2.
If k(C) --- 2, C has at least n + 1 edges, so C has at least one vertex of degree _

3. I f s were the only vertex of C with degree ~ 3, then deleting s would separate C,
contradicting the fact that C is nonseparable. Therefore, C has at least one u # s
with degree ___ 3. []

COMP next calls SEP(Split(C, u), s, T). We would now like to call GRAPH
recursively on copies of Split(C, u), but we have to account for the fact that paths
passing through u in C are lost in Split(C, u). We account for these lost paths by
calling GRAPH on several copies of C that differ only in the debts assigned to
u= un. For each half-integer x with 0 _< x -< r and each integer i with 1 _< i _
6, COMP calls GRAPH(C(x, i), s, T, ~,, N). Among the partial covers found,
COMP returns one of minimum cost (any center placed on some uj by GRAPH is
placed on u by COMP). Informally, the idea here is that r - x is the distance from
u to a closest center 3"0 in some minimum partial cover of C w.r.t, s, and i is the
index of an edge e, on a shortest path from u to 3'o. Attaching a debt of x to u,
forces GRAPH to place a center within distance r - x from u,. The debts - x
attached to u / for j # i simulate the presence of 3"0. But since COMP does not know
what x and i are, it tries all the possibilities.

More formally, to see that COMP is correct given that GRAPH is correct, let
-~mi, be a minimum cost partial cover of Cw.r. t .s . Let (N, b) be the cost of -Wmm.
Attach auxiliary edges to all vertices w of C with debt(w) # 0 as described in Section
2. If b > 0, attach another auxiliary edge of length r - b to s connecting s to a
vertex with a center; this center plays the role of a center that will be placed outside
of C to cover the points of C not covered by ~m,,. Let C=ux be all points of C
together with all points on auxiliary edges, and let _W' be the centers in -~GC'mi n

Solving NP-Hard Problems on Graphs That Are Almost Trees 469

together with all centers on auxiliary edges. Note that _W' covers Ca,,x. Recall that
u is the vertex used to split C, and let

y -- minld(7, u)13" E _W'}.

There are three very similar cases.

(1) 0 < y < r. Let 3"o E _W' satisfy d(3"o, u) = y, and assume for now that 3"o is
not on an auxiliary edge attached to u. Find a path of length y from 3"o to u, say
that this path uses edge e,. We claim that GRAPH called on B = C(r - y, i) returns
a 5 : with cost(_W) _< cost(-Wmm). Since we need to talk about costs relative to both
C and B, we use a subscript to indicate which graph is intended. First note that
~m,n is a partial cover o f B w.r.t, s and

COStB(-~mm) -< costc((~mln).

This is true because, if ~ is an arbitrary point in Caux, then the distance from ~ to
a closest center in B is ___ the distance from ~ to a closest center in C. For the
moment, assume ~ # u. Let 3"~ ~ ~ ' be a closest center to ~ in C. If a shortest
path from ~ to 3"~ does not pass through u, then clearly the distance cannot increase
in B. If the shortest path passes through u, we can assume (since 3"o is a closest
center to u) that 3"~ = 3"o, and the path starts from ~, enters u along an edge uj with
j # z, leaves u along e, and proceeds to 3"o. But debt(uj) = y - r < 0 in B means
that there is a center at distance y from uj on an auxiliary edge, so the l~r t ion of
the path from uj to 3"o that is broken in B is replaced by a path along the auxiliary
edge. If ~ = u, then it follows from definitions that every copy uj of u is at distance
y from some center in B.

If 3"o is on an auxiliary edge attached to u, we have debt(u) = y - r. In
C(r - y, i) we have debt(uj) = y - r for all i a n d j (by the definition of UPDATE).
Therefore, the previous paragraph is valid for an arbitrary i and B = C(r - y, O.

Assuming that GRAPH is correct, G R A P H returns a partial cover .~ with

cOStB(_W) ___ costB(-~m,n).

Finally, note that

costc(~) _< costB (~) .

This is true because rejoining u~ , u, into one vertex u does not increase d(~, s)
for 6 an arbitrary point of Caux, so debt(s) cannot increase when u~ u, are
rejoined into u.

(2) I f y = r, then -Wmm is a partial cover of C(0, 1) w.r.t, s, and an argument
similar to (1) applies.

(3) I f y = 0, then (-Wmm - {u}) U {ud is a partial cover of C(r, 1) w.r.t, s, and
the same argument applies.

There is no circularity between COMP and GRAPH in this correctness argument
because of Lemma 3.2 (a more formal correctness proof would proceed by
induction on k(G)).

Note that for x = 0 or x = r the cases C(x, i) are equivalent for all i, so it is
sufficient to call GRAPH just on C(x, 1). Therefore, the number of calls on
GRAPH is at most fi(2r - 1) + 2 which is _< 2rfi. This fact is used in the complexity
evaluation. In practice, the number of calls could be further reduced: Because o f
the way UPDATE works, only C(x, i) with x _>_ I debt(u) I need be considered.

470 Y. GUREVICH, L. STOCKMEYER, AND U. VISHK1N

Let TC(m, k) (TG(m, k), respectively) denote the running time of COMP
(GRAPH, respectively), on a component (graph) G with m edges and k = k(G).
The following inequalities hold.

TG(m, k) <_ max{Y~ TC(m,, ki) l~ m, = m and maxk, = k} + cm,

TC(m, k) <_ max{2r6.(TG(m, k') + cm)l~ >- 3 and k' - k - ~ + 1} + cm
for k _> 2 (recall Lemmas 3.1 and 3.2),

TC(m, O) <_ cm,

TC(m, 1) _ (4r). cm.

The terms, cm, where c is a constant, account for calls on the procedure SEP,
recursion overheads, and other computations done by the procedure. Let

~(6r) (k+l)/2 for k odd,
a (k) = l~(6r)k/2 for k even.

The above inequalities are satisfied by taking

TG(m, k) <- 4cm. a(k) - 2cm,
TC(m, k) <- 4cm. a(k) - 3cm.

Since the time for TOPLEVEL is TG(m, k) + O(m), the claimed time bound,
O(m. (6r)tk/21), follows.

This worst-case time bound could be overly pessimistic. It could happen that
Split(C, u) separates into several components, so that choices made in different
components would accumulate additivdy rather than multiplicatively. Since the
problem of finding the min imum number of vertices whose removal breaks all
cycles of C is an NP-complete problem (the feedback vertex set problem) [8],
COMP uses the heuristic of picking vertices of maximum degree. It is quite possible
that a more clever choice of splitting vertices would give better performance.

The reader might have noticed that the algorithm is inefficient in some places.
For example, it is possible that Split(C, u) could be a component C' together with
paths of vertices of degree 2 connecting C' to u ~ , . . . , un. Say uj is connected to C'
by a long path. Each recursive call on GRAPH propagates debt(uj) along the path
to C' using calls on EDGE. For each fixed x, all C(x, i) with i # j have the same
debt(uj), so redundant work is being done. We did not attempt to remove these
inefficiencies in the description of the algorithm since it would just complicate the
exposition without improving the worst-case time bound.

4. A Parallel Implementation of the Algorithm

For some efficient sequential algorithms that have polynomial worst-case running
times, it is not obvious how to parallelize the algorithm, reducing the running time
by more than a constant even if many processors are available. It seems, however,
that for exponential time algorithms, where the exponential is due to branching
over many choices, a lot can be done. We assume a model of synchronous parallel
computation in which many random-access machines communicate via a shared
common memory, and all overheads are taken into account (e.g., see [16] and see
also [20] for a recent survey of results concerning this model). The framework of
the parallel implementation we suggest follows the ideas of the following theorem
and its proof.

THEOREM (Brent [2]). Any synchronized parallel algorithm that runs in parallel
time d and consists o f x elementary operations can be implemented by p processors
within time rx/p] + d.

Solving NP-Hard Problems on Graphs That Are Almost Trees 471

PROOf. Let x, denote the number of operations performed by the algorithm at
step i, (Y~¢=1 x, -- x). We now use t h e p processors to simulate the at~otigtm, Since
all the operations at step i can be executed simultaneously, they can be computed
by p processors in rx,/p] units of time. Thus, the whole algorithm can be imple-
mented by p processors in time

I=1 t z l

Remark. The proof of Brent's theorem poses an implementation problem: how
to assign the processors to their jobs.

Let us go back to our algorithm. Assume that we had all the processors we might
have needed in every time unit of the algorithm and we could assign these processors
to their jobs in constant time. It is readily seen, and therefore left to the reader,
that the time that our algorithm requires under these new assumptions is bounded
by

I k] . (the plus a constant) -- O(km). time for SEP

Here rk/2] is the number of times we might need to repeatedly apply SEP, charging
a given edge. So O(m. (6r)rk/21/km) = O((6r)rk/E1/k) processors would suffice to get
this time bound.

The problem of assigning processors to their jobs is solved easily by the following
instruction, added at the branchings of COMP over choices of splitting vertices. If
p processors are to be assigned among c choices we do the following: If p >_. c, the
processors are partitioned among the choices, rp/c] or L p/cl processors for each
choice; else the choices are partitioned among the processors, rc/p] or lc/pJ choices
for each processor. The parallel time we get is therefore

3 for p _ ~ processors

without even trying to parallelize the SEP algorithm.

Remark. A further parallelization of our algorithm is possible. Many algorithms
on rooted trees that work from the leaves to the root can be parallelized using the
"centroid decomposition" technique (e.g., see Megiddo [14]) in order to get O(logZn)
parallel time instead of O(n) sequential time, where n is the number of vertices.
This, in conjunction with the recent parallel biconnectivity algorithm of Tarjan
and Vishkin [19] can be used in order to get parallel time O(k log2n) using
sufficiently many processors. Since this involves utilization of known methods and
seems tedious, we do not elaborate on this but rather leave it as an exercise for the
interested reader.

5. Related Results and Open Questions
The algorithm can be modified to solve the other variation of the facility location
problem where just vertices must be within distance r from some center. Minor
modifications to the procedure EDGE are needed. (The reader probably noticed
that EDGE does all the work of actually placing centers, while GRAPH and COMP
just provide control.) Lemma 2.1 is replaced by the (trivial) fact that w.l.o.g, centers
can be placed on points that are at distance exactly r from some vertex (if there
are no such points, then one center placed anywhere covers the entire graph).
Because of this fact we suspect that a better time bound is possible.

472 Y. GUREVICH, L. STOCKMEYER, AND U. VISHKIN

The basic method of the algorithm can be applied to the vertex cover problem,
the independent set problem, and the dominating set problem. All of these problems
are NP-complete even for planar graphs of degree 3 [8]. In the vertex cover
problem, we are given a graph G(V, E) and we want a set C C_ V of minimum
cardinality such that every edge in E has at least one endpoint in C. The general
outline of the algorithm is followed. When a vertex u is split, there are only two
choices: either u E C or u $ C. This yields the time bound O(m. 2k/2). The same
bound holds for the independent set problem since C is a vertex cover in G(V, E)
iff V - C is an independent set. In the dominating set problem, we want a set
D C_ V of minimum cardinality such that for eve(y vertex v $ D there is a u E D
with (u, v) E E. Now there are 6 + 1 choices at a splitting vertex u of degree 6,

• since either u ~ D or at least one of u's 6 neighbors is in D. This yields the time
bound, O(m. 4k/2).

Perhaps the most interesting technical question raised by this paper is whether r
can be removed from the base of the exponent in the time bound; that is, is there
an algorithm for the continuous location problem with time complexity of the
form O(q(n). c k) or, less optimistically, O(q(n). n ok) for some constant c and some
reasonable polynomially bounded function q(n)? In a preliminary version of this
paper [10], we have taken a first step toward settling this question by giving an
algorithm of time complexity O(] V] log I VI) for the case k(G) _< 2 (i.e., every
nonseparable component is either an edge, a simple cycle, or a simple cycle with
one chord). Furthermore, this algorithm does not require r and edge lengths to be
integers.

ACKNOWLEDGMENTS. AS we mentioned above in Section 2, Hang Tong Lau,
Brendan D. McKay, and Ioannis Tollis proved independently the fact that, in the
case where r and edge lengths are integers, there is a minimum cover with centers
on half-integer points. We are grateful to them for permitting us to use their proof,
~vhich is much simpler than our proof. We also thank the referees for many useful
suggestions.

REFERENCES

I. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J.D. The Design and Analysts of Computer Algo-
rithms. Addison-Wesley, Reading, Mass., 1974.

2. BRENT, R.P. The parallel evaluation of general arithmetic expressions. J. ACM21, 2 (1974), 201-
206.

3. CHANDRASEKARAN, R., AND DAUGHETY, A. Location on tree networks: p-centre and n-dispersion
problems. Math. Oper. Res 6 (1981), 50-57.

4. CHRISTOFIDES, N., AND VIOLA, P. The optimum location of multi-centres on a graph. Oper Res
Quarterly 22 (1971), 145-154.

5. COPPERSMITH, D., AND V1SHKIN, U. Solving NP-hard problems on almost trees: Vertex cover.
Report RC 9404, IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y., 1982.

6. EVEN, S. Graph Algoruhms. Computer Science Press, Potomac, Md., 1979.
7. FREDERICKSON, G. N., AND JOHNSON, D.S. Finding k ~ paths and p-centers by generating and

seachmg good data structures. J. Algorithms 4 (1983), 61-80.
8. GAREY, M. R., AND JOHNSON, O.S. Computers and Intraetabduy--A Gutde to the Theory of NP-

Completeness. W. H. Freeman, San Francisco, 1979.
9. GARFINKEL, R.S., NEEBE, A.W., AND RAO, M.R. The m-center problem: Minimax facility

location. Manage. Set. 23 (1977), 1133-1142.
10. GUREVICH, Y., STOCKMEYER, L., AND VISHKIN, U. Solving NP-hard problems on graphs that are

almost trees and an apphcation to facility location problems. Report RC 9348, IBM Thomas J.
Watson Research Center, Yorktown Heights, N.Y., "1982.

11. KAR1V, O., AND HAKIMI, S.L. An algorithmic approach to network location problems. I: The p-
centers. SIAM J. Appl. Math 37 (1979), 513-538.

Solving NP-Hard Problems on Graphs That Are Almost Trees 473

12. LIPTON, R. J., AND TAR JAN, R.E. Applications of a planar separator theorem. SlAM J. Comput.
9 (1980), 615-627.

13. LiPToN, R. J., AND TARJAN, R.E. A separator theorem for planar graphs. SIAMJ. Appl. Math.
36 (1979), 177-189.

14. MEGIDDO, N. Applying parallel computation algorithms in the design of serial algorithms. In
Proceedings of the 22nd IEEE Symposmm on Foundations of Computer Science. IEEE, New York,
1981,399--408.

15. MEGIDDO, N., TAMIR, A., ZEMEL, E., AND CHANDRASEKARAN, R. An O(n iog2n) algorithm for the
/~ longest path in a tree with applications to location problems. SIAMJ. Comput. 10 (1981), 328-
337.

16. SmLOACH, Y., AND VISHKIN, U. Finding the maximum, merging and sorting in a parallel
computation model. J. Algorithms 2 (1981), 88-102.

17. TARJAN, R.E. Depth first search and linear graph algorithms. SIAMJ. Comput. 1 (1972), 146-
160.

18. TARJAN, R. E., AND TROJANOWSKI, A.E. Finding a maximum independent set. SIAMJ. Comput.
6 (1977), 537-546.

! 9. TAR JAN, R. E., AND VlS, KIN, U. An efficient parallel biconnectivity algorithm. Rep. TR-69, Dept.
of Computer Science, Courant Institute, New York Univ., New York, 1983.

20. VIS,KIN, U. Synchronous parallel computation--a survey. Rep. TR-71, Dept. of Computer
Science, Courant Institute, New York Univ., New York, 1983.

RECEIVED APRIL 1982; REVISED DECEMBER 1983, ACCEPTED DECEMBER 1983

Journal of the Assooa,on for Computing Machinery, Vol. 31, No. 3, July 1984.

