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Abstract. A general technique is described for solving certain NP-hard graph problems in time that is 
exponential in a parameter k defined as the maximum, over all nonseparable components C of the 
graph, of the number of edges that must be added to a tree to produce C; for a connected graph, k is 
no more than the number of edges of the graph minus the number of vertices plus one. The technique 
is illustrated in detail for the following facility location problem: Given a connected graph G(V, E) such 
that each edge has an associated positive integer length and given a positive integer r, place the minimum 
number of centers on points of the graph such that every point of the graph is within distance r from 
some center (a "point" is either a vertex or a point on some edge). An algorithm of time complexity 
O(I El .  (6r) rkm) is given. A parallel implementation of the algorithm, with optimal speedup over the 
sequential version for a fairly wide range for the number of processors, is presented. 
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1. Introduction 

G i v e n  a c o m p u t a t i o n a l  p r o b l e m ,  a genera l  p rac t ice  in  the  t heo ry  o f  a l go r i t hms  is 
to  classify the  i n p u t  d o m a i n  for  the  p r o b l e m  in to  s u b d o m a i n s  o n  the  bas is  o f  the  
c o m p l e x i t y  o f  so lv ing  the  p r o b l e m  w h e n  res t r ic ted  to  the  s u b d o m a i n .  A typ ica l  
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situation is that the problem is NP-complete for some subdomains and has efficient 
algorithms for others. However, it is possible, as we demonstrate here, that there 
are intermediate domains for which we are still able to give relatively efficient 
algorithms. The pragmatic advantage of extending the theory to domains that do 
not obviously have efficient algorithms in the narrow sense (polynomial time in 
the length of the input) shouM be evident. Designers of algorithms need a library 
of algorithms and algorithmic methods that cover the widest possible domains. 
Several NP-complete graph problems, including vertex cover, dominating set, and 
various facility location problems, can be solved in polynomial time for trees but 
are NP-complete or NP-hard even for planar graphs of degree 3. This suggests that 
we might extend the "feasible" input domain from trees to slightly denser graphs. 
The obvious enumeration algorithms for NP-complete graph problems involve an 
exponential term where the parameter appearing in the exponent is typically the 
number of vertices or edges. If the problem can be solved in polynomial time for 
trees, a first goal could be to replace this critical parameter by the number of edges 
that must be added to a tree to produce the graph. For a connected graph with n 
vertices and m edges, this number of additional edges is m - n + 1. The main 
purpose of this paper is to obtain this goal, improve it, and illustrate it in detail for 
a particular facility location problem. 

One improvement is that the parameter in the exponent can be reduced from 
the number of additional edges to a parameter k(G) defined as follows: 

Find the maximal nonseparable components Cm . . . . .  Ct of the graph G; for 
each C,, let k, be the number of edges that must be added to a tree to produce 
C, (i.e., k, is the number of edges of C, minus the number of vertices of C, plus 
one); then k(G) is the maximum of k, for 1 <_ i < t. 

Certainly k(G) <_ the number of additional edges of G, and k(G) can be much 
smaller if the additional edges are spread over several nonseparable components. 
The idea behind this improvement is that two nonseparable components can 
communicate through at most one vertex (an articulation vertex) so that choices 
of solutions made in different components combine additively rather than multi- 
plicatively. Essentially the same principle was used by Lipton and Tarjan [ 12]. By 
applying the fact that any planar graph can be separated by o(,fn) vertices into 
two pieces of roughly equal size [ 13], they show that typical NP-complete graph 
problems can be solved in time O(exp(,fn)) for planar graphs. 

A related message appears in Garey and Johnson's book on NP-complete 
problems [8], where, for example, it is shown that the NP-complete partition 
problem (given n positive integers am, a2 . . . .  , an, partition them into two sets A 
and B such that the sum of the numbers in A equals the sum of the numbers in B) 
can be solved in time that is a polynomial in n multiplied by an exponential in the 
number of bits needed to represent the largest ai. The message there is that although 
it is convenient in theory to express the size of a problem instance as a single 
number, the size of an instance is sometimes more accurately expressed in terms 
of several independent parameters, and it may be useful to know the running time 
of an algorithm as a function of more than one parameter. 

We choose a particular facility location problem as our main example because 
the way that two adjacent nonseparable components communicate through an 
articulation vertex is somewhat involved (e.g., more complicated than in the case 
of the vertex cover problem) and additional ideas are needed to handle the 
communication cleanly. "Facility location" problems take place on an undirected 
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graph (7(V, E). Each edge (u, v) E E has a given length l(u, v), a positive inleger. 
We identify the edge (u, v) with a line segment of length l(u, v) in sueh ~i way we 
can talk about points on (u, v) at distance x from vertex u and distance l(u, v) - x 
from vertex v for all real x with 0 <_ x <- l(u, v). Let P(G) denote the set of all such 
points of G. For ~, ~ E P(G), dO,, ~) denotes the length of a shortest path from v to 
~. Given a graph G with edge lengths and a positive integer r, the continuous 
location problem is to find the min imum number p and find points "rl, . . . ,  3"p 
P(G) such that for every ~ ~ P(G) there is a 3', such that d(~, 3"i) -< r. Intuitively, 
we wish to locate the min imum number of "centers" such that every point is within 
distance r from some center. One motivation is to place the min imum number of 
emergency facilities on a network of  roads such that every point on a road is within 
a given distance from some facility. Depending on the motivation, another variation 
of the location problem can be defined by requiring that only vertices must  be 
within distance r from centers. We prefer to describe our algorithm for the 
continuous location problem as defined above since this case entails complications 
that do not arise from the other variation. In the final section we outline how our 
algorithm could be modified to handle the other variation. There is an extensive 
literature on algorithms for solving these location problems. However, most of the 
existing work deals only with two extremes of the complexity of the problem. At 
one extreme, if G is a tree, these location problems can be solved in polynomial 
time (e.g., see [3, 7, 11, 15]). In particular, Chandrasekaran and Daughety [3] give 
a time O(n) algorithm for the continuous location problem where n is the number 
of vertices in the tree. At the other extreme, for general graphs, integer programming 
techniques have been applied (e.g., see [4, 9]). In general, it is unlikely that these 
algorithms can find optimal solutions in polynomial time since the location 
problems are NP-hard even when restricted to planar graphs of degree 3 with unit 
edge lengths. This is proved by Kariv and Hakimi [l l] for the variation in which 
only vertices must be close to centers. A similar proof shows that the continuous 
location problem is NP-hard for planar graphs of degree 3, as the reader can easily 
verify. 

As described above, our purpose is to consider cases between these two extremes, 
where G is a tree with additional edges. In Section 3, using the general idea outlined 
above, we give an algorithm for the continuous location problem of time complexity 
O(m. (6r) rk/21) where m is the number of edges and k = k(G). In Section 4 we show 
that parallelism can be efficiently utilized in an implementation of  the algorithm. 
In fact, we get parallel time O(m. (6r)rk/21/p) for p <_ (6r)rk/21/k processors, which is 
an optimal speedup over the sequential version. In the final section we conclude 
by mentioning some related results and open questions. Two related results are 
that the vertex cover problem and the independent set problem can be solved in 
time O(m. 2k/2), and the dominating set problem can be solved in time O(m. 4k/2). 
Coppersmith and Vishkin [5] have improved the time for vertex cover to O(m + 
(k'/k).  2 k/3) where k'  is the number  of additional edges for the entire graph. 

These results suggest that the parameter k is a reasonable parameter to use in 
bounding the complexity of certain NP-complete graph problems. Once one has 
settled on a reasonable parameter, another goal is then to reduce the exponential 
dependence of the complexity on the parameter; for example, Tarjan and Troja- 
nowski [ 18] give a time 0(2 "/3) algorithm for the independent set problem, whereas 
the naive algorithm uses time 0(2"). We have taken a first step toward this goal 
for the parameter k by giving algorithms with rk/2] in the exponent, where one 
might expect to see k. It is also interesting to note that for connected regular graphs 
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of degree 3 (a class for which these problems remain NP-hard), we have k <_ n/2 + 
1, which gives time O(n. 2 "/4) for vertex cover and independent set, therefore 
improving upon [ 18] for this restricted class of graphs. 

2. Preliminaries 

Before presenting the algorithm, we first give some definitions and introduce some 
basic concepts. Let G(V, E) be a given graph with edge lengths, and fix an r > 0. 
We assume that G is connected and has no multiple edges or self-loops. Let "r, ~ E 
P(G) and let _W be a finite subset of P(G). We say that "y covers ~ if d(% ~) _ r. _~' 
covers ~ if there is a 3' E _W such that "r covers ~. 5~ is a cover of G if _W covers 
every ~ ~ P(G). 

A graph G(V, E) is said to have a separation vertex s (also called an articulation 
vertex) if there exist vertices u and v, u # s and v # s, such that all the paths 
connecting u and v pass through s. A graph that has a separation vertex is called 
separable, and one which has none is called nonseparable. Let V' c_c_ V. The induced 
subgraph G'(V', E') is called a nonseparable component if G' is nonseparable and 
if for every larger V", V' C V" C V, the induced subgraph G"(V", E") is separable. 
For brevity, "component" will mean "nonseparable component" in the sequel. Let 
G ,  C 2 , . . . ,  Ct be the components of G and let sj, s2 . . . . .  sq be its separation 
vertices. The superstructure G(V, E) is defined as follows: 

17 = {Cj ,  C~ . . . .  , C , ,  s~, s2 . . . .  , sql, 

/~ = {(C,, sj) lsj is a vertex of C,}; 

~(17, ~v) is a tree (see Figure 1). 
The first phase of our algorithm finds the components, separation vertices, and 

superstructure of G, using an algorithm of Tarjan [17]. The next goal is to place 
centers to cover all the components, starting with components that are leaves of 
the superstructure tree and working up the tree. Suppose we have the situation 
shown in Figure 2a, where the component C is a leaf of  the superstructure, and C 
is connected to the rest of  the graph, Grest, by the separation vertex s. Every point 

~ P(C) having d(~, s) > r must be covered by a center placed on a point of C. A 
set 5~ C_ P(C) that covers all points {~ E P(C) I d(~, s) > rl is called a partial cover 
of C with respect to (w.r.t.) s. Given a partial cover ~,  let P '  be the points of  C not 
covered by ~,  and define 

[sup{d(~, s) l~ E P'} if e '  # 4~, 
debt(s, ~ )  = [min{d(3,, s) l~/E S~} - r otherwise. 

When the partial cover 5~ is clear from context, we write simply debt(s). Note 
that we always have - r  _< debt(s) _< r. The reason for the name "debt" should be 
clear. If debt(s) is positive, there are points of  C that must be covered by centers 
placed outside of (7. If debt(s) is negative, there are points of  G~t that are covered 
by centers placed in C. As an aid to the reader's intuition, the effect of  a positive 
debt b = debt(s) can be simulated by replacing the component C by a new 
"auxiliary edge" of length b connecting s to a new vertex s' such that no center 
can be placed on the auxiliary edge (see Figure 2b). The effect of  a negative debt 
- b  = debt(s) can be simulated by replacing C by an auxiliary edge of length 
r - b connecting s to a new vertex s' and such that there is a center on s' (see 
Figure 2c). 

Our procedures operate recursively on components of a graph. Initially the debts 
• of all vertices are zero, but since a separation vertex could receive a nonzero debt 
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FIG. 1. A graph with four nonseparable com- 
ponents, and its superstructure. 

c z ~ ~ c 3  ~ c 4  

(a) 

~ S  ° ~S  u 
(b) (c) 

FIG. 2. (a) C Is a leaf of the superstructure. (b) The effect of 
a positive debt b. (c) The effect of a negative debt -b; x 
denotes the presence of a center on s'. 

and later become an internal vertex of  some component ,  we must  generalize the 
definition o f  partial cover to the case of  a component  with nonzero debts attached 
to its vertices. It is also convenient  to consider general graphs rather than compo-  
nents. Let G be a graph and let v be a vertex o f  G. Each vertex u o f  G has an 
associated debt(u) in the interval I - r ,  r]. Attach auxiliary edges to all vertices with 
nonzero debt, as described in the preceding paragraph. Let Ga,,x be P(G) together 
with all points on auxiliary edges. Let -f~,x be all centers placed on  auxiliary edges. 
A set _L ~ c._- P(G) is a partial cover ofG w.r.t, v i f  ~ U _L~,x covers every point  ~ 
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FeG. 3. Illustration of UPDATE. (a) Debt(v) = -7. 
(b) Debt(v) = 8. 

Ga.x with d(~, v) > r. Let P '  be the points of  Ga.x not covered by ~ O ~ .  Define 

~[sup{d(~, v)[~ E P']  if P '  ~ 4, 
debt(v, ~ )  

[min[d(% v)l 'r E W U W=,xl - r otherwise. 

Actually, our algorithm does not compute debts from the definition, it updates 
debts. Suppose that b~ is the debt of a vertex at some time during the algorithm, 
and suppose that the placement of new centers implies that the debt of  the vertex 
should be b2. The new debt is updated using the following formula. 

{ i i  if , b , . > [ b 2 , ,  
UPDATE(b~,b2)-- if ]b~[ = ]b2[ and b~_<0, 

otherwise. 

The correctness of UPDATE follows, after a little thought, from the definition 
of debt. The following example, illustrated in Figure 3, may be helpful. Suppose 
r = 10 and debt(v) = 6 originally. If there is a new center ~, such that d('r, v) = 3 
then it implies a debt of  - 7  at v. Since [ - 7  [ > [6[, the center "r also covers all 
points ~ with d(~, v) _< 6 (see Figure 3a). Therefore, we update debt(v) = -7 .  If at 
some later time we find a vertex u with d(u, v) -- 2 and debffu) = 6, this implies a 
debt of  8 at v. Since [ 8 [ > [ - 7  [, this leaves points that are not covered by the debt 
o f - 7  (see Figure 3b). Therefore, we update debt(v) = 8. 

Define the cost of a partial cover W of G w.r.t, v to be the pair (N, b), where N 
is the cardinality of W and b = debt(v, 5f). We are looking for a partial cover of 
minimum cardinality, and among those of minimum cardinality we prefer one 
with minimum debt(v). Formally, we define a lexicographic order between costs as 
follows: (Ni, bl) < (N2, b2), if'either N~ < N2 or both Ni -- N2 and b= < b2. The 
correctness of this ordering should be obvious if N~ = N2. If N~ < N2, then from 
the partial cover with cost (N~, b~) we can obtain another partial cover with cost 
(N~ + 1, - r) by placing a center on the vertex v. But N~ + 1 _ N2 and - r  < b2, 
so (N~, hi) is no worse than (N2, b2). 

The final preliminary step is to show that without loss of generality we can 
assume that centers are placed only on half-integer points; that is, points whose 
distance from a vertex is z/2 for some integer z -> 0. The proof of this fact was 
discovered independently by the authors and by Hang Tong Lau, Brendan D. 
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FIG. 4. Illustrating the proof of Lemma 2.t. (a) A path from (eo, xo) to (el, xi) 
of the shortest length that passes through the endpoint v of e~ and the endpoint 
w of e0. (b) An (e~, x2) E _~ from which (eo, x,) can be reached by a path of 
length ~ r that passes through 7. 

McKay, and Ioannis Tollis (personal communication). We give here the proof of 
Lau, McKay, and Tollis, which is much simpler than our proof. To simplify 
matters, suppose (without loss of generality, (w.l.o.g)) that all edges are unit length. 
A point on edge e can be identified by the pair (e, x) where 0 _< x -< 1 is real. (The 
"origin" endpoint (e, 0) is chosen arbitrarily.) 

Given a cover S~ of G, form _~' thus: Replace each (e, x) ~ _~ by (e, x ' )  where 

0 if O _ < x < ½  
x ' =  ½ if x = ½ ,  

1 if ½ < x - - -  1. 

LEMMA 12.1. - ~ '  is a cover of G. 

PROOF. Let (eo, Xo) be an arbitrary point of P(G), and let (el, x0  be a closest 
point in S~ ~ to (e0, Xo). Consider a path from (eo, Xo) to (el, x0  of  shortest length, 
and say that this path passes through the endpoint v of el and the endpoint w of eo 
(see Figure 4a). 

(1) If d(v, w) _ r - 2, then d((eo, Xo), (el, x~)) <_ r, and we are done. 
(2) If(el, x0  = v, then (el, x0  = (el, x~), and we are done. 
(3) Say then that d(v, w) = r - l and (el, xl) ~ v. Say that v is the origin of el 

and y is the origin of eo. In this case, all points (eo, t) with 0 _~ t < xl cannot be 
reached from (el, x0  by a path of length _ r  that passes through w. Since (el, xl) is 
a closest center to (eo, Xo), there must be an (e2, x2) ~ -~ from which (eo, xl) can 
be reached by a path of length _<r that passes through y (see Figure 4b). (It is 
possible that (el, x0  = (e2, x2).) Therefore, there is a path i of length <_ 2r from 
(e~, x0  to (e2, x2) that uses edge eo. Consider the corresponding path i '  from 
(e,, x~) to (e2, x~); i '  uses eo also. 

Case (i) 

( 0 _ < x i < ½  or ½ < x l - < l )  and ( 0 _ < x 2 < ½  or ½ < x 2 ~ l ) .  

length(if') < length(if) + ½ + ½ _< 2r + 1. 

But length(if') is integer, so length(if') _< 2r. 
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FIG. 5. A graph whose optimal cover 
requires that centers be placed on half- 
integer points. 
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,.-,% 

Case (ii) 

x , = ½  or x2=½. 

length($') < length(S) + ½ _< 2r + ½. 

But length(~') is half-integer, so length(6') _ 2r. 

In any case, either (e ,  xf) or (e2, x~) has distance ___r from (eo, x0). [] 

Remark. The use of half-integer points in Lemma 2.1 is necessary, as the 
example shown in Figure 5 illustrates. If r = 1 and all edges have length 1, the 
minimum cover has three centers and the only way to achieve this minimum is to 
place the centers on half-integer points as shown in Figure 5. 

As a consequence of Lemma 2.1, we can restrict attention to covers and partial 
covers where all centers are on half-integer points. Similarly, debts take on only 
half-integer values in the interval [-r ,  r]. 

3. The Algorithm 

In this section we describe an algorithm for the continuous location problem in 
the case where r and all edge lengths are integers. The worst-case time complexity 
of the algorithm is O(m. (6r) rk/21) where m is the number of edges of G and k = 
k(G) is the parameter defined in the Introduction. 

One subroutine SEP(G, v, T) takes a graph G and a vertex v of  G and returns 
G's superstructure as a rooted tree T. Furthermore, if v is a separation vertex of  G, 
then v is the root of T; if v is not a separation vertex, then the root of  T is the 
(unique) component C to which v belongs; in either case we say that v belongs to 
the root of T. Tarjan [17] (see also [1, 6]) shows that SEP can be performed in time 
O(m) where m is the number of  edges of  G. By starting the depth-first search at v, 
we are assured that v belongs to the root of  T. 

Our algorithm is based on two procedures, GRAPH and COMP, that call each 
other recursively. GRAPH(G, v, T, ~ ,  N) takes a graph G, the superstructure T, 
and a vertex v that belongs to the root of  T, and returns a minimum cost partial 
cover .L# of  G w.r.t, v; the number of  centers in _L: is returned in N. COMP(C, v, 
~,  N) does the same, except that C is a component (so the superstructure is trivial). 

The top level procedure for finding a minimum cover of  G is 

TOPLEVEL(G) 
debt(u) , -  0 for all vertices u; 
Let v be an arbitrary vertex; 
SEP(G, v, T); 
GRAPH(G, v, T, ~,, N); 
If debt(v) > 0, then ( ~  <-- ~ U {v}; N~-- N +  1). 

Given that GRAPH is correct, it should be clear that TOPLEVEL is correct. 
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The procedure G R A P H  is 

GRAPH(G, v, T, _~, N) 
-W .-- 4~; 
N<-- 0; 
While T is nonempty do 
begin 

Let C be a leaf component of T; 
If C is the root of T, then s ~-- v, 

else s ,--- the father of C in T; 
COMP(C, s, ~, M); 
_W,-- _W O ~ ;  
N, , - -N  + M; 
Delete C from T; 

end 

A separation vertex is deleted from T at the t ime it becomes a leaf of  T. Given that 
COMP is correct, it should be clear that G R A P H  is correct. 

A concise description o f  the procedure COMP is 

COMP(C, s, ~, N) 
If C is an edge (u, s), then EDGE(u, s, .W,, N); else 
begin 

6 0-- the maximum degree, relative to C, of a vertex in C - {s}; 
u <--- a vertex of C - {s} with degree 6; 

Let v,, v2 , . . . ,  v~ be the vertices of Cincident on u; 
Split(C, u) is the graph obtained from C by replacing vertex u by ~ vertices 

ui, u2 , . . . ,  u~; the edge that connects u and v, in C now connects u, and v, in 
Split(C, u), for 1 _< i <_ 6; 

SEP(Split(C, u), s, T); 
Let C(x, i) be Split(C, u) with 

debt(u,) = UPDATE(debt(u), x), and 
debt(uj) = UPDATE(debt(u), -x )  for j  # i; 

For each half-integer x with 0 _< x _< r and 
for each i with 1 _< i _< 6 do 

GRAPH(C(x, i), s, T, _W,, N); 
Among the partial covers w.r.t, s returned by GRAPH, 

choose one with minimum cost; 
end 

In words, the procedure COMP(C, s, _W,, N) has two cases. I f  C is an edge (u, s), 
COMP calls the following procedure EDGE(u,  s, ~ ,  N). The idea behind ED G E is 
that we move from u toward s placing centers only when we have to. Thus, the 
first center is placed at distance r - debt(u) from u, and thereafter centers are 
placed at intervals of  2r. We do not place a center on s since, according to our  
ordering o f  costs, we prefer a cost o f  (N, r) to one of  (N  + 1, - r ) .  Procedure 
EDGE is 

EDGE(u, s, .~, N) 
N<--- [(l(u, s) + debt(u) - r)/2r]; 
b .--- l(u, s) + debt(u) - 2rN; 
debt(s) <--- UPDATE(debt(s), b); 
_W 0-- { ~ 13' is on the edge (u, s) and 

d(u, ~1) = r -debt(u) + 2ri for i = 0, 1, 2 . . . . .  N - 1]. 

We define Ix] = 0 for - 1  < x _ 0. EDGE takes t ime O(1) provided that the set 
.W is represented symbolically in terms of  u, debt(u), r, and N; that is, we do not  
have to store the points in _W explicitly. 
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Fro. 6. The transformation of C that ~ /  ex~Ul u~2 T 
shown.Pr°duces Split(C, u); the case ~ = 3 is u~ 

C SPLIT (C,u) 
If C is not an edge, COMP(C, s, ~,  N) finds a vertex u of  C such that u # s and 

the degree of  u relative to C is maximum. COMP next forms the graph Split(C, u) 
where u is replaced by vertices U l , . . . ,  u~ (see Figure 6). The reason for splitting C 
is that we reduce its k. 

LEMMA 3.1. k(Split(C, u)) <_ k(C) - 6 + 1. 

PROOF. Let n and m be the number of  vertices and edges, respectively, of  C 
and let n' and m'  be the number of vertices and edges of  Split(C, u). Since C is 
nonseparable, k(C) = m - n + 1. Since Split(C, u) is connected, k(Split(C, u)) _< 
rn' - n' + 1. But m' = m and n' = n + 6 - 1 so the result follows. 1"7 

LEMMA 3.2 

I f  k (C)=  1, then 6 = 2 .  
I f  k ( C ) ~ 2 ,  then 6>_3. 

PROOF. If k(C) = 1, C is a cycle, so obviously 6 = 2. 
If k(C) --- 2, C has at least n + 1 edges, so C has at least one vertex of degree _ 

3. I f s  were the only vertex of C with degree ~ 3, then deleting s would separate C, 
contradicting the fact that C is nonseparable. Therefore, C has at least one u # s 
with degree ___ 3. [] 

COMP next calls SEP(Split(C, u), s, T). We would now like to call GRAPH 
recursively on copies of  Split(C, u), but we have to account for the fact that paths 
passing through u in C are lost in Split(C, u). We account for these lost paths by 
calling GRAPH on several copies of  C that differ only in the debts assigned to 
u= . . . . .  un. For each half-integer x with 0 _< x -< r and each integer i with 1 _< i _ 
6, COMP calls GRAPH(C(x, i), s, T, ~,, N). Among the partial covers found, 
COMP returns one of  minimum cost (any center placed on some uj by GRAPH is 
placed on u by COMP). Informally, the idea here is that r - x is the distance from 
u to a closest center 3"0 in some minimum partial cover of  C w.r.t, s, and i is the 
index of  an edge e, on a shortest path from u to 3'o. Attaching a debt of  x to u, 
forces GRAPH to place a center within distance r - x from u,. The debts - x  
attached to u / for j  # i simulate the presence of  3"0. But since COMP does not know 
what x and i are, it tries all the possibilities. 

More formally, to see that COMP is correct given that GRAPH is correct, let 
-~mi, be a minimum cost partial cover of  Cw.r. t .s .  Let (N, b) be the cost of  -Wmm. 
Attach auxiliary edges to all vertices w of C with debt(w) # 0 as described in Section 
2. If b > 0, attach another auxiliary edge of  length r - b to s connecting s to a 
vertex with a center; this center plays the role of a center that will be placed outside 
of  C to cover the points of  C not covered by ~m,,. Let C=ux be all points of C 
together with all points on auxiliary edges, and let _W' be the centers in -~GC'mi n 
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together with all centers on auxiliary edges. Note that _W' covers Ca,,x. Recall that 
u is the vertex used to split C, and let 

y -- minld(7,  u)13" E _W'}. 

There are three very similar cases. 

(1) 0 < y < r. Let 3"o E _W' satisfy d(3"o, u) = y, and assume for now that 3"o is 
not on an auxiliary edge attached to u. Find a path of  length y from 3"o to u, say 
that this path uses edge e,. We claim that GRAPH called on B = C(r - y, i) returns 
a 5 :  with cost(_W) _< cost(-Wmm). Since we need to talk about costs relative to both 
C and B, we use a subscript to indicate which graph is intended. First note that 
~m,n is a partial cover o f B  w.r.t, s and 

COStB(-~mm) -< costc((~mln). 

This is true because, if ~ is an arbitrary point in Caux, then the distance from ~ to 
a closest center in B is ___ the distance from ~ to a closest center in C. For  the 
moment,  assume ~ # u. Let 3"~ ~ ~ '  be a closest center to ~ in C. If  a shortest 
path from ~ to 3"~ does not pass through u, then clearly the distance cannot increase 
in B. If  the shortest path passes through u, we can assume (since 3"o is a closest 
center to u) that 3"~ = 3"o, and the path starts from ~, enters u along an edge uj with 
j # z, leaves u along e, and proceeds to 3"o. But debt(uj) = y - r < 0 in B means 
that there is a center at distance y from uj on an auxiliary edge, so the l~r t ion of  
the path from uj to 3"o that is broken in B is replaced by a path along the auxiliary 
edge. If  ~ = u, then it follows from definitions that every copy uj of  u is at distance 
y from some center in B. 

If  3"o is on an auxiliary edge attached to u, we have debt(u) = y - r. In 
C(r - y, i) we have debt(uj) = y - r for all i a n d j  (by the definition of  UPDATE). 
Therefore, the previous paragraph is valid for an arbitrary i and B = C(r - y, O. 

Assuming that GRAPH is correct, G R A P H  returns a partial cover .~  with 

cOStB(_W) ___ costB(-~m,n). 

Finally, note that 

costc(~) _< costB ( ~ ) .  

This is true because rejoining u~ . . . .  , u, into one vertex u does not  increase d(~, s) 
for 6 an arbitrary point of  Caux, so debt(s) cannot increase when u~ . . . . .  u, are 
rejoined into u. 

(2) I f y  = r, then -Wmm is a partial cover of  C(0,  1) w.r.t, s, and an argument 
similar to (1) applies. 

(3) I f y  = 0, then (-Wmm - {u}) U {ud is a partial cover of  C(r, 1) w.r.t, s, and 
the same argument applies. 

There is no circularity between COMP and GRAPH in this correctness argument 
because of  Lemma 3.2 (a more formal correctness proof would proceed by 
induction on k(G)). 

Note that for x = 0 or x = r the cases C(x, i) are equivalent for all i, so it is 
sufficient to call GRAPH just on C(x, 1 ). Therefore, the number  of  calls on 
GRAPH is at most fi(2r - 1) + 2 which is _< 2rfi. This fact is used in the complexity 
evaluation. In practice, the number  of  calls could be further reduced: Because o f  
the way UPDATE works, only C(x, i) with x _>_ I debt(u) I need be considered. 
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Let TC(m, k) (TG(m, k), respectively) denote the running time of COMP 
(GRAPH, respectively), on a component  (graph) G with m edges and k = k(G). 
The following inequalities hold. 

TG(m, k) <_ max{Y~ TC(m,, ki) l~ m, = m and maxk, = k} + cm, 

TC(m, k) <_ max{2r6.(TG(m, k') + cm)l~ >- 3 and k'  - k - ~ + 1} + cm 
for k _> 2 (recall Lemmas 3.1 and 3.2), 

TC(m, O) <_ cm, 

TC(m, 1) _ (4r). cm. 

The terms, cm, where c is a constant, account for calls on the procedure SEP, 
recursion overheads, and other computations done by the procedure. Let 

~(6r) (k+l)/2 for k odd, 
a ( k ) =  l~(6r)k/2 for k even. 

The above inequalities are satisfied by taking 

TG(m, k) <- 4cm. a(k) - 2cm, 
TC(m, k) <- 4cm. a(k) - 3cm. 

Since the time for TOPLEVEL is TG(m, k) + O(m), the claimed time bound, 
O(m. (6r)tk/21), follows. 

This worst-case time bound could be overly pessimistic. It could happen that 
Split(C, u) separates into several components, so that choices made in different 
components would accumulate additivdy rather than multiplicatively. Since the 
problem of finding the min imum number of vertices whose removal breaks all 
cycles of C is an NP-complete problem (the feedback vertex set problem) [8], 
COMP uses the heuristic of picking vertices of maximum degree. It is quite possible 
that a more clever choice of splitting vertices would give better performance. 

The reader might have noticed that the algorithm is inefficient in some places. 
For example, it is possible that Split(C, u) could be a component  C' together with 
paths of vertices of degree 2 connecting C'  to u ~ , . . . ,  un. Say uj is connected to C'  
by a long path. Each recursive call on GRAPH propagates debt(uj) along the path 
to C' using calls on EDGE. For each fixed x, all C(x, i) with i # j have the same 
debt(uj), so redundant work is being done. We did not attempt to remove these 
inefficiencies in the description of the algorithm since it would just complicate the 
exposition without improving the worst-case time bound. 

4. A Parallel Implementation of  the Algorithm 

For some efficient sequential algorithms that have polynomial worst-case running 
times, it is not obvious how to parallelize the algorithm, reducing the running time 
by more than a constant even if many processors are available. It seems, however, 
that for exponential time algorithms, where the exponential is due to branching 
over many choices, a lot can be done. We assume a model of synchronous parallel 
computation in which many random-access machines communicate via a shared 
common memory, and all overheads are taken into account (e.g., see [ 16] and see 
also [20] for a recent survey of results concerning this model). The framework of 
the parallel implementation we suggest follows the ideas of the following theorem 
and its proof. 

THEOREM (Brent [2]). Any synchronized parallel algorithm that runs in parallel 
time d and consists o f  x elementary operations can be implemented by p processors 
within time rx/p] + d. 
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PROOf. Let x, denote the number  of operations performed by the algorithm at 
step i, (Y~¢=1 x, -- x). We now use t h e p  processors to simulate the at~otigtm, Since 
all the operations at step i can be executed simultaneously, they can be computed 
by p processors in rx,/p] units of time. Thus, the whole algorithm can be imple- 
mented by p processors in time 

I=1 t z l  

Remark. The proof of Brent's theorem poses an implementation problem: how 
to assign the processors to their jobs. 

Let us go back to our algorithm. Assume that we had all the processors we might 
have needed in every time unit of the algorithm and we could assign these processors 
to their jobs in constant time. It is readily seen, and therefore left to the reader, 
that the time that our algorithm requires under these new assumptions is bounded 
by 

I k ] .  (the plus a constant) -- O(km). time for SEP 

Here rk/2] is the number of times we might need to repeatedly apply SEP, charging 
a given edge. So O(m. (6r)rk/21/km) = O((6r)rk/E1/k) processors would suffice to get 
this time bound. 

The problem of assigning processors to their jobs is solved easily by the following 
instruction, added at the branchings of COMP over choices of splitting vertices. If 
p processors are to be assigned among c choices we do the following: If p >_. c, the 
processors are partitioned among the choices, rp/c] or L p/cl processors for each 
choice; else the choices are partitioned among the processors, rc/p] or lc/pJ choices 
for each processor. The parallel time we get is therefore 

3 for p _ ~ processors 

without even trying to parallelize the SEP algorithm. 

Remark. A further parallelization of our algorithm is possible. Many algorithms 
on rooted trees that work from the leaves to the root can be parallelized using the 
"centroid decomposition" technique (e.g., see Megiddo [ 14]) in order to get O(logZn) 
parallel time instead of O(n) sequential time, where n is the number  of vertices. 
This, in conjunction with the recent parallel biconnectivity algorithm of Tarjan 
and Vishkin [19] can be used in order to get parallel time O(k log2n) using 
sufficiently many processors. Since this involves utilization of known methods and 
seems tedious, we do not elaborate on this but rather leave it as an exercise for the 
interested reader. 

5. Related Results and Open Questions 
The algorithm can be modified to solve the other variation of the facility location 
problem where just vertices must be within distance r from some center. Minor 
modifications to the procedure EDGE are needed. (The reader probably noticed 
that EDGE does all the work of actually placing centers, while GRAPH and COMP 
just provide control.) Lemma 2.1 is replaced by the (trivial) fact that w.l.o.g, centers 
can be placed on points that are at distance exactly r from some vertex (if there 
are no such points, then one center placed anywhere covers the entire graph). 
Because of  this fact we suspect that a better time bound is possible. 
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The basic method of the algorithm can be applied to the vertex cover problem, 
the independent set problem, and the dominating set problem. All of  these problems 
are NP-complete even for planar graphs of degree 3 [8]. In the vertex cover 
problem, we are given a graph G(V, E) and we want a set C C_ V of minimum 
cardinality such that every edge in E has at least one endpoint in C. The general 
outline of the algorithm is followed. When a vertex u is split, there are only two 
choices: either u E C or u $ C. This yields the time bound O(m. 2k/2). The same 
bound holds for the independent set problem since C is a vertex cover in G(V, E) 
iff V - C is an independent set. In the dominating set problem, we want a set 
D C_ V of minimum cardinality such that for eve(y vertex v $ D there is a u E D 
with (u, v) E E. Now there are 6 + 1 choices at a splitting vertex u of degree 6, 

• since either u ~ D or at least one of u's 6 neighbors is in D. This yields the time 
bound, O(m. 4k/2). 

Perhaps the most interesting technical question raised by this paper is whether r 
can be removed from the base of the exponent in the time bound; that is, is there 
an algorithm for the continuous location problem with time complexity of the 
form O(q(n). c k) or, less optimistically, O(q(n). n ok) for some constant c and some 
reasonable polynomially bounded function q(n)? In a preliminary version of this 
paper [10], we have taken a first step toward settling this question by giving an 
algorithm of time complexity O(] V] log I VI) for the case k(G) _< 2 (i.e., every 
nonseparable component is either an edge, a simple cycle, or a simple cycle with 
one chord). Furthermore, this algorithm does not require r and edge lengths to be 
integers. 
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