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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 49, Number 1, March 1984 

THE WORD PROBLEM FOR CANCELLATION 
SEMIGROUPS WITH ZERO 

YURI GUREVICH AND HARRY R. LEWIS1 

By the word problem for some class of algebraic structures we mean the problem 
of determining, given a finite set E of equations between words (i.e. terms) and an 
additional equation x = y, whether x = y must hold in all structures satisfying each 
member of E. In 1947 Post [P] showed the word problem for semigroups to be 
undecidable. This result was strengthened in 1950 by Turing, who showed the word 
problem to be undecidable for cancellation semigroups,i.e. semigroups satisfying the 
cancellation property 

(1) If xy = xy' or yx = y'x, then y = y'. 

Novikov [N] eventually showed the word problem for groups to be undecidable. 
(Many flaws in Turing's proof were corrected by Boone [B]. Even after his 

corrections, at least one problem remains; the sentence on line 16 of p. 502 of [T] 
does not follow if one relation is principal and the other is a commutation relation. A 
corrected and somewhat simplified version of Turing's proof can be built on the 
construction given here.) 

In 1966 Gurevich [G] showed the word problem to be undecidable for finite 
semigroups. However, this result on finite structures has not been extended to 
cancellation semigroups or groups;2 indeed it is easy to see that a finite cancellation 
semigroup is a group, so both questions are the same. We do not here settle the word 
problem for finite groups, but we do show that the word problem is undecidable for 
finite semigroups with zero (that is, having an element 0 such that xO = Ox = 0 for 
all x) satisfying an approximation to the cancellation property (1). Naturally, no 
nontrivial semigroup with zero can satisfy (1); instead, for a semigroup with zero 
which also has an identity, let the cancellation property be 
(2) If xy = xy' :A 0 or yx = y'x :A 0, then y = y'. 

That is, any equation can be cancelled provided it is not an equation 0 = 0. For a 
semigroup with zero but without identity, define the cancellation property to be the 
conjunction of (2) and 

(3) If xy = x or yx = x, then x = 0. 

Received March 12, 1982; revised May 25, 1982. 
' Research supported by NSF Grant MCS80-05386. 
2 Added in Proof. Recently Slobodskoi [SI] showed the word problem for finite groups to be decidable. 
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That is, if division by x 'should' equate some semigroup element with a nonexistent 
identity, then x must be 0. Whether or not a semigroup with zero has an identity, we 
refer to it as a cancellation semigroup with zero if it satisfies the appropriate 
cancellation property. 

It is a consequence of our main theorem that the word problem is undecidable for 
finite cancellation semigroups with zero; this holds for semigroups with identity, and 
also for semigroups without identity. However we find it technically easier to 
establish a stronger result: that the set of implications E => x = y holding in all 
semigroups is effectively inseparable from the set of such implications that fail in 
some finite cancellation semigroup with zero. Recall [R] that two sets A and B are 
recursively inseparable if there is no recursive set containing A and disjoint from B. 
Effective inseparability is stronger: A and B are effectively inseparable if there is a 
partial recursive function f of two variables such that if p and q are indices of 
disjoint r.e. sets W% and Wq containing A and B, respectively, then f(p, q) is outside 
both Wp and Wq and hence bears witness to the fact that Wp and Wq do not form a 
complementary recursive pair separating A and B. Clearly the recursive or effective 
inseparability of A and B suffices for the nonrecursiveness of both A and B. 

With the basic terminology defined we can state the main result. 
THEOREM. Let A range over alphabets containing the symbols 0 and AO, and let 

xi and yi range over wvords in A *. Let 0 range over formulas of the form 
x1= Y1 A .A Xn = Yn =AO = O such that for each A E A the equations AO = O and 
OA = 0 appear among the antecedents. Then the following two sets are effectively 
inseparable: 

{/: q holds in every A-generated semigroup}, 
{4: q fails in some finite A-generated cancellation semigroup with zero and without 

identity}. 
(As mentioned earlier, a similar result can be obtained for semigroups with 

identity. Indeed, adjoining an identity element to a semigroup with zero preserves 
the cancellation property.) 

We have presented this work from the standpoint of its interest as an attack on the 
word problem for finite groups. Historically, however, it was motivated by an 
application in computer science: a decision problem in the theory of relational 
database dependencies [GL]. In addition, the present paper provides an indepen- 
dent proof, in a slightly stronger form, of the main result of [G], the undecidability 
of the word problem for finite semigroups. (The paper [G] contains a number of 
other results on decision problems in algebraic structures not directly related to the 
work presented here.) Our construction is fundamentally a combination and 
simplification of those in [G] and in [T]. 

The overall method of proof is to reduce a halting problem for Turing machines 
to the word problem in question. We adopt a specialized version of the Turing 
machine model similar to that used by Turing in [T]. Formally a Turing machine is 
an automaton consisting of a finite set Q of states, including the initial state qO, a 
tape alphabet T containing the blank symbol ao, and a partial transition function 6 
giving the action of the machine for certain state-symbol combinations. The single 
tape should be viewed as unlimited in extent both to the left and to the right and with 
all but a finite number of the tape cells blank at any time during the machine's 
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computation. Following [T], we make the somewhat peculiar assumption that the 
tape head occupies a position between tape squares, and that, depending on the state, 
the head is looking to its left or to its right. That is, Q is the union of two disjoint 
sets the set of 'left-looking' states and the set of 'right-looking' states. We assume 
that qO, the initial state, is left-looking. The transition function 6 then takes certain 
elements of Q x T to Q x T x {O, 1}, where if 6(q, a) = <q', a', e>, then 

1. q' is the new state, 
2. the scanned symbol a is rewritten as a', and 
3. (a) if e = 0, then the head does not move, and 

(b) if e = 1, then the head moves across the scanned square (i.e. left one tape 
square if q was a left-looking state, and right one square if q was a right-looking 
state). 

A halting state of M is a state h such that 6(h, a) is undefined for every a E T. (As 
usual T* is the set of words over the alphabet T.) A configuration is a member 
<x, q, y> of T* x Q x T* such that x does not begin with a blank and y does not 
end with a blank; its interpretation as a physical arrangement of the tape and the 
head should be evident. 

EXAMPLE. Suppose <x, q, cy> is a configuration, where x, y e T* and c e T. 
Suppose that q is a right-looking state and 6(q, c) = <q', c', e>, where c' is nonblank. 
If e = 0 then the next configuration is <x, q', c'y>; if e = 1 then the next configuration 
is <xc', q', y>. However, if c' were the blank symbol, y were A, and e = 0, then the next 
configuration would be <x, q', A>. (We use A to denote the empty word.) 

Every configuration has at most one successor configuration; we write C F- C' to 
indicate the (functional) relationship of a configuration C to its successor C' and 
write F-* for the reflexive, transitive closure of F-. 

We consider Turing machines with at least two distinguished halting states q1 and 
q2 in addition to their initial state qO. The following is established by standard 
methods (see, for example, the proof of Theorem XII(c) on p. 94 of [R]). 

LEMMA 1. Let M1 be the class of Turing machines that eventually enter state q1, 
having been started in the initial configuration <A, qO, A>. Let M2 be defined similarly 
for the halting state q2. Then M1 and M2 are effectively inseparable. 

We prove our result by constructing, for any Turing machine M, a set E of 
equations and an equation Ao = 0, such that if M e M1 then Ao = 0 holds in any 
semigroup satisfying E, and if M e M2 then Ao = 0 fails in a finite cancellation 
semigroup G' with zero and without identity. That such a reduction of a pair of sets 
to a pair of sets preserves effective inseparability is shown by Smullyan [Sm, p. 98]. 

In general terms, the encoding of M by E is achieved as follows. A configuration of 
M is represented by a word over the alphabet of E; in fact several words may 
represent the same configuration. The computation by M is mimicked by the 
derivation of one word from another using the equations in E. The words 
representing configurations contain, among other symbols, the tape symbols of the 
configuration, in order, and a symbol to indicate the state of M; this symbol is 
located among the tape symbols so as to mark the head position. The equations in E 
are intended to be used as derivation rules the left-hand side of an equation is to 
be replaced by the corresponding right-hand side; we have to show in due course 
that replacing the right-hand side of such an equation by the corresponding left-hand 
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side does not cause problems. The derivation rules are of several kinds. Individual 
steps in the computation by M correspond to uses of the transition rules in E. In 
addition, E contains commutation rules. To explain their purpose, we must first 
explain that interspersed among the tape and state symbols in a word representing a 
configuration are transition symbols. Two transition symbols are introduced for 
each step for each simulated step by M; their purpose is to ensure that it does no 
harm to apply a transition rule in reverse. However these transition symbols get in 
the way of the simulation, and the commutation rules are needed to enable the state 
symbol to jump across transition symbols. (The state symbol carries an extra bit of 
information, indicated in a superscript, which restricts the direction in which it can 
jump over a transition symbol.) The symbol T is an endmarker; two occurrences of it 
delimit the representation of the configuration. A special symbol # is introduced 
outside the endmarkers solely for the purpose of ensuring that the cancellation 
property is satisfied. 

In addition, the symbol AO represents the initial configuration of M and 0 
represents the zero element. As long as a computation by M continues without 
reaching a halting state, the equality of AO and the word representing a 
configuration can be established by using the equations in E. If M ultimately reaches 
state q1, then a state symbol corresponding to q1 eventually appears in the word; but 
q1 is specified to be equal to 0, and so the entire word is annihilated. Thus in this case 
AO is shown to equal 0 in the semigroup. On the other hand, if M ultimately reaches 
state q2, then only finitely many different words can be derived from AO in this way, 
and these words and their subwords form a finite model for the equations, a model in 
which AO = 0 does not hold. 

Let us fix some machine M and let it have state set Q = {qo, ... , qr (where qO is the 
initial state and q1, q2 are halting states), and symbol set T = {a0,..., a,} (where 
a0 is the blank). To recapitulate, the equations are written using the following 
symbols: 

ak (k = O,..., p; the tape symbols), 
qi (i = O... , r; e = 0, 1; the state symbols), 
am (for each pair m E Q x T, and for m = 0; the transition symbols), 
I (the endmarker), 
# (a special symbol needed only to ensure the cancellation property), 
0 (the zero symbol), 
AO (the initial symbol). 

Let us call this set of symbols A. The equations are derived from a semi-Thue system 
(system of one-way rewriting rules). The rules are as follows: 

Annihilation rules. 
(la) AO 0, for each A E A, 
(Ib) OA 0, for each A E A, 
(1c) q -0, for e = 0, 1. 
Transition rules. 
(2.m) aqi -+ mahqj Uar, where e is 0 or 1, qi is a left-looking state, 6(qi, ak) = 

<qj, ah, O>, and m = <qia ak> 

(3.m) aWqi - amqja hm where e is 0 or 1, qi is a left-looking state, 6(qi,ak) = 

<qj, ah, 1>, and m = <qi ak>- 
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(4.m) qeaI k- umahqj Uam, where e is 0 or 1, qi is a right-looking state, (qi,ak)= 

<qj,ah, 1>, and m = <qi,ak>. 
(5.m) q&ak > mjj ahum, where e is 0 or 1, qi is a right-looking state, 6(qi, ak) = 

<qj,ah,O>, and m = <qi,ak>. 
Blank-creating rules. 
(6.i) Tq9 > # Taoaoqiuo, where qi is a left-looking state. 

(7.i) q[T > uOqiaOaOt #, where qi is a right-looking state. 
Commutation rules. 
(8.m, i) amq9 qium, for each m, and each left-looking state qi. 
(9.m, i) qiaum -+Umq , for each m, and each right-looking state qi. 
Initialization rule. 
(10) Ao -+ Tqot 
Let E be the set of equations u = v derived from the rules u -> v. Then the Theorem 

will follow from these two lemmas: 
LEMMA 2. If M e M1 then AO = 0 holds in A */E. 
LEMMA 3. If M e M2 then there is a finite cancellation semigroup with zero and 

without identity in which E holds but the equation Ao = 0 does not hold. 
Let us begin with some notation. If u and v are words in A*, then u -+ v holds only 

if u -+ v is one of the rules; u - - v if there is a rule x -+ y and there are words z and w 
such that u = zxw and v = zyw, that is, just in case v is derived from u by rewriting 
some one subword by means of a rule; u v if and only if v => u; u : v if and only if 
u = v or u := v; and =, =, and are the reflexive, transitive closures of , -, and 
., respectively. 

PROOF OF LEMMA 2. Let H be the homomorphism on words in A * defined as 
follows: 

H(A) = { 
if A is a transition symbol, i.e. some am, 

A otherwise. 

We show the following 
Claim. For any configuration <w1,qi,w2> such that <, qO, il> 1- <wl, qi,w2 >, 

there are words x1 and x2 in A * and numbers s, t, s', and t' such that H(x) = w 
H(x2) = w2a", and Ao * #'Tx,&2t T a word we refer to as 4 below; and 
moreover if qi is right-looking then e = 1 and x2 begins with some ak, and if qi is left- 
looking then e = 0 and x1 ends with some ak. 

The claim is proved by induction on the number c of steps required for M to reach 
the indicated configuration. If c = 0 then the configuration is <K, qO, A> and 4 is 
# TaUaOqla0T, which is derived from Ao by one application of the initialization rule 
(10) and one application of the blank-creating rule (6.0). If c > 0, then let <wl, qi, w2> 
be the configuration reached by M after c - 1 steps, and let 4 be the word satisfying 
the claim at that point. Assume that qi is right-looking (the case in which qi is left- 
looking is symmetrical), that x2 begins with ak, and that 6(qi, ak) = <qj, ah, e'>. Let 
m = <qi, ak>. Then either rule (4.m) (if e' = 1) or rule (5.m) (if e' = 0) is applicable 
to 4. Next, some series of applications of the commutation rules may be needed in 
order to bring the new state symbol contiguous with a tape symbol or one of the 
occurrences of the endmarker, and, in the latter case, rule (6.j) will have to be 
applied to introduce a blank symbol next to the endmarker. Note, however, that if 
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rule (4.m) was applied and qj is left-looking, then no commutation rule will be needed 
(and in fact none will be applicable). 

Since M reaches state q1 it follows by induction that there is a string 4 such that 
AO * 4 and qO or q1 occurs in 4. From rules (la), (b), (c) it then follows that AO * 0. 

We now prove Lemma 3, which follows from a sequence of sublemmas. Suppose 
that M E M2. Let W = {w: AO * w}. 

LEMMA 4. The relations -: and are at most single valued on any member of W not 
containing an occurrence of 0. That is, if w E W and 0 does not occur in w, then there 
are no distinct x, y E J * such that either w :- x and w = y, or x = w and y => w. 

PROOF. This will follow from the fact that any member of W except AO contains 
exactly one occurrence of a state symbol, provided that it does not contain an 
occurrence of 0. Suppose that there is an n > 0 and a sequence AO = uO u 

Un such that w = un. It suffices to show that => and = are at most single 
valued on the uj. This is clearly true for i = 0; there can be no x such that x - uO, and 
the only possibility is uO : u1 = TqOT. Every rule except those involving AO or 0 
replaces a subword containing one state symbol by a subword with the same 
property, so we may assume that every ui (i > 0) contains exactly one state symbol. It 
is easy to check that :- is single valued on such a word; no two different transition 
rules can apply to the same word, because of the determinacy of the machine (i.e. 
because 6 is a function); a blank-creating rule is applicable only when no transition 
rule is applicable, because the head is looking in a direction where the endmarker is 
seen rather than a tape symbol; and a commutation rule is applicable only when 
neither a transition rule nor a blank-creating rule is applicable, because the head is 
looking in a direction in which a transition symbol is seen rather than a tape symbol 
or an endmarker. It is only slightly more difficult to see that is also single valued 
on words containing only one occurrence of a state symbol. No two transition rules 
can be applicable, in the reverse sense, to the same word, because the values of m are 
different for different rules; the same fact makes it impossible to apply a blank- 
creating rule, in the reverse sense, to a word to which a transition rule is applicable in 
the reverse sense. Likewise the commutation rules cannot be applied in the reverse 
sense if a transition rule could be so applied, because of the position of the transition 
symbol and the value of the upper index on the state symbol. 

LEMMA 5. If AO u, then AO => u and either u = AO or there are words w1, w2, 
X1,X2 and numbers s,t,s', and t' such that u = #'Txq~X2 H(x1) =a'O 
H(x2) = w2a", and <R, qj, A> ? <wl, q,> 

PROOF. Suppose that AO 
* 

u, and let AO = u u1 u = u be a shortest 
derivation of u from AO. We prove the lemma by induction on n. It is obvious if 
n = 0 or n = 1. So suppose that n > 1 and that it has been established by induc- 
tion that the lemma holds for u = un- 1 Since un-2 u: n-, and is single valued 
on un - 1, it cannot happen that Un - 1 Un, for then Un = Un - 2' violating the assump- 
tion that n was minimal. So un- 1 =*un; but then it is easy to see that values of the 
variables mentioned in the statement of the lemma can be found so that the 
conditions are true for un as well. 

It follows that the symbols qe (e = 0, 1) occur in no member of W, and hence 
neither does 0. Moreover the characterization provided by Lemma 5 can be used to 
bound the length of words in W. For at most two length-increasing rules-one 
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blank-creating rule and one transition rule-can be used in the portion of the 
derivation corresponding to a single step of M. These two rules increase the length 
of the derived word by 6 at most. So if M takes t steps to reach state q2 and halt, then 
the longest member of W has length 6t + 3 at most. This means that W is finite. 

DEFINITION. Let us say that a word u in A * is a divisor of AO if u =A i and there are 
(possibly empty) words x and y such that AO * xuy. In other words, a divisor of AO is 
a nonempty subword of a word in W Let X be the set of all divisors of AO, and let K 
be the (finite) cardinality of X/E. 

Note that X is closed under E; that is, if x E X and the equation x = y is in E then 
y E X. 

We can conclude from the preceding development that 0 is not a divisor of AO and 
hence not a member of X. From X we can now construct a finite semigroup in which 
each equation in E holds. The idea is to identify each word not in X with 0. 

An ideal of a semigroup G is a set I such that if i E I and g E G then ig, gi E I. We 
claim that (A1 */E) - (X/E) is an ideal of A */E. The reason is simple: the product of a 
nondivisor of AO with any word must be another nondivisor. Then let G be the 
semigroup (X/E) u {0}, with the product (x/E)(y/E) defined to be (xy)/E provided 
that x, y, and their concatenation are all in X, and 0 otherwise. It follows easily from 
the fact that (A1 */E) - (X/E) is an ideal that the operation so defined is associative. 

G is finite, having cardinality exactly K + 1. G has no identity since i ? X. It 
remains only to show that G has the cancellation property. 

To prove (2), suppose that xA * yA, where A e A and xA, yA E X; the verification 
of the case Ax * Ay is symmetrical. We must show that x y. By definition of X 
there are u1, V1, U2, v2 in A * such that AO * u1xAv1 and AO u2yAv2 . By Lemma 4 
both => and = are at most single valued on ujxAv1 and on u2 yAv2 and hence on xA 
and yA. It follows by induction that either xA * yA or yA * xA. By symmetry let us 
assume that xA * yA. If the indicated occurrence of A is not within the subword 
replaced at any stage of this derivation, then obviously x * y by application of the 
same rule. Otherwise, since no rule (except the annihilation rules) have the same 
symbol as the rightmost symbol of both the left and right sides, there must be some 
rule used in which A disappears (zA -+ v, where v does not end in A) and some other 
rule used in which A reappears (v' -+ z'A, where v' does not end in A). By inspection 
of the rules, the only symbol playing both roles is a transition symbol, and the rule 
zA -+ v must be a commutation rule (9.m, i), which leaves a word with a right-looking 
state symbol at its right end. But this is impossible, since no rule can apply to a word 
containing a single state symbol which is right-looking and appears at the right end 
of the word. This completes the proof of (2). 

To prove (3) we must show that if yx * x or xy x then x * 0. Suppose that 
xy * x but it is not the case that x * 0; the other case is symmetrical. By (2) we may 
assume that x is a single symbol; for example, if x = Az, where z is a nonempty word, 
then Azy *! Az and by cancellation zy z. So it remains to show that Az *! A only if 
A * 0. But this is easy to see, since except for the annihilation rules the only rule with 
but a single symbol on one side is the initialization rule (10), so that A must be Ao, 
and then Lemma 5 implies that the only word w containing an occurrence of Ao such 
that AO .c-. w is AO itself. 

This completes the proof. 
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