
ALGEBRAS OF FEASIBLE FUNCTIONS

Yuri Gurevich*

The University of Michigan
Computer and Communication Sciences

22.1 ·Angell Hall
Ann Arbor, Michigan 48109

ABSTRACT

What happens if we interpret the syntax of
primitive recursive functions in finite domains
rather than in the (Platonic) realm of all natural
numbers? The answer is somewhat surprising:
primitive recursiveness coincides with LOGSPACE
computability. Analogously, recursiveness
coincides with PTIME computability on finite
domains (cf. [Sa]). Inductive definitions for some
other complexity classes are discussed too.

INTRODUCTION

Given a certain complexity level (LOGSPACE,
PTIME, etc.) we are interested in an inductive
definition of functions computed within the
complexity level. The problem can be seen as an
algebraic one: make the functions in question into
an algebra i.e. the closure of some initial
functions under certain operations. An inductive
definition of PTIME computable functions appeared
already in [Co]. Later Lind found a similar
inductive definition for LOGSPACE computable
functions [Li]. In both cases the main operation
is a bounded primitive recursion and both authors
consider functions from natural numbers to natural
numbers.

In contrast, we view computable functions as
database queries rather than pure arithmetical
objects. For example, the function "the diameter
of the connected component of a vertex x in a
finite graph G" can be coded into a pure arith­
metical object. We prefer, however, to view it as
a global function (or a function schema) that
becomes an ordinary function in every finite graph
G. The global functions are most common in
computer science. Any database-dependent function
is a global function. A precise definition of
global functions is given in §l.

In §2 we adapt the definition of primitive
recursiveness to global functions and prove that
the primitive recursive global functions are
exactly the LOGSPACE computable ones. In §3
we define recursive global functions. Different
equivalent definitions of recursive functions on
natural numbers may lead to different classes of

*Supported in part by NSF grant MCS83-0l022.

0272-5428/83/0000/0210$01.00 @ 1983 IEEE
210

global functions. We adjust the classical
Herbrand-G6del-Kleene definition to capture all
passible recursions over global functions. Then we
prove that the recursive global functions are
exactly the PTIME computable ones. B.A.
Trakhtenbrot has pointed out that his former student
Sazonov had already published a version of this
theorem [Sa]. Finally, we give in §3 a couple of
algebras of PTIME computable functions. To show
that our approach can handle some other complexity
classes, we mention additional results in §4.

The problem of inductive definition can also be
seen as a logical one and a special case of the
problem for constructing a language that captures
exactly the properties of finite structures (graphs,
databases) computable within the given complexity
level. Languages that capture PTlME and LOGSPACE
in the case of ordered structures are known [Iml,
Va, Im2]. They are extensions of first-order logic
by certain generalized quantifiers: the least fixed
point operator and the deterministic transitive
closure respectively. There is a certain tradition
in logic to treat functions as orphans (allowing
only composition usually) and give all the attention
to predicates (by means of boolean operations,
quantifiers, generalized quantifiers). Of course,
functions can be coded as predicates. It is not too
effective however: an 1-ary function is coded by
(R.+l)-ary predicate. On the other hand, predicates
are most efficiently coded by their characteristic
functions. We feel that it is worth while to
explore functional, rather than predicate, logic as
appropriate to computer science where one is inter­
ested not only in expressing but also in computing.
One advantage of our functional logic (and partic­
ularly of our functional logic for PTlME versus
~irst-order logic with the least fixed point
operator) is that it is able to express computations
in a way that very much preserves bounds on the
resources in question.

Gilles Brassard asked about a logic for
NPl1co-NP. Existence of such a logic seems to be
quite unlikely if p~NPnco-NP~NP. Under a very
liberal definition of a logic, existence of a logic
for NP(lco-NP implies existence of a complete set
for NP(lco-NP under many-one PTIME reductions
[Gu]. Such a complete set does not exist relative
to a certain oracle lSi]. (By the way, there is no
complete set A for NPI1co-NP under Turing PTlME
reductions in the presence of the same oracle.

bounded query machine, xE{O,I}* and M
A

accepts
x within i steps} would be a complete set for
NPf1co-NP under many-one PTIME reductions. This
answers a question in [Sil.)

Let us note that the structures under consid­
eration in this paper are essentially linearly
ordered. On the one hand it is a natural require­
ment: computers work with presentations of
structures rather than with structures themselves.
On the other hand one may naturally be interested
in those properties of ordered structures that do
not depend on order. We conjecture that if P~NP

then there is no reasonable logic to capture
exactly those properties of ordered structures that
are PTIME computable and do not depend on~rder.

is a global
a-predicate

otherwise the set
i

{(M,x,l): M is a PTIME of vocabulary 0, arity 1 and co-arity r

assigns to each a-structure S a function fS on
S of arity R, and co-arity r. The superscript
S will be usually omitted.) Symbols of a vocab­
ulary a name basic a-predicates and
a-functions. The difference between basic and
nonbasic a-predicates and a-functions is
intentional: the first provide parts of the input
whereas the second provide objects to be computed.

Pseudo-Claim. Let cr be a vocabulary, i be
a natural number and L be a finite alphabet. If
f assigns to each o-structure S a partial

f . fS R,,unct1,on from S to L then f
function. In particular, every global
is a global cr-function.

§l. Global predicates and functions

The paper has gained from useful comments of
my Michigan colleagues Peter Hinman, Bill Rounds
and especially Andreas Blass.

§2. Primitive recursive equals LOGSPACE

We say that a Turing machine (or some other
computational device) M computes an i-ary global
function f of a vocabulary 0 if it satisfies
the following condition. Let S be an arbitrary

- i Scr-structure and aES. If f is defined at a
then M with input (S, 'i') outputs f (a) and
enters a special halting state OK, otherwise it
does not enter the state OK. The size of the
input is supposed to be at least lsi. A global
function f is LOGSPACE (PTlME, etc.) computable
if there is a LOGSPACE (PTIME, etc.) bounded
Turing machine that computes f.

A more general and better definition of global
functions would allow additional sorts (types) of
variables e.g. the type boolean. For the sake of
simplicity we stick for the time being to our
definition and choose the following way to make the
Pseudo-Claim true: disregard structures of
cardinality 1 and code the letters of L by tuples
of zeroes and ones of the same length r. The
given f becomes a cr-function of co-arity r.

A{True, False}.to

We believe that algebras of feasible
functions may be useful for creating new query
languages, for creating special purpose programming
languages and for proofs by induction. Deep
problems like P=?NP cannot be solved simply by
translating them into algebra or logic. However,
such translations can shed some new light on these
problems.

partial function f from u1
to ur

will be
called a function on U of arity R, and co-arity
r. It can be seen as a vector function whose
components are functions of co-arity 1.

Let U be a nonempty set, 1 be a natural
number and r be a positive natural number. An
1-ary predicate on U can be identified with a

total function from u1

A vocabulary is a finite list of predicate
and function symbols with specifications of the
arity of each symbol and the co-arity of each
function symbol. A structure S of a vocabulary
a is a nonempty set U (the universe) together
with interpretations of all symbols in a on U.
E.g. if a consists of one binary predicate than
a-structures are directed graphs. The same name is
often used for a structure and its universe. The
cardinality lsi of a structure S is the
cardinality of its universe. We will view
structures as inputs for algorithms.

Proviso. The cardinality of any structure
under consideration is finite. The universe of any
structure S under consideration consists of
numbers O,l, ••• ,lsl-l.

A global R,-ary predicate P of vocabulary
a assigns to each a-structure S an ordinary

~-ary predicate pS on S. A global function f

We adapt the usual definition of primitive
recursiveness to global functions and prove

Theorem 1. A global function is primitive
recursive iff it is LOGSPACE computable.

First we describe initial primitive recursive
global functions of the empty vocabulary.

Constant functions. For every i>O we have
an 1-ary constant function with value 0 and an
1-ary constant function with value End. In
particular, 0 and End are individual constants.
End is interpreted as Isl-1 in each structure
S. Hence a function, indentically equal to End,
is constant on each structure but its value depends
on lsf.

211

Successor functions. For every i>l we have
an i-ary successor function. If x Is a vector
(xl' ••• ,xi) of elements of a structure Sand

same x. is different from End in S then the
1.

Lemma 1. Any boolean combination of PR
global predicates is PR.

Lemma 2. Suppose that a global function f
is defined as follows:

successor of x is the lexicographically next
i-tuple of elements of S. If every xi is equal

to End in S then the successor of x is not
defined. We will denote the successor of x by
x+l. This is especially natural if we view x as

I J I li-ian i-digit base S I number 1:xi S •. For

example, consider the case when Isl=lo and i=3.
Then (2, 3,4) +1= (2,3,5), (2,3,9) +1= (2 ,4,°>_ ,

(2,9,9)+1=(3,0,0), and (9,9,9)+1 is not defined.

If P (X) then f (X) =g (X) else f (X) =h (X) •

If the global predicate P and the global
functions g,h are PR then f is PR.

Lemma 3. A concatenation (fl (Xl)'··· ,fm(xm»

of PR global functions fl, .•• ,f
m

is a PR

global function.

recursion

f. (x,O) :=g. (x,D) ,
1. - 1.

f. (x,t+l) :=h. (i,t,f
l
(i,t), •.. ,f (x,t»

1. 1. m

Lemma 4. Suppose that global functions
fl, ••• ,f

m
are defined by a simultaneous primitive

_ i
XES ,

are PR then so

where for each

g. ,h.
1. 1.

is presented on a separate

input tape of length

Now, let f be a LOGSPACE computable global
function of some vocabulary 0. We will show that
f is PR. Since f is LOGSPACE computable
there is a two-way multihead finite automaton M
that computes f. We assume, of course, that
inputs (S,a) are presented in some standard way.
We may suppose for simplicity that each basic

i-ary predicate p
S

are f l ' • • · , fm•

If the global functions

Composi tion f (x) : =g (hI (X) , • •• , h
m

(X)) • The

values hI (x), ••• ,h
m

(X) are concatenated of

S . f h h 1 fg conS1.sts 0 vectors rat er t an tup es 0

vectors.

course into one vector because the domain of every

Projection functions. For every i>l and
every sequence 1~il<i2<••• <i~i a separate

projection function takes (xl' ••• ,xt) to

(Xil,···,Xir)·

Second, for every vocabulary a the basic
a-functions and the characteristic functions of
the basic a-predicates are initial primitive
recursive a-functions too. Third, we describe
two operations on global functions.

Primitive recursion. the truth value of pS(X) is coded in cell number

{

f{i,D) :=g(i)
(1)

f(i",t+l) :=h(i",t, f(i,t"»

I I
Sl,-i

LX. S •1.
S S

f1,···,fr

(

We may suppose also that the components

of a basic function fS of co-arity r

where . 0 is the vector of zeroes of the dimension
of 't.

A global function of a vocabulary a will be
called primitive recursive (PR) if it belongs to
the closure of the initial primitive recursive
o-functions under composition and primitive
recursion.

are presented on separate tapes as their respective
graph predicates, and that the components of a
are presented in unary notation on separate tapes.
Then every input tape can be described by a global
function that is easily definable by cases. A more
sophisticated presentation of inputs may require a
more sophisticated definition of the global
functions describing input tapes.

content of cell Xi of the tape for Hi. There is

a positive integer k such that if fS is defined
then M finds itself in the halting state OK at

the moment Islk-l. Let t range over sk,

Hl, ••• ,H
m

be the heads on input tapes ofWe may turn our attention to proving Theorem 1
now. The only if implication is easy. We sketch a
proof of the if implication. In virtue of the
Pseudo-Claim in §l one may speak about primitive
recursive global predicates. 'We begin with a few
easy lemmas.

M.

Let

For every i=l, ..• ,m let Sym. (x.)
1. 1. be the

212

Under natural assumptions about the output
mechanism of M we have

defined by an easy simultaneous induction which
uses the compositions syml (Head

l
(t», ... ,Symm

(Head (t».
m

be the state of M at moment
be the position of head Hi

State(t)
Head. ({)

].

tion operator and the minimization operator is
expressible in the algebra of primitive recursive
global functions.

An analogous question, what are general
recursive functions in the case of the infinite
domain of natural numbers, was very satisfactorily
resolved by Herbrand, G6del and Kleene [K~]

(without invoking the Church-Turing thesis). We
adapt their ideas to define recursive global
functions.

t-.
at moment

State and Head. are
].

The global functionst.

§3. Recursive equals PTIME

Consider a system E of equations
tl=sl,· •• ,tk=sk where the terms ti,si are

composed from the following symbols: 0, End, the
signs of successor functions (one successor
function for each arity ~>l), individual variables
and function symbols of specified arities and
co-arities. Schema (1) above gives examples of
equations of the sort under consideration. We
suppose that the leftmost symbols of the left-side
terms t. are some function symbols f,fl, ••. ,f.]. P

Let ~=arity(f) and r=co-arity(f). Let
gl, •.. ,gq be the remaining function symbols in E

and let a be the vocabulary {gl, .•• ,gqJ.

Given a a-structure S interprete End and
the successor functions as above in §2. View the
terms O,O', ••• ,End as names for the corresponding
elements of S. In that sense elements of S may
appear in equations of E.

k
State{End)~OK.[]

is the vector of k

kState(End)=OK,

Here

f is not defined if

k
f = { Output (End) if

End+l otherwise,

Ends, and

where Output(t) is defined by an easy induction

End
kfrom State{t).

Remark 1. It is easy to change the syntax of
primitive recursive global functions in order to
express only total LOGSPACE computable global
functions. Set End+l=O, (End,End)+l=(O,O), etc.
and allow a new operation If ••• then ••• else •••
in order to avoid the consequence
f (x,End+l) =h (x,End, f (x, End)) of the schema (I).

(i) substitution of elements of S for variables,
and

Theorem 2. A global function is recursive iff
it is PTIME computable.

Remark 3. This is a least fixed point type
definition. A posteriori only very special equa­
tion system suffice.

(ii) repiacement of a term tee) without variables
by a vector d of elements of S provided
the equation t (C) =d has already been proved.

f(a)=1> is derivable
equalities g (C) =d

there is at most one

recursively defines

1
a€Sif for everyS

The equation system E

inf

bES
r

such that the equation
from E and from valid in S
by means of

The system E recursively defines f if it
recursively defines f in every a-structure.
Finally, a global function f is recursive if a
certain equation system E recursively defines f.

Suppose that a global function f is defined
by a certain recursion from some global functions
that are already known to be PTIME computable.
The arguments of f take only polynomially many
values. The recursive definition gives a computa­
tion where each round provides one or more new
values of f in polynomially many steps. Hence
all values of f can be computed in a polynomial
number of steps.

One goal of this section is a thesis that a
global function is recursive iff it is PTIME
computable. The only if implication may be contro­
versial because we have to resolve the question
what are arbitrary recursive global function.
First we justify the only if implication informally.

The characterization of recursive functions on
natural numbers by means of primitive recursion and
the minimization operator is well-known. Note that
the minimization operator turns out to be bounded
(by End) in the case of global functions and does
not lead out of the class of primitive recursive
global functions. If the minimization operator can
replace the recursive schema (2) below then
PTIMESLOGSPACE.

RE~mark 2. For a moment let A be the algebra
that ~; obtained by omitting the constant function$
with value End in the definition of the algebra
of primitive recursive global functions. It is
easy to check that End is not expressible in A
but End is expressible in A with the minimiza-

Proof. The only if implication is now an easy
exercise.

The if implication of Theorem 2 is not contro­
versial and is proved in the same way the if
implication of Theorem 1 was proved, but this time

213

Analyzing the proof of Theorem 2 we arrive at

[Kt] S.C. Kleene, Introduction to Metamathematics,
Van Nostrand, Princeton, NJ, 1952.

[1m2] N. Immerman, Languages which capture complex­
ity classes, STOC 1983, 347-354.

[Iml] N. Inmerman, Relational queries computable in
polynomial time, STOC 1982, 147-152.

[Gu] Y. Gurevich, Logic tailored for computational
complexity, to appear.

[Co] A. Cobham, The intrinsic computational
difficulty of functions, Logic, Method. and
Phil. of Sci., 1964 Internat. Congress,
24-30, North-Holland.

REFERENCES

We could avoid introducing a new sort of
individual variables because the following global
function is primitive recursive: the length of the
binary notation for x+l. Recursion (3) can be
replaced by recursion (2) in Theorems 4 and 5.

Theorem 5. A a-function f is PTIME-LOGk­
SPACE iff it can be obtained from initial primi­
tive recursive a-functions by composition,
primitive recursion and recursion (3) where
Dimension (X) <k and all components of if are
log-restricted.

Theorem 4. A global a-function f is
PTIME-PLOGSPACE iff it can be obtained from
initial primitive recursive a-functions by
composition, primitive recursion and recursion (3)
where all parameters are log-restricted.

We generalize the notion of global functions
by introducing a new sort of individual variables,
called log-restricted variables. Log-restricted
variables range over natural numbers less than or
equal to 10g21s1 in each structure S. Defining

a global function f(xl, ••• ,xt)=(Yl' ••• 'Yr) we

have to specify now which variables xi'Yi are

log-restricted. Fix a vocabulary a.

some k. This section gives inductive definitions
of all these classes of functions.

i"FPf(t) ,if
(3)

{

f (x,a) :=g (x) ,
(2)

f(x,t+l) :=h(x,f(x,t) ,f(pf(x,t) ,t»,

f(O) :=g, F(X,O) :=G(x),

f (t+I) :=h (f (t), F (pf (t) , t)) ,

{

F (x,t)
~I(x,t+l) :=

H(f(t), F(i",t» otherwise,
where in both cases p is a projection.

Theorem 3 gives two algebras of PTIME
computable functions. The schema (2) looks simpler
than (3). Moreover, an easy trick allows to
replace the term p(f(x,t) in (2) by a primitive
recursive q ('£). We are concerned however with
preserving time bounds. A single recursion of type
(2) or (3) with some preceding and succeeding
trivialities is used to describe computations of a
given multi-head multi-tape Turing machine. The
straight-forward evaluation of a recursion of type
(2) requires that for each F+l the values of
f(x,t) are updated for each ~. This inflates the
time bound. A recursion of type (3) requires
minimal updating. Also, it can be restricted with­
out loss of generality to extremely simple
functions hand H. As a result, the time bound
is very much preserved. It would be nice to have a
more elegant recursion than (3) serving the same
purpose. Finally, let us mention an important
feature of primitive recursion versus recursions
(2) and (3): the parameters are not altered.

Theorem 3. For every vocabulary a, the
PTIME computable global a-functions constitute
the closure of the initial primitive recursive
a-functions under composition, primitive recursion
and either one of the two following recursions (2)
and (3):

the syntax is used to describe computations of a
given Turing machine with read-and-write tapes.
This results in a somewhat more complicated
simultaneous recursion for the state function, the
head position functions and the tape content
functions. All the recursions used can easily be
merged into one recursion that is readily express­
ible by equations. We skip details.[J

Remark 4. The change, proposed in Remark 1
above, adjusts Theorems 2 and 3 to the case of
total global functions.

[Li] J.C. Lind, Computing in logarithmic space,
Manuscript, M.I.T., 1974, 66 pages.

§4. A combined restriction on time and space

We say that a function is PTIME-LOGk-SPACE
if it can be computed on a Turing machine under a
simultaneous restriction of polynomial time and

klog space. We say that a function is

lSi] M. Sipser, On relativization and the exis­
tence of complete sets. ICALP 1982, 523-531.

[Sa] V.Y. Sazonov, Polynomial computability and
recursivity in finite domains, Elektronische
Informationverarbeitung und Kybernetik, 16
(1980),319-323.

PTIME-PLOGSPACE if it is PTIME-LOGk-SPACE for
[Va] M. Vardi, Complexity of relational query

languages, STOC 1982, 137-146.

214

