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THE WORD PROBLEM

FOR LATTICE-ORDER GROUPS
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A. M. W. GLASS AND YURI GUREVICH1

To. W. W. Boone on the occasion of his 60 th birthday

Abstract.

Theorem.   There is a finitely generated one relator lattice-ordered group  with

insoluble (group) word problem.

We prove

Theorem. There exists a finitely presented lattice-ordered group with insoluble word

problem.

Corollary. There is a one relator finitely generated lattice-ordered group with

insoluble word problem.

The Theorem is the obvious analogue of the corresponding result for groups.

However, the Corollary has no analogue for groups since any one relator finitely

generated group has soluble word problem [7].

The proofs we will give are completely self-contained except for two well-known

results from recursion theory (I and II below).

0. Introduction. A lattice-ordered group is a group and a lattice such that the

group operation distributes over the lattice operations. An example (which we will

need later) is A(R) = Aut((R, *£)), the order-preserving permutations of the real

line, R; the group operation is composition, and the lattice operations are the

pointwise ones (i.e., if /, g E A(R), then/g,/ V g and/ A g are the order-preserving

permutations of R defined by: a(fg) = (af)g, o(/V g) = max{a/, ag) and

a(f A g) — min{a/, ag) (a G R), respectively).

A presentation of a lattice-ordered group with generators x, (i E I), and relations

rj(\) = e (jEJ) can be realised by taking the quotient of the free lattice-ordered

group F on (x,: i G 7} by the normal convex sublattice subgroup generated by the

elements {/ (x): j' E J) of F If 7 and J are both finite we will say that the

lattice-ordered group is finitely presented. Note that the r,(x) are formed from x by

using possibly both the lattice and group operations.
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128 A. M. W. GLASS AND YURI GUREVICH

We will obtain a certain primitive recursive set R of relations, involving only a

finite set of letters correlated with elements of A(R), such that the subset S of R

comprising those members of R which hold in A(R) is nonrecursive. We will then

show that there is a finite set S0 of relations which hold in A(R) and imply S. S0 will

be constructed from a finite set X0 of letters, consisting of the letters which appear in

R and new elements correlated with additional elements of A(R). A member of R

will then be implied by S0 if and only if it belongs to S. Hence the finitely presented

lattice-ordered group (X0;S0) will have insoluble word problem; i.e., the word

problem for (X0;S0) is not recursively soluble. Roughly speaking, SQ corresponds to

the characteristic function of a recursively enumerable set that is not recursive.

Indeed, the representation of each recursive function by a finite set of relations is the

main step in our proof—see §4.

The method we use in our proof for coding in recursive functions comes from [9]

where a similar technique was used to give an elementary proof of the existence of a

finitely presented group with insoluble word problem. The intuition gained from

reading McKenzie and Thompson's paper has proved invaluable to us. We are most

grateful to Professor W. W. Boone for making us aware of it.2

Caution. [9] makes essential use of an element R of order 3 (which juggles the

levels). Since lattice-ordered groups have no torsion elements, we have had to

develop a totally different strategy to prove our theorem. This has meant we have

had to originate new results in ordered permutation groups concerning conjugating

several elements simultaneously by the same conjugator (see Appendix for proofs).

This new technique is necessitated by the failure of the amalgamation property

[2, Theorem IOC] and is an essential departure from [9]. We do not know if the

standard finitely presented groups with insoluble word problem (see, e.g.. [0] and [1])

can be made into lattice-ordered groups—they are torsion-free. Also, we do not

know whether the lattice-ordered groups (as opposed to groups) given by these finite

presentations have insoluble word problem—the lack of a unique normal form and

the absence of the amalgamation property make this a difficult problem.

The only results on word problems for lattice-ordered groups to date have

concerned free objects in certain varieties of lattice-ordered groups [5], [6] and [8]

and the existence of a recursively presented lattice-ordered group with insoluble

word problem [3].

We are most grateful to the referees, especially George McNulty, for their careful

reading of the manuscripts. Their attention to detail has led to considerable

amplification in many places we had left obscure. The readability of the paper (such

as it is) owes a great deal to them.

1. Background. We will use u for the set of nonnegative integers, Z for the set of

integers, and Z+ for the set of positive integers, "co will be used for the set of

functions from u into u. In contrast to our notation for permutations, we will write

2After this article was written, we learned from Ralph N. McKenzie that Richard J. Thompson had

independently solved the problem but had not published it.
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WORD PROBLEM FOR LATTICE-ORDERED GROUPS 129

elements of "u on the left; so, if/, g G"w, fg will be that member of ww defined by

fg(n) = f(g(n)) («G<o).
Before embarking on the proof of the Theorem, we develop the notation and basic

facts that we will need about lattice-ordered groups and A(R).

Lemma 0. Let G be any lattice-ordered group and x, y, z E G.

(i) If x A y — e, then x~xyx = y.

(ii) 7/x(x A)))"1 A y = e ande < z <y, then (x Aj)"'z(x A y) = x"'zx.

(iii) If x A yx'x = e, e < z < y & yz — zy, then x <y & xz — zx.

Proof. Since (x A j)"1 = x"1 V j"1, we have x(x A y)'xy = y V x for all

j[jEC.

(i) If x A j = e, then xj = y V x = x V y = jx.

(ii) If x(x Ay)~x A y = e&e ^ z ^ y, then x(x A y)'1 A z = <?. By (i),

x(x Ay)'xz = zx(x A y)'x. Thus (ii) holds.

(iii) If x A yx'x = e, then jx"1 > e (so j > x) and xyx"1 = jx~'x = y by (i). Since

z » e, x A z A jx"1 = e; hence jx"'(x A z) = (x A z)yx'x = j(x A z)x"' (j com-

mutes with x & z). Thus x A z = x(x A z)x~x — x A xzx"1. As x, z < y,

x A (x V z)x"' = e. Therefore x V z = (x V z)x"'x = x(x V z)x"' by (i). Conse-

quently, x A z = x A xzx"' &x V z = x V xzx"1. Since lattice-ordered groups are

distributive lattices, z = xzx"1, proving (iii).    D

For g G A(R), let supp(g) = {a G R: ag^cx). If supp(g) is precisely one

interval of R, we will say that g has one bump; if supp(g) is bounded in R, we will

say that g is bounded.

Observe that if e </, g G A(R), then/A g = e if and only if supp(/) D supp(g)

= 0. Also, supp(h'xgh) = [supp(g)]/î. Hence if g is bounded and has one bump

and h > e, then h'xgh A g = e if and only if h maps the interval of support of g

completely to the right of the interval of support of g. Further, if /,/, > e,

then /, A ffx'x — e if and only if a/, = a/ for all a G supp(/,). In this case,

supp(/|) E supp(/) and/ = /, V ff~x. All of these facts are easily verified and are

standard fare in the study of ordered permutation groups (see §§1.9 and 2.1 of [2]).

2. Interpretation in A(R).

We now construct elements of A(R) which will realise all the relations we require

later. We present the interpretation first since it led us to the eventual finitely

presented lattice-ordered group with insoluble word problem. Indeed, it is the

picture that led to the construction of such a lattice-ordered group.

In A(R), there are elements a0, b0, c0 > e each bounded and having one bump,

such that:

(a) a0 A b¿"a0b'¿ = e = b0 A c~Q"b0c'¿ for all n E Z\{0},

(b) bôma0b^ < b0 and c^b^' < c0 for all m G Z,

(c) between supp(/jóma0¿>rj') and supp(èô"a0èô) there is a nondegenerate interval

of R whenever m and n are distinct integers, and

(d) similarly for supp(cômè0cu") and supp(c¿"¿0cg).
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WORD PROBLEM FOR LATTICE-ORDERED GROUPS 131

The picture above describes the situation—by (a) and the remarks in §1, the

support of ftö"flo^o 's indeed to the left of the support of ¿>oma0¿>™ if m > n. So we

can satisfy (c), (a) and (b) simultaneously; similarly also (d).

Because of the bump structure, there is a3 E A(R) such that a3xa0a3 = b0 and

a3xb0a3 = c0. Since the actual definition of a3 (as opposed to these vital properties)

is immaterial, we omit the details here—they can be found in the Appendix. Let

d0 = a¡xc0a3, x0 = a3xd0a3 and yn = a¡"x0a"3 (n E Z+ ). Let W = {yp ■ ■ ■ ynk*:

k E Z+ ,«,,.. .,nk E Z} and writex * y fory~xxy (x * yz is shorthand for x * (yz)).

By (a), (b), the remarks in §1 and the definition of a3, (x0 * w: w E W) forms a

pairwise disjoint set. Let dx E A(R) be the pointwise supremum of it. (Note that

x0 A dxxj>x = e, i.e., a3xd0a3 A dx(a3xd0a3)~x = e—so x0 V ¿?,x¿' = dx.) Let c, G

A(R) be the pointwise supremum of the pairwise disjoint set of elements {dQ * d"w:

n E Z, w E W), bx E A(R) be the pointwise supremum of the pairwise disjoint set

of elements {c0 * cfdfw: m, n El, w E W), and ax E A(R) be the pointwise

supremum of the pairwise disjoint set {b0 * b^c^d^w: m, n, k E Z, w E W). By

construction ax, bx, c, and dx each commute with each other, a3xcxa3 = dx, a3xbxa3

= cx and a3xaxa3 = bx. Also, since a, f supp(60) = b0\ supp(¿>0), axb0 = b0ax. Let a2

be the pointwise supremum of the pairwise disjoint set {aQ * a": « G Z+ }. So

a0 A a2 = e and ax'xa2ax < a2. Let a6 and a-, be the pointwise suprema of the

pairwise disjoint sets {a0 * cf: m G w} and {a0 * c~xm: m G Z+ }. Note that ak A a7

= e, cxx(a6V a1)cx= a6V a-,, a0 A a6a~Qx = e, c'xxa6cx< a6, cxa0c^x < a7 and

cxa7cx[ <a7.

Because of bump structure, we can find aA, a5 E A(R) such that a^xa0a4 = a0,

a^xaxaA — bx, aAxbxa4 = c, and a~Axcxa4 = dx; a~ixaQai = a0, a$xb0a5 = c0 and

a$xcxa5 — cx—see the Appendix for the details. Hence a0 * a'xr'ai = a0 * b"x for all

m E Z.

We have coded in five "levels" of Z via a0, a,, bx, c, and dx, e.g., a^b™ will code

in 1 at the lowest level, n at the next level, m at the third level, and 0 at the two

highest levels. The purpose of a3, a4 and as is to help us to pass from one level to

another. This wll be vital in the proof of Lemma 2 when coding in the composition

of two functions belonging to "w (see §4). Since the class of lattice-ordered groups

fails to satisfy the amalgamation property, the existence of such a3, a4 and a5 is by

no means guaranteed. The construction of a0, ax, b2, c, and dx has been carefully

contrived to ensure that there are indeed elements a3, a4 and as having the desired

properties.

We now code /G"w into A(R) via af where

snpp(af) = U (supp(c0 * cfd"): m E w, n G Z}

and

af\ supp(c0 * c"dx) = Z>(("° r supp(c0 * cxd")    for all m E u and « G Z.

Note that af commutes with ax, bx and dx, and a0 * c'xnaf= a0 * ¿>((m)c¡" for all

m E w.
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132 A. M. W. GLASS AND YURI GUREVICH

Finally, for technical reasons, we need one extra element â E A(R) defined by

supp(â) E U {supp(c0 * cfdfw): m, n G Z, w G W], and â[ supp(c0 * cfdfw) =

¿>7+1r supp(c0 * cxdxw) for ail w, « G Z, w E W. Note that a5 = (â V e) A

a3xd0a3, s being the successor function. Also aâ > a for all a E supp(a6); hence

a6 A (a-1 Ve) = e.

3. The basic lattice-ordered group.

In A(R) we constructed five "levels" of Z. We now write down a finite presenta-

tion which will capture this information and will be a close approximation to the

picture.

Let G be the finitely-presented lattice-ordered group with generators

the formal symbols a0, ax, a2, a3, a4, a5, a6 and a7 and relations

a0 Aa2 = e, ax > e,

axxa0ax^a2, ax~xa2ax<a2,

a, < ¿, (i = 0,1), axb0 = b0ax,

axbx = bxax, axcx = cxax,

axdx=dxax, a3xdQa3 A dx(a3xdQa3)    = e,

a0a4 = a4a0, a4xaxa4 = bx,

a4xbxa4 = cx, a'4cxa4 = dx,

a0a5 = a5a0, a¡xbQa5 = c0,

cxa5 = a5cx, a6 A a7 = e,

ct\a6Va7)cx=a6V a7,    a0 A ^a"1 = e,

cxxa6cx<a6, cxa7cxx<a7,

-1"0C1 axb~0   Ab0 = e

where

fl3aifl3.   c,. = a3\ai,    d^aj/afil       (' = 0,1).

Observe that all of the above relations hold in A(R) under the natural interpre-

tation.

Note that we write x < y as a shorthand for x A y = x.

We will continue to use x * y for y~xxy and x* yz for x * (yz). Observe that

(x * y) * z = x * yz.

Lemma 1. In G, the following facts hold:

(i)bxc0 = c0bx; cxd0 = dxcx.

(ii) bxcx = cxbx; cxdx = dxcx; bxdx = dxbx.

(iii) a0 * a" < a2 for all n E Z+ .

(iv) (a0 * a") A (a0 * a[") = e unless n — m.

(v) (¿>0 * b"x) A (b0 *b'xn) = e unless n = m.
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(vi) (c0 * c") A (c0 *c\m) = e unless n = m.

(vii) (d0 * ¿I") A (d0 * df) = e unless n = m.

(win) (a0 * arfticfdf ) A (flo * a?'bnx'ck'dr) = e unless (m = m',n = n', k = k'

and p = p').

(ix) a0* C" *£ Û3'¿oa3 /or a// m E w-

(x) a0* c" < a6 // W on/j if m Eu.

(xi) íz0 * a¡"a5 = a0 * ¿7 /or a// m ET.

(xii) a, < o, < c, < í/,.

Proof, (i) and (ii) follow immediately by conjugating the relations axb0 = b0ax,

axbx = bxax and axcx = cxax of G by a3 or aj.

(iii) follows from the relations axxa0ax < a2 and axxa2ax < a2 by induction on n.

(iv) follows from (iii) and the relation a0 A a2 = e.

(v), (vi) and (vii) now follow by conjugating (iv) by a 3, a \ and a] respectively.

(viii) Since ax commutes with b0, aQ < b0 implies a0* a" < o0 for all n E Z.

Conjugating by a3 and a3 gives b0* b" < c0 and c0 * c" *£ ¿0, respectively, for all

« G Z. Hence a0 * aJ"o"cf < d0 and a0 * a¡"7>"'cf < d0. (viii) now follows by succes-

sively using (vii), (vi), (v) and (iv).

(ix) Note that a0* c¡" < d0 for all m G « (as in (viii)). Since a0 < o0,

i/0 = a0 * a3 < 60 * a3 = a3xd0a3.

Hence a0 * c"x < a3xd0a3 for all m E w.

(x) is similar to (iii) using the relations involving a6 and a7.

(xi) Since axb¿x A b0 = e, ax A b0 = b0 by Lemma O(iii). But a0 < b0; so a0 * a¡"

= a0 * ¿>™ for all w G Z by Lemma O(ii). Thus <z0 * aj"a5 = a0 * ¿>™a5 = a0 * c™. But

bxCQX A c0 = e (conjugate axb^x A b0 = e by a3); so a0 * c™ = a0 * b™ by Lemma

0(ii) again. Therefore a0 * a'x"a5 = a0* b™ for all m E Z.

(xii) Since ax *z bx = a3~xaxa3, bx «s c, & c, «s ¿, (conjugate by a3 & a3).

4. Coding recursive functions into lattice-ordered groups.

We write (a; r(a) = e) for the G described above.

We observe that G contains the five "levels" of Z, as described above.

Our main goal in this section will be to code recursive functions (from w into u)

into finitely presented lattice-ordered groups.

A function /G"w is said to be representable if there are a finite number of

generators x(/)—including a and af — and a finite number of words s(/) in these

generators such that the relations s(/) = e hold in A(R) in the natural interpretation

and, in G(f) = (x(/); r(a) = e, s(/) = e), af commutes with ax, bx and dx, and for

all m G w

(•)« a0*cTaf=a0*b{^cr.

By Lemma l(viii), af is well defined (û0 * cf & a0 * //(m)cf are disjoint from

a0 * c"x & a0 * b{in)cnx for all n =h m).
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134 A. M. W. GLASS AND YURI GUREVICH

Note that in A(R), af has all these properties. Indeed, all the relations that we will

write down hold in A(R) in the natural interpretation as can be easily checked.

All generators of the finitely presented lattice-ordered groups we will construct

will be of the form a, â or ag for some functions g G"«.

Our main goal will be to prove that every recursive/ G " w is represen table.

To achieve this, it is easiest to take a classification of recursive functions of one

variable given by Julia Robinson:

A function /Gww is obtained from g, h, u, v G"w by general recursion if (i)

fg = u, (ii)fh — vf, and (iii) each n E w belongs to the range of one of the functions

hkg(k Eu).

The first result from recursion theory that we will need is:

I. (Julia Robinson [10]) The class of recursive functions is the smallest class of

numerical functions which is closed under composition and general recursion, and

contains the zero function 8 (0(n) = 0) and the successor function s (s(n) = n + 1).

Lemma 2. Every recursive function is representable.

Proof. Firstly, 6(n) = 0 is clearly representable—adjoin to G the generator ae

and the relation ae — e.

Secondly, for s the successor function, adjoin to G the generators â and av, and the

relations: â commutes with ax, bx and dx;

cxâ = âbxcx ;    aQ * â — a0 * bx ;

(â V e)[(â V e) A a3"W0a3]"~' A a3xd0a3 = e;

as = (â V e) A a3~xd0a3   and   a6 A (â] V e) = e.

Since â commutes with ax, bx and dx, so does â V e. Moreover, so does a3xd0a3 by

Lemmas 0(iii) and l(xii) (with x = a3xd0a3, y = dx and z = ax, bx and dx). Thus as

commutes with ax, bx and dx. We now prove a0 * cfâ = a0 * b\{m)cf for all m G w

by induction.

For m — 0, a0 * c°â = a0 * â = a0 * bx = a0 * ¿>f0)c°-

Assume a0 * c™â = a0 * 6^(m)cf. Then

a0 * c™+xâ = a0 * cfC|â — a0* c"'âbxcx

= a0 * b\(m)c^bxcx = a0 * bsx(m+])cxm+l

as required.

Now e = a3xd0a3 A dx(a3]d0a3)~x, so dx = a3xd0a3 V í/1(ajlí/0fl3)"1. Since

(â V e)[(â V e) A a3xd0a3]~x A a3xd0a3 = e and a0 * cf < a3xdQa3 (by Lemma

l(ix)), a0 * c™[(â V e) A a3xd0a3] — a0 * c^â V e) for all m E u by Lemma 0(ii).

Hence, by the above and the definition of as (= (â V e) A a3xd0a3),

a0 * c'xnas — a0 * c™(a V e)    for all m Gw.

But a6 A (â'[ V e) — e, so a0 * cf A (â-1 V e) = e (m G w) by Lemma l(x). By

Lemma 0(i),

a0 * c'x"(e V â)â~x = a0 * cf (a"1 V e) = a0*c'xn
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and hence

a0 * c™(e V â) = a0 * cfâ = a0 * ¿rf»cf

for all m G co. Therefore a0 * c"'as = a0 * bfm\x for all m G to. Thus s is repre-

sentable.

We next show that if / and g are representable, then so is h = gf. Let G(h) have

generators x(/) U x(g) U {ah}, and relations: s(/) = e, s(g) = e, ah commutes

with ax, bx and dx, and ah(ag<$> af)~x A a6 = e, where xfj is shorthand for

x * a4ly~]a5. Since a0 * c"' < a6 for all m E to (Lemma l(x)) and ah(ag\af)~x A a6

= e,

a0*cfflA = a0cf(agta/)

by Lemma 0(i). So, in G(/¡), using Lemma l(xi),

a0 * cTah = «0 * cr(«51«/il4aga4Iû71Û5)

= a0 * bHm)c?a4aga4xajxa5

= a0 * c{^d?aga-4xajxa5

= a0 * bsxfim)c{im)d!j'a-4xajxa5

= a0 * ahx(m)b{(m)c1'a]xa5

= a0 * af(m)cfa5 = a0 * ¿>?(mVf.

Hence the composition of representable functions is representable.

Lastly, we must show that if g, h, u and v are representable and/is obtained from

them by general recursion, then / is representable. So assume the hypothesis and let

G(f) have a generators a{ together with those used to show the representability of

g, h, u and v, and relations those required for g, h, u and v together with:

a¡ commutes with ax,bx and dx;

au(a/tagy[ A a6 = e   and    (afiah)(aJaf)~X A ab = e.

Now each m E to belongs to the range of some /i*g. We prove, by induction on k,

that for each m E range(hkg), a0 * c"'af = a0 * b^cf.

For k = 0, let m = g(n), say.

Thus a0 * c"au = a0 * o"(,,)c" = a0 * b{im)c" since « is representable and « =/g.

Since ûj/a, f ag)~' A ö6 = e' u follows that

a0* c';au = a0* c"x(af* a4xa-gxa5).

Hence

a0 * 6((",)c;,675-1aga4 = a0 * c^a¡xaga4af.

So

a0*a{^c1aga4 = a0*bf"k"xa4af.

Therefore

a0 * ô/(m)cfi/r = a0 * cTWfy.

Since i/,0^ = flyi/,, a0 * b{(m)c'x" = a0 * eft?,.
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Now assume that if n G range(hkg), then a0 * c"af= a0 * b{(n)c" and suppose

m E range(hk+xg). So m = h(n) for some n E range(hkg).

But

a0*cnx(afJ\ah) = a0 * C¡(av]af)

so

a0 * c'!a-5xatla4a/a4xaj,xa5 = a0 * cnxalxafa4ava-4xajxa<>.

By the hypotheses,

a0 * chxMd"xafa4xa-hx = a0 * c{^dnxava-4xajx.

Thus

a0 * c?afd?a4xa-hx = a0 * bfn)c{^dnxa4xajx.

Hence

a0 * c^afdnx = a0 * bfn)c{(n)dxna-4xajxaha4.

Since vf(n) = fh(n) = f(m) and ax commutes with o,, c, and a¡,

Therefore

a0 * c?af = a0 * b{^c"xajxa{^aha4dj".

aQ*cïaf=a0*cïaha{^a4dj".

So

670 * c^af = a0 * b\(n)cnxa{(m)a4djn.

As h(n) = m and bx, c, and t7, commute,

00*0^= t70 * of(m)cf.

By I, every recursive function is representable, and the proof of the lemma

complete.

5. The proofs of the Theorem and Corollary. We now apply the results of §§2 and

4 to prove the Theorem. We need the following fact:

II. There is a recursive function whose range is not a recursive set.

Let / be a recursive function whose range X is not recursive. Let h be the

characteristic function of to \ X; i.e.,

U    \-\0    if m EX,

Note that h is not recursive and so is not necessarily representable.

By Lemma 2,/is representable. Adjoin to G(f) a new generator ah and relations:

a„ commutes with ax, bx and dx, and (a$af) A a6 = e. Let 77^- be the resulting

finitely presented lattice-ordered group. The set of generators corresponds to the set

X0 mentioned in the introduction; the relations to 50 mentioned there. Now since

a0 * c" < a6 for all n E to,

a0*c^(ah-\af) = a0 * c"x
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by Lemma 0(i). So

a0 * c"xalxafa4ah = a0 * c"xa¡xafa4.

Thus

a0 * c?»hh = a0 * c{<">.

This set of relations corresponds to the nonrecursive set S of the introduction,

whereas R corresponds to the set a0 * cxlah = a0 * cf (m G to).

However (by §2), in A(R), if m G X,

ao*cffl/,= ao*b\c? ^a0*c?-

Since all the defining relations of Hx hold in A(R) in the given interpretation, in 77^,

a0 * c\mah = a0* c™   if and only if m E X.

Consequently, we have achieved our goal and the finitely presented lattice-ordered

group Hx has insoluble word problem.   Q.E.D.

Note that the word problem for 77^ has Turing degree at least that of X.

We now prove the Corollary.

If L is any lattice-ordered group and x E L, then |x|=xVx"'>e; indeed

| x | = e if and only if x = e [2,Lemma 1.11.4]. Hence wx,...,w„ are simultaneously

equal to e if and only if | wx | V ■ • • V | wn | = e. So any finite set of relations in any

lattice-ordered group is equivalent to a single relation. The Corollary therefore

follows immediately from the Theorem.

Appendix. In §2 we asserted the existence of certain elements of A(R). We did not

wish to elaborate on the reasons for their existence earlier as we felt that a better

understanding of our ideas would result if we postponed these technicalities.

However, we must now prove the existence of a3, a4, a5 E A(R). The proof is

essentially in [2, §2.2]; its root is [4].

Choose a0 G supp(a0). Let ß0 = inf(supp(a0)) and y0 = inf(supp(¿>0)). Observe

that sup(supp(a0)) < ß0b0 and sup(supp(o0)) < y0c0 by §2(c) and (d) respectively.

Let /0 be an order-preserving one-to-one map of [a0, a0a0] onto [a0, a0b0]. Let

in — aônfoDo> an order-preserving one-to-one map of [a0aQ, a0aQ+x] onto

[a0b5, a0bö+l] (n e Z). Define /: supp(a0) - supp(o0) by /r [<x0a%, a0a[¡+1] =/„

(n G Z); i.e. f = U {/„: n E Z). We can extend/to an order-preserving one-to-one

map g0 of [ß0,ß0b0] onto [y0, y0c0]. Let g„ = VSo^: [ßoK, ßQb£+x] -»

[YocS» Yoco+1] (" G Z) and g = U {g„: n G Z}. So g: supp(60) -» supp(c0). We can

extend g to an element of A(R), say a3. Since a3 extends both/and g, it follows by

an easy computation that a3't70t73 = b0 and a3xb0a3 — c0. (supp(a31a0a3) =

supp(a0)a3 = supp(a0)/= supp(o0), and if a G [a0b^, a0bS+x], aa3xa0a3 =

afn 'ao/n+i = °bQ. The other equahty is proved similarly.) This shows that a3 exists.

The constructions of a4 and a5 are similar. Let ô0 = inf(supp(c0)). Note that

sup(supp(c0)) < 80d0. Let /0 be a one-to-one order-preserving map of [ß0, ß0bQ]

onto [jS0, y30c0] such that/0r supp(a0) = e. Let/„ = V/oco (" G z). and/: supp(o0)

^ supp(c0) be given by /= U{/„: n G Z}. Let g0: [y0, y0c0] ^ [80,80d0] be a
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one-to-one order-preserving onto map extending/. Let g„ = c¿"g0c7o («GZ) and g:

supp(c0) -» supp(t70) be defined byg= U {g„: « G Z). We continue this extension

process to

supp(c70) -supp(x0),supp(x0) -> supp(j,),...,supp(j„) - supp(j„+,),...

to obtain h, an order-preserving permutation of the interval U {supp(yn): n E Z+ }.

By construction, h~xa0h — a0, h~xaxh = bx, h~xbxh = c, and h~]cxh = dx. Extend h

to an element of A(R), call it a4. (Of course, if R — U {supp(j„): n E Z+ }, this

step is unnecessary.) Then a4 E A(R) has all the desired properties.

For a5, let/be defined as for a4. Let g0: [S0, 80d0] -» [8Q, 80d0] be an order-pre-

serving one-to-one onto map extending /. Let g„ = d¿""g0¿o (n E Z) and g be the

order-preserving permutation of supp(c70) given by U {g„: n E Z}. Then g~xdQg =

d0. Since g extends/, g"'a0g = a0 and g'xb0g = c0. Let «„ w be that order-preserv-

ing permutation of supp(d0 * d"w) defined by g * d"w (n El, w G H7). Then

« = U {«„ w: n El, w E W) has the properties h~]a0h = a0, h'xb0h = c0 and

/r'c,/z = c,. Any extension of h to an element of A(R) can be taken as a5.
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