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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 48, Number 4, Dec. 1983 

RANDOM MODELS AND THE GODEL CASE 
OF THE DECISION PROBLEM 

YURI GUREVICH AND SAHARON SHELAH1 

Abstract. In a paper of 1933 Godel proved that every satisfiable first-order V2?3* 

sentence has a finite model. Actually he constructed a finite model in an ingenious and 
sophisticated way. In this paper we use a simple and straightforward probabilistic argu- 
ment to establish existence of a finite model of an arbitrary satisfiable V123* sentence. 

?0. Introduction. We consider the usual first-order logic of textbooks. A first- 
order formula is called a sentence if it has no free individual variables. In this 
paper we restrict our attention to formulas without function symbols or individual 
constants. Unless we explicitly note otherwise, our formulas are without occur- 
rences of equality. 

THEOREM 1. Let q=VVNVV2HV3... 3 v1q(vj, ..., v1) where 0i is quantifier free. If 
5 has a model it has afinite model. 

Theorem 1 was proved in Gddel [3]. It was proved independently in Schiitte 
[9], [10]. Gddel's proof is much cleaner and easier than that of Schiitte. Still it is 
very sophisticated. Its overall scheme is simple, however. Gbdel formulates a 
syntactical criterion and proves that the criterion is necessary for satisfiability and 
sufficient for finite satisfiability. It is the proof of sufficiency that is difficult. In ?1 
we give the simple part of Gddel's proof. In ?2 we define random finite structures 
and prove the sufficiency result in a straightforward way. Let us mention that the 
idea of random structures is not a perfect novelty: see Fagin [2]. 

COROLLARY. There is an algorithm that decides satisfiability of V23* sentences. 
The Corollary was independently proved in Kalmar [6]. 
When our proof gives an easier proof of Theorem 1, G6del's proof gives a better 

upper bound on the size of a minimal model of q5. Additional information about 
models of V23* sentences can be found in Dreben and Goldfarb [1]. Lewis [8] 
gives lower and upper bounds on the computational complexity of algorithms that 
decide satisfiability of V23* sentences. 

Both Theorem 1 and the Corollary are easily generalized to 3*V23* sentences, 
which form one of the maximal decidable for satisfiability classes of prenex sen- 
tences that is defined by type of prefix; see Lewis [7]. Even the V33 class with unary 
predicates and at most one binary predicate is undecidable for satisfiability. In 
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particular a satisfiable V33 sentence can have no finite models. Here is an example: 
VxVyVz3u[(Rxy & Ryz -+ Rxz) & Rxx &Rxu]. 

In ?3 we generalize Theorem 1 for certain V*3* sentences. 
Gbdel [3] mentioned that Theorem 1 remains true if we allow equality to appear 

in q5. This claim of his remains unproved. Goldfarb [4] showed that there is no 
primitive recursive procedure that decides satisfiability of V23 sentences with 
equality and at most binary predicates. The reader may wonder where the proof of 
Theorem 1 breaks down in the case with equality. An answer can be found in ?4. 

More about the Gddel class with equality will appear in Goldfarb, Gurevich and 
Shelah [5]. 

We thank Warren Goldfarb for useful comments on a draft of this paper. 

?1. Godel's criterion. In this section we describe Gddel's scheme for proving 
Theorem 1, and we prove the easy part of the scheme. 

LEMMA. A first-order sentence Vv1Vv23v3... 3vlq5(vl, ., v1) is equivalent to the 
sentence 

Vv1Vv23v3... 33v13v. v. 3v[vl # V2 >-+ (V1, V2, V3, ..., VI) 
& 0(V1, V1, V,*V)] 

in any structure for the language of q$ containing at least 2 elements. 
PROOF is obvious. 
Let q5 be a first-order sentence Vv1Vv23v3... 3v,(v1 # V2 -+ q5(v1, ..., v)) where 

0i is quantifier-free. In order to prove Theorem 1 it suffices to show that cb has a 
finite nonsingleton model if it has any nonsingleton model at all. (Nonsingleton 
means containing at least two different elements.) Without loss of generality I > 3. 

DEFINITION. A k-table is a structure for the language of cb whose universe is the 
set {1, .. ., k}. 

DEFINITION. Let M be a structure for the language of cb and a = (al, ..., ak) 
a sequence of elements of M. The table tbM(d) of a is the unique k-table A such 
that the map{(i, a1): 1 < i < k} is an isomorphism from A onto a substructure of 
M. 

If cb is satisfiable, and M is a nonsingleton model of 0, and 

P = {tbM(a): a E M}, Q = {tbM(a, b): a, b E M}, 

then P, Q are nonempty and satisfy the following conditions: 
(GI) For all Al, A2 E P there is B E Q with tbB(l) = Al, tbB(2) = A2; and 
(G2) For every A E Q there is an 1-table B such that tbB(l, 2) = A, and tbB(i) E P 

forI < i < land tbB(iJ)eQfor 1 < i,j]< l,andB k= (1,2, ..,1). 
THEOREM 2. Suppose that a nonempty set P of 1-tables and a set Q of 2-tables 

satisfy conditions (GI) and (G2). Then cb has afinite nonsingleton model. 
It remains to prove Theorem 2. 

?2. Proof of Theorem 2. Let p, q be the cardinalities of P, Q, respectively. For 
n ? I we construct an np-table M. The truth values of k-place atomic formulas 
are defined as follows. 

Case k = 1. If a = ip + j for some 0 < i < n, 1 < j < p, define tbM(a) to be 
equal to thejth table in an a priori fixed order on P. 
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Case k = 2. Suppose 1 < a < b < np. By (GI) the set (A e Q: tbA(l) = tbM(a), 
tbA(2) = tbM(b)} is not empty. Choose at random a table A in this set and define 
tbM(a, b) = A. 

Case 3 < k < 1. If R is a j-place predicate letter in 0, and (al, ..., a1) is a 
j-tuple of elements of M containing at least 3, and at most 1, distinct members, 
define the truth-value of R(al, . . ., aj) at random. 

Case k > 1. If R is aj-place predicate letter in 0, and (al, . ., aj) is aj-tuple of 
elements of M containing more than I distinct members, define R(al, ..., aj) to 
be false. 

Let Sn be the collection of possible values for M. We consider Sn as a probability 
space with 

Prob[M = M1] = Prob[M = M2] for M1, M2 in Sn. 

Thus M is a random member of Sn. Let a,, ..., a, range over { 1. np}. 

By (G2) there is a function Fun assigning an appropriate I-table B = Fun(A) 

to each A E Q. Given an I-table B we say that a3, . . ., a, witness B for a,, a2 if the 

truth value of R(a, ,. . ., aj) in M coincides with the truth value of R(il, . k ) i*) 
in B for every 1 < k < 1, every k-place predicate letter R in q and every k-tuple 

il. ik of numbers such that {il, ., ik} is included into . 1} and 

meets 3, 1}. In the case when the predicate letters in 0 are at most binary 

elements a3, ., a, witness B for a,, a2 iff tbM(ai, aj) = tb,(i, J) for all distinct 

i, jE {1, . ., 1} such that either i ? 3 orj ? 3. 

Let e = (I/q)r * (l/2)s, where r = (1-2) + 2(1 - 2) and s is the number of 

atomic formulas R(vi, . v) where 3 < k < 1, R is a k-place predicate letter in 

0, and (i., ik) is a k-tuple of numbers among I, . containing at least three 

distinct members. (If I = 3 then r = 2.) 

LEMMA 1. Suppose that A E Q, B = Fun(A) and a1 . a, are (I/fjr('nt 'Icrnnt(s 

of M with tbM(ai) = tbB(i)/for I ? i < 1. Then 

Prob[a3 . a, witness B/Jor a1, a(J > c. 

PROOF is clear. 

Let m be the integer part of (n -2)/(I - 2). 

LEMMA 2. Let a,, a2 be different elements of M. Thcn 

Prob[3v3 ... 3vdP(a1, a2, V3, .. ., v') jails in M] < (I 

PROOF. Let A be a possible value for tbM(al, a>) and B = Fun(A). It suffices to 

prove that 

Prob[no V3, . . ., V witness B for a1, a21 < (I - -)m. 

There are different elements a' E M - -{a, a2} with tb(a{) = tbB(i) for 3 < i < I 

and 1 < j < m. The events "a'3, ..., aJ, witness B for a,, a2" are independent and 

the intersection of their complements includes the event "no V3 . VI witness 

B for a,, a2". Now use Lemma 1. D 

Now, 

[M does not satisfy q6] 

- U V3 *... 3 v10(al, a2, V3, . . ., V') fails in M]. 
alta2 
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This and Lemma 2 give 

Prob[M does not satisfy cb] < pn(pn - 1)(1 - )m. 

Suppose that n is big enough so that pn(pn - 1)(1 - c)m < 1. Then the prob- 
ability that M satisfies q5 is positive. Since the probability space Sn is finite it means 
that some member of Sn satisfies 0. Theorem 2 is proved. 

Our proof gives an upper bound np on the size of a minimal nonsingleton model 
of 0 where n satisfies 2(1 - 2)log(np) < c(n - 1) log e and e is the basis of natural 
logarithms. 

For, suppose this inequality is satisfied. Since m > (n - 2)/(l - 2) - I 
(n - 1)/(- 2), we have log(np)2 < em log e. Use the college calculus to check that 
x log e < -log (1 -x) for 0 < x < 1. Hence 

log(np)2 < -m log(l - 

log(np)2 + m log(1- ) < 0, 

(np)2(1 - c)m < 1, 

which suffices in the proof of Theorem 2. 
Gddel [3] gives a better upper-bound on the size of a minimal nonsingleton model 

of q5. It is 7L where L satisfies the inequality 2(1 - 2)q(10g2(7L) + 1) < L. 
In order to improve our bound we can be more cautious in defining a random 

structure M. In particular we can be more restrictive in defining k-place predicates 
for k ? 3. A real sophistication is needed, however, to get Godel's bound. 

?3. A generalization for the V**3* case. It may seem that the proof of Theorem I 
is straightforwardly generalizable for the V*3* case. The sentence 

VxVyVz3u[(Rxy & Ryz -- Rxz) & Rxx & Rxu] 

has, however, only infinite models. Where does the would-be generalization of 
Theorem 1 break down when q is this sentence? To answer this question note 
that the definition of a random structure fails to ensure "R is transitive". Techni- 
cally speaking we lose independence of events that were used to prove Lemmas 
I and 2 in ?2. 

THEOREM 3. Let q be a sentence VVl . *VVk3 Vk+l. 3 v1(vj, ., v1) where ?P 
is quantifier free. Suppose that M is a model of q such that for every 1 < j < k, 
the table tbM(al, . . ., aj) of arbitrary j-tuple a1, . . ., aj of elements of M is uniquel/i 
defined by tbM(al), . . ., tbM(aj). Then qZ has afinite model. 

The proof of Theorem 3 is a straightforward generalization of the proof of 
Theorem 1. 

?4. A note on equality. As we mentioned in ?0, it is still unknown whether every 
satisfiable dyadic V23 sentence with equality has a finite model. Why is equality 
so important? Where did we use the fact that equality does not appear in q? 

The situation appears to be even more intriguing if one notices that we do en- 
sure in the proof of Theorem 2 that the desired witnesses a3, . . ., a, are different 
between themselves and different from a1, a2. Moreover, the proof of Theorem 2 
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does not use absence of equality at all. However, absence of equality was used in 
?1 to prove necessity of (G1). 

DEFINITION. Let M be a structure. An element a of M is a king if there is no 
other element b of M with tbM(b) = tbM(a). 

Any satisfiable first-order sentence 0b without equality has a model without 
kings. We demonstrate that statement in an example. Suppose that a dyadic pre- 
dicate symbol R is the only nonlogical constant in 0b. If M is a model of 0b and 
a E M throw into M a new element a' (a duplicate of a) and define Ra'b <-+ Rab, 
Rba' <-+ Rba for all b e M. Evidently the new model satisfies 0b and neither a nor 
a' is a king in the new model. 

If we allow equality in 5 but suppose that q has a model without kings then 
Theorem I remains valid. 

See also Goldfarb, Gurevich and Shelah [5]. 
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