
The Journal of Symbolic Logic
http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Rabin's uniformization problem

Yuri Gurevich and Saharon Shelah

The Journal of Symbolic Logic / Volume 48 / Issue 04 / December 1983, pp 1105 - 1119
DOI: 10.2307/2273673, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200037464

How to cite this article:
Yuri Gurevich and Saharon Shelah (1983). Rabin's uniformization problem . The Journal of Symbolic
Logic, 48, pp 1105-1119 doi:10.2307/2273673

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JSL, IP address: 141.211.4.224 on 14 May 2016



THE JOURNAL OF SYMBOLIC LOGIC 
Volume 48, Number 4, Dec. 1983 

RABIN'S UNIFORMIZATION PROBLEM1 

YURI GUREVICH2 AND SAHARON SHELAH 

Abstract. The set of all words in the alphabet {/, r} forms the full binary tree T. If 
x e T then xl and xr are the left and the right successors of x respectively. We consider 
the monadic second-order language of the full binary tree with the two successor rela­
tions. This language allows quantification over elements of rand over arbitrary subsets 
of T. We prove that there is no monadic second-order formula <f>*(X, y) such that for 
every nonempty subset Xoi 7" there is a unique y e A" that satisfies 4>*(X, y) in T. 

INTRODUCTION 
The uniformization problem for a theory TH in a formalized language L can be 

formulated as follows. Suppose TH |— VM3V^(M, V) where <j> is an L-formula and 
u, v are tuples of variables. Is there another L-formula <fi*(u, v) such that 

TH | - ViJVv(0*(w, V) ->• <jiu, v)) and TH \- V53! v0*(w, v)? 

Here 3! means "there is a unique". 
Rabin's Uniformization Problem is the uniformization problem for the monadic 

second-order theory of the full binary tree. Let us recall necessary definitions and 
survey very briefly the history of the problem. 

The monadic second-order logic is the fragment of the full second-order logic 
that allows quantification over elements and over monadic predicates only. One 
way to define the monadic version of the first-order language L is to augment L by 
a list of quantifiable set variables and by new atomic formulas teX where / is a 
first-order term and A1 is a set variable. Suppose that M is a structure for L. The 
monadic second-order theory of M is the theory of M in the extended language 
when the set variables range over all subsets of M and e is the containment relation. 

The monadic second-order theory of the structure (a, Successor) is known as 
SIS. Here to is the set of natural numbers, Successor is the usual successor opera­
tion, and SIS abbreviates "the second-order theory of one successor". The decision 
problem for SIS was solved positively by Biichi [1962]. The uniformization problem 
for SIS was solved positively by Biichi and Landweber [1969]. Let <4(«, v) be a 
formula in the language of SIS. We can view each u and v as an co-sequence 
of letters in a certain finite alphabet. Biichi and Landweber proved that if 
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SIS |— V«3v^(u, V) then there is a finite automaton that outputs an appropriate 
co-sequence v when it reads the given co-sequence u. The desired uniformizing 
formula <f>* describes that finite automaton. 

The full binary tree Tis here the set of all words in the alphabet {/, r}. The mo­
nadic second-order theory of T with two successor operations Successor^*) = xl 
and Successorr(x) = xr is known as S2S, which is an abbreviation for "the second-
order theory of two successors". Rabin [1969] solved positively the decision prob­
lem for S2S. To simplify the notation we describe here only a partial case of a 
result from Rabin [1972]. Let <fiX) be a formula in the language of S2S where X 
is a set variable. If S2S |— 3X<j>(X), then there is a regular (i.e., recognizable by a 
finite automaton) subset A" of the full binary tree such that <j>{X) holds in T. 

The quoted results of Buchi, Biichi and Landweber, and Rabin can be seen as 
a hint for a positive solution for the uniformization problem for S2S. This paper 
gives, however, a negative solution for that uniformization problem. More speci­
fically, we prove the following: Let <f>(X, y) be a formula in the language of S2S 
saying that if X is nonempty then y e X. Clearly S2S (- VX3y<f>(X, y). We prove 
that there is no formula <j>*(X, y) in the language of S2S such that for every X £ T 
there is a unique y eT satisfying cj){X, y) in T. 

The proof is model-theoretic in its nature. The main tool is the Composition 
Theorem for trees proved in Chapter 2. Another tool is the Addition Theorem 
for intervals of trees proved in Chapter 3. Rabin's Uniformization Problem is 
solved in Chapter 5 with use of forcing. The reader can go on straightway and read 
§5.1 in order to get some idea of how the proof goes. 

Finally, let us note that we allow only set variables in our monadic second-order 
languages. The original structure is coded on singleton sets. This way we transform 
a given monadic second-order theory into the first-order theory of certain special 
structures. 

CHAPTER 2. GRAFTING 
The main goal of this chapter is the Composition Theorem for trees. In §2.1 

we recall the notion of n-theory due to Lauchli [1968] and its important general­
ization due to Shelah [1975]. The Composition Theorem for trees is proved in 
§2.3. Its proof follows the routine developed by Shelah [1975] and Gurevich 
[1979]. For the reader's convenience we make this exposition self-contained. In 
§2.4 we formulate a rougher version of the Composition Theorem that suffices for 
our purposes here. 

§2.1. Finite fragments of theories. Let L be a first-order language and AT be a class 
of structures for L. If A e K and ah ..., akeA let Th°04, ah ..., ak) be the 
quantifier-free type of the &-tuple (a1; . . . , ak) in the structure A. We would like to 
treat Th°(^, ah ..., ak) as a finite constructive object. 

Proviso. For every k the set 

{Th°(A, ai, ..., ak): AeK and ah ..., ah 6 A} 

is finite. Every Th°(A, ah ..., ak) can be fully described in the theory of AT by a 
single quantifier-free formula (in variables vh . . . , v*). 

The last sentence of the Proviso means that for every A, k, ah ..., ak there is a 
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quantifier-free formula 0(vx, . . . , vk) such that A \= 0(a1; . . . , ak) and if B e 
AT and bu ..., b„eB and B N #2>i bk) then Th°(fl, bh ..., bk) = 
Th°(,4, «!, . . . , a*). We identify every Th°(/1, <*i, . . . , a*) with a quantifier-free 
formula that fully describes it. In our application the describing formulas will be 
constructed in a uniform way. 

By induction on n we define n-theories Th"(^4, ah ..., ak) where A e K and 
«i, . . . , a* e ,4. 0-theories have been defined already. Further, 

Th»+i(^, ah ..., ak) = {Th»04, ab ..., ak, b): b e / !} . 

Let 0-&-Box be {Th°(/1, ax, ..., ak): AeK and ax, ..., ake A}. Let (n + l)-/c-
Box be the power set of n-(k + l)-Box. It is easy to see that every Th"(A, ah..., ak) 
belongs to n-k-Box. 

Let us recall the definition of the quantifier depth QD(^) of a first-order formula 
<j>. QD(^) = 0 if <fr is quantifier-free. If <j> is a Boolean combination of formulas 
fc, . . . , <j>„ then QD($ = max{QD(^), . . . , QD(^)}. If (j> is 3v^(v) or Vv^(v) 
then QD($ = 1 + QD(^). 

CLAIM 1. For every n, k and every t in n-k-Box there is an L-formula <j>t(vh ..., vk) 
of quantifier depth n such that for every AeK and every ah ..., ake A, A |= 
^(ai , . . . , ak) ijfThn(A, ah ..., ak) = t. 

PROOF (by induction on n). Our Proviso takes care of the case n = 0. If t e 
(n + l)-k-Box then ^ is the conjunction of the formulas 

A 3v*+10s(vi, . . . , v m ) and Vvi+1 V &(vi, • •., vk+1). • 

CLAIM 2. There is an algorithm that, given Th"(A, ah ..., ak) and an L-formula 
0(vi, . . . , vh) of quantifier depth n with free variables as shown, computes the truth 
value of<p(ai, ..., ak) in A. 

The proof is an easy induction on n. • 
Note that the quantifier depth of a prenex first-order formula is the length of its 

prefix. Here the prefix of a first-order formula is just a word in the alphabet {V, 3}. 
Blocks of universal quantifiers and blocks of existential quantifiers alternate in a 
prefix. The alternation type of a prefix is the corresponding sequence of lengths of 
the blocks of quantifiers. For example, (6, 7, 4) is the alternation type of both 
V637V4 and 36V734. In order to prove the Composition Theorem for trees we need 
a generalization of the notion of n-theory that reflects not only the length of a pre­
fix but also its alternation type. 

In this paper £ and -q range over alternation types, i.e., over finite sequences of 
positive integers. By induction on the length lh(£) we define the ^-theory of a 
structure A eKaugmented by distinguished elements ah ..., ak. The empty alter­
nation type will be denoted simply 0. We put 

0-Th(,4, ah ..., ak) = Th°(A, alf . . . , ak). 

If £ is the extension -rfm of -q by an additional member m then 

£-Th(/L ah ..., a„) = {rj-Th(A, ax, ..., ak, bu ...,bj:bu ...,bme A}. 

We generalize the notion of n-k-Box as well. 0-A>Box is already defined. 
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If £ = V^m t n e n £-£-Box is the power-set of y-(k + m)-Box. It is easy to see that 
every £-Th(A, ah ..., ak) belongs to £-fc-Box. It will be convenient for us to order 
every £-A>Box in a standard manner. The order may be, for example, lexicographical. 

Note that 3-theories are (1, 1, l)-theories, not (3)-theories. To stress the dis­
tinction, we will use the notation 1" for the sequence of n ones. Thus n-theories are 
1 "-theories. 

CLAIM 3. There is an algorithm that computes an arbitrary g-Th(A, ah . . . , ak) 
from Th"(A, a\, ..., aA), where n is the sum of members of£. 

The proof is easy. 

§2.2. Compositions of trees. The alphabet {/, r} will be called the binary alphabet. 
Words in the binary alphabet will be called binary words. The set {/, r}* of all 
binary words forms the full binary tree T. The empty word e is the root of T. Every 
binary word is a node of T. For every binary word x, the words xl and xr are the 
left successor and the right successor of x respectively, whereas x is the predecessor 
of both xl and xr. In this paper a tree is a nonempty subset of T closed under 
predecessors. 

To put our- discussion about trees into the framework of §2.1 we should 
specify the language L and the class K of structures in question. Let L be the 
first order language of Boolean algebras augmented by unary predicates Singleton, 
Root, End, LB (for Left Border), RB (for Right Border), and by binary predicates 
LS (for Left Successor), RS (for Right Successor). We suppose that L contains the 
usual Boolean operations and the equality predicate. L will be called in this paper 
the monadic language of trees. Every tree M gives a standard model for L in the 
following way. Consider the Boolean algebra of subsets of M and define addition­
ally: Singleton(A') holds if X is singleton, Root(A") holds if e e X, End(X) holds if 
X contains an end-point of M, LB(A') holds if no element of X has a left successor 
in M, and RB(Z) holds if no element of X has a right successor in M; LS(A', Y) 
holds if there is x e M such that X = {x} and Y = {xl}; and RS(A', Y) holds if 
there is x e M such that X = {x} and Y = {xr}. Let K be the class of standard 
models for L. It is easy to see that our L, K satisfy the Proviso in §2.1. The 
quantifier-free type Th°(M, Xh ..., Xk) of a fc-tuple (Xx, ..., Xk) of subsets of a 
tree M will be identified with the conjunction of formulas % = 0, Singleton(r), 
Root(z-), End(r), LB(T), RB(T), LS(<J, T) and RS(er, r), where a, t are disjunctive 
normal terms in variables vi, . . . , vk and the formulas are true in M under the 
evaluation vx = Xh ..., vk = Xk. 

REMARK. The reader may wonder why we composed this particular monadic 
language of trees. We did it in order to prove Lemma 1 in §2.3 and Lemma 1 in 
§3.1. 

We define a composition of trees. Let M be a tree. A grafting function on M is 
a function g satisfying the following condition. Domain(g) s M x {/, r}. If 
(x, /) e Domain(g) then x does not have a left successor in M, and if (x, r) e 
Domain(g) then x does not have a right successor in M. Every value g(x, d) of 
g is a tree. (We use d to vary over {/, r} because it is the first letter of the word 
"direction".) The composition of a tree M and a grafting function g on M is the tree 

M U {xdy: (x, d) e Domain(g), y eg(x, d)}. 
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M is the basis and the basic summand of the composition. Every tree g{x, d) is a 
graft and also a summand of the composition. 

§2.3. The Composition Theorem. Let N be the composition of a tree M and 
a grafting function g on M. If X s AT let A^M = Jf |~| Af and A ^ x , </) = 
{y e g(x, d): xdy e X) for every graft g(x, d) of N. If X is a £>tuple (Xlt ..., Xk) of 
subsets of N and S is a summand of N (a basic summand or a graft), let X\S = 
(JTxIS, ...,Xk\S). 

For every alternation type £, every natural number A: and every A-tuple X of 
subsets of N let L*(£, X) be the sequence 

<Ltf£, X):teZ-k-Boxy 

of subsets of M, where 

Z^(£, Z) = {* e M: (x, /) e Domain^) and £-Theory(g(;c, /)), X\g(x, /)) = ?}. 

The sequence Rg(£, X) of subsets of Mis denned similarly. 
LEMMA 1. There is an algorithm that computes Th°(./V, X)from 

Th°(M, X\M, L*(0, X), Rg(0, X)). 

PROOF. Let k = lh(A )̂ and Xh ..., Xk be the components of X. Let L = 
U(0, X), R = R*(0, X) and for every t e 0-£>Box, let L, = 1^(0, X) and Rt = 
i?*,(0> %)• If r is a Boolean term in variables vh ..., vk let z* = z(Xh ..., Xk) 
where the complements are computed in N. By induction on % it is easy to check 
that for every summand S of N, z*\S = (Xi\S, ..., Xk\S) where the complements 
(on the right side) are taken in S. 

In order to compute 0-Th(A ,̂ X) it suffices to evaluate statements z* = 0, 
Singleton(r*), Root(r*), End(r*), LB(T*), RB(r*), LS(a*, z*) and RS(<T*, r*), 
where a, z are in the disjunctive normal form. For each of these statements, we 
provide a necessary and sufficient condition that is readily checkable when 
Th°(Af, X\M, L, R) is given. Let s and t range over the set {t eO-k-Box: L, [j 
R, # 0}. 

r* = 0 iff z*\M is empty and every t implies z = 0. z* is singleton iff either 
z*\M is singleton and every t implies z = 0 or else z*\M = 0 and there is an s 
such that Ls U Rs is singleton, s implies Singleton(r) and every other t implies z = 
0. N N Root(r*) iff M f= Root(r*|M). N N= End(V) iff some t implies End(r) 
or M |= End((r*|Af) - U) where U is the union of all sets Lt and Rt. N f= LB(r*) 
if M F= LB(r*|Af), and r*|Af avoids any L„ and every t implies LB(r). The case of 
RB is similar. 

N N LS(<7*, r*) iff both a* and r* are singleton and either M f= LS(o-*|Af, 
T* |M) or some / implies LS(a, z) or else there is a ? such that 0 # (<r*|Af) £ L, 
and t implies Root(r*). The case of RS is similar. • 

By induction on the length of an alternation type £ we define alternation types 
7/(£, k). If £ is empty then every H(£, k) is empty. If £ = -rfj then 

//(£, k) = / % A; +yTC/ + 2Cardinality (v-(k + j)-Box)). 

THEOREM 2 (COMPOSITION THEOREM). 7%m? w CM algorithm. COMP that for every 
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£, k and every k-tuple X of subsets of N, computes f-Th(Af, X) from H(£, k)-
Th(M, X\M, L»(f, X), R'G, X)). 

PROOF. By induction on n we construct algorithms COMP„ such that every 
COMP„ does the job of COMP in the case length(£) = n. The construction is uni­
form in n and results in the desired algorithm COMP. Lemma 1 takes care of the 
case n = 0. Suppose that COMP„ is constructed already. Instead of defining 
COMP„+1 formally we just explain how it works. 

Let £ = rf j be an alternation type of length n + 1. £-Th(JV, X) is the set of 
77-theories of structures (N, X~ Y) where Y ranges over y'-tuples of subsets of N. 
COMP„ will compute $-Th(iV\ X) from the set SI of H(y, k + y)-theories of struc­
tures (M, X\M, Y\M, L*(T), X~Y), R«(rj, X~Y)) where Y ranges over ./-tuples 
of subsets of N. SI is computable from the set S2 of H(T], k + j')-theories of struc­
tures (M, X\M, L*(f, X), R*(Z, X), Y \M, L«{v, X~Y), R*(T), X~Y)) where Y 
again ranges overy-tuples of subsets of N. 

From the other side, the given //(£, k)-Th(M, X\M, L'(£, X), R«(Z, X)) is the 
set S3 of H{T], k + ^-theories of structures (M, X\M, L'(£, X), R*($, X), Z, 0, V) 
where Z ranges overy'-tuples of subsets of M and 0, V range over tuples of subsets 
of M of length Cardinality (̂ -(A: + 7')-Box). Evidently S2 s S3. Let 

u = H(V, k + y)-Th(A/, X\M, L*(£, X), R'tf, X), 2, U, V) 

be an element of S3. We give a checkable criterion for u to belong to S2: u e S2 
iff (i) the sequence 0 = <C/,: tS7j-(k + y')-Box> partitions \J{Ls(£, X): ss£-k-
Box} and / e 5 whenever U, meets Lf(£, X), and (ii) the same for Kand /?'(£, X). 

The "only if" direction is obvious. To prove the "if" direction suppose that u 
satisfies (i) and (ii). Choose ay-tuple Yof subsets of N such that Y\M = Z and for 
every graft S = g(x, I) (respectively 5 = g{x, r)), ifxeU, f] L*(£, X) (respectively 
xeVt f] /?*(£, X)) then v-Th(S, (X\S)'(Y\S)) = /. Then u is the H(q, j + k)-
theory of the structure 

(M, X\M, L*(£, X), Rtfa X), Y\M, L*(V, X~Y), R*(v, JT7)), 

hence it belongs to S2. • 

§2.4. Corollaries of the Composition Theorem. For every n and k, let h(n, k) be 
the sum of members of the alternation type H(\", k). Here 1" is the sequence of 
n ones, and H is defined in §2.3. 

THEOREM 1 (SECOND COMPOSITION THEOREM). There is an algorithm COMP2 
such that for every M, g, N, n, k, X, if N is the composition of M, g and if X is a k-
tuple of subsets of N then COMP2 computes Th"(Ar, X)from 

Th*(".*>(M, X\M, U{\", X), R*(\", X)). 

PROOF. Combine the algorithm COMP of the Composition Theorem and the 
algorithm of Claim 3 in §2.1. • 

Let h*(n, k) = h(n, k) + 2 Cardinality (l»-A>Box). 
THEOREM 2. Suppose that A, B are trees, X is a k-tuple of subsets of A, Y is a k-

tuple of subsets of B, and the structures {A, X), (B, X)are h*(n, k)-equivalent. Sup­
pose that fis a grafting function on A, M is the composition of A andf and S is a 
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set of trees such that for every C e Range(/) there is a C eS that is n-equivalent to 
C. Then there is a grafting function g on B such that R.ange(g) c S and if N is the 
composition ofB andg then the structures (M, X) and (N, Y) are n-equivalent. 

PROOF. There are sequences 

L = <Z.,: / e l»-A>Box>, R = (Rt: te l"-/t-Box> 

such that the structure (B, Y, L, R) is h(n, A:)-equivalent to (A, X, L<{\n, X), 
Rf(l\ ?)). In particular B \= LB(L,) and B |= RB(Rt) for every t. Note that 
L/(l», X) = U(\», o) and Rf{\", X) = Rf{\", o) where o is the A>tuple of empty 
sets. This happens because X\f(x, d) is empty for every (x, d) e Domain(/). 

We build the desired grafting function g in such a way that L^(L", o) = L and 
Re{\n, 0) = R- Given x e Lt pick y e Lf

t{\", g) and C s S such that C is n-equi­
valent to/(;c, /) ; then set g(x, I) = C". Define the values g(x, r) similarly. It is easy 
to see that L = L«(\n, Y) and R = R*(l", Y). By the Second Composition The­
orem, Th"(M, X) = Th»(N, Y). Q 

CHAPTER 3. INTERVALS 
In §3.1 we prove another composition theorem; this time it is about addition of 

intervals of the full binary tree. In §3.2 we introduce and study n-extensible intervals. 
These intervals are too diverse and lengthy to be described by their n-theories. 
They will play a prominent role in the sequel. 

§3.1. Addition. We order binary words as follows: x < y if x is an initial segment 
of y. Recall that in this paper a tree is a subset of the full binary tree T = {I, r}*. 
A tree A will be called an interval if there is a binary word a with {x: x < a} = A. 
If x < y let [x, y] = {z: x z < y}. In other words, [x, y] is the interval [e, a] where 
xa = y. Next we define addition of intervals: [e, a] + [e, b] = [e, ab]. In particular, 
[x, y] + [y, z] = [x, z] for any x, y, z. The addition is associative. 

In the rest of this section A is an interval [e, a] and B is an interval [e, b]. Let 
C be the interval [e, ab]. For every X £ C let X\A = X (~| A and X\B = 
{x: axeX}. If X is a AMuple (Xh ..., Xk) and S is either A or filet X\S = 
(Xr\S, ... , X„\S). 

LEMMA 1. There is an algorithm that computes Th°(C, X)from Th°(^, X\A) and 
Th»(fi, X\B). 

PROOF. Let k = lh(^); let Xx, ..., Xk be the components of X. If r(vi, . . . , v*) 
is a Boolean term in variables vh ..., vk let z* be the value T(XI, ... Xk) com­
puted in C. By induction on r it is easy to check that if S = A or 5 = B then 
T*\S is the value riX^S, ..., X„\S) computed in S. In order to compute Th°(C, X) 
it suffices to evaluate the statements z* = 0, Singleton(r*), Root(r*), End(r*), 
LB(r*), RB(r*), LS(«r*, z*) and RS(a*, z*), where a, z are in the disjunctive normal 
form, when Th°(^, X\A) and Th°(fi, X\B) are given. 

z* = 0 iff both z*\A and z*\B are empty, z* is singleton iff either z*\A is singleton 
and z*\B is empty, or z*\A is empty and z*\b is singleton, or else both z*\A and z*\B 
are singleton and A \= End(z*\A) and B (= Root(r*|fi). Further, C (= Root(r*) 
iff A \= Root(r*M); C \= End(r*) iff fi N End(r*|fi); C N= LB(r*) iff A N 
LB(z*\A) and B |= LB(r*|fi) (the case of RB is similar); and C |= LS(a*, z*) iff 
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both a*, z* are singleton and either A N LS(<r*|^, x*\B) or B N RS(<7*M, x*\B) 
(the case of RS is similar). • 

THEOREM 2 (ADDITION THEOREM). There is an algorithm PLUS that computes 
Th»(C, X)from Th\A, X\A) and Th»(5, X\B)for every n, k and every k-tuple X of 
subsets ofC. 

PROOF. By induction on n we construct algorithms PLUS„ such that PLUS, 
computes Th»(C, X) from Th»(^, X\A) and Th»(fi, X\E) for every A: and X. The 
construction is uniform in n and results in the desired algorithm PLUS. Lemma 
1 takes care of the case n = 0. Suppose that PLUS„ is constructed already. To 
simplify notation we suppose that k = 0. Then 

Th»+1(C) = {Th»(C, X):X<=C} = {PLUS„(Th»G4, X\A), Th»(5, X\B)) :X^C) 

= {PLUSES, t): s e lh»+\A), t e Th»+1(j5) and if s = Th»04, Y), 

t = Th»(B, Z), then A (= End(K) iff fl N Root(Z)} 

= PLUS„+1(Th"+i(^), Th»+i(5)). D 

If j = PLUS(/b f2) we will write i = tx + t2. 
COROLLARY 3. For all binary words x < y <, z and for every n, 

Th»[x, z] = Th»[jc, y] + Th"{y, z\. 

§3.2. Extensible intervals. An interval [x, y] will be called n-extensible if for every 
yu y% S: y there is a z > yr with Th"[x, z] = Th"[x, y2]. 

CLAIM 1. An interval [x, y] is n-extensible iff for every yx > y, 

{Th»[x, z]: z > yx} = {Th»[x, y2]: y2 > y). 

The proof is clear. 
CLAIM 2. Suppose u < x. For every n there is a binary word y > x such that 

[u, y] is n-extensible. 
PROOF. Let F(y) = {Th"[w, z]: z > y) for y > x. Values of F are finite sets. 

F is monotone and nonincreasing, i.e. F(y') £ F(y) if y <, y'. Hence there is a y 
such that F(y) = F(y') for every y' > y. By Claim 1 [u, y] is «-extensible. • 

CLAIM 3. Suppose that u <, w < x < y and [w, x] is n-equivalent to an n-extensible 
interval [wr, x']. Then [u, y] is n-extensible. 

PROOF. Given yh y2 > y we seek z > yx such that [«, z] is w-equivalent to 
[u, y2\. There are a, b with yx = xa, y2 = xb. Let y[ = x'a. y't = x'b. Since \w', x'\ 
is n-extensible there are z' and c such that z' = y[c and [w', z'\ is n-equivalent to 
[w1, y'2\ Set z = yxc. We use the sign ~ to indicate «-equivalence. Then 

[w, z] = [w, x] + [x, z] == [w, x] + [e, ac] 
~[w', x'] + [e, ac] = [w', x'] + [x', z'] = [w', z'] 
~[W, y2] = [W, x'] + [x1, y2] = [w', x'] + [e, b] 
~[w, x] + [e, b] = [w, x] + [x, y2] = [w, y2\ 

Hence [u, z] = [M, W] + [w, z] ~ [u, w] + [w, y2] = [u, y2\. D 

CHAPTER 4. MERGING 
In §4.1 we introduce n-samples. They are finite sets of binary words that are so 

far spread that their M-theories cannot describe them properly. The union of two 
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n-samples may not be an n-sample. There is, however, a less direct way to merge 
two n-samples. The Merging Theorem, proved in §4.2, takes care of that. It is 
the main theorem of this section. 

§4.1. Elongation. For any binary words x, y let x A y be the longest common 
prefix for x, y. We will say that x is n-older than y if [x A y, x] is neither singleton 
nor n-extensible whereas [x A y, y] is n-extensible. The reasson why we close the 
word "older" will be cleaar when we come to forcing. 

CLAIM 1. For every n, the relation n-older is transitive. 
PROOF. Suppose that x is n-older than y and y is n-older than z (see Figure 1). 

FIGURE 1 

Then [x A y, y] is n-extensible whereas [y A z, y] is not. By Claim 3 in §3.2, x A 
y < y A z. Hence x A y = x A z. Thus [x A z, x] is equal to [x A y, x], which 
is neither singleton nor n-extensible. The interval [x A z, z] includes an n-extensible 
interval [y A z, z]. By Claim 3 in §3.2, [y A z, z] is n-extensible. • 

A finite set X of binary words will be called an n-sample if 
(i) for every x e X, the interval [e, x] is n-extensible, and 
(ii) for every x, y e X, either x is n-older than y or y is n-older than x or else both 

intervals [x A y, x] and [x A y, y] are n-extensible. 
If X is a finite set of binary words, let Bush(A") (the bush of X) be the smallest tree 

that includes X. Recall that the function n* was defined in §2.4. 
THEOREM 2 (ELONGATION THEOREM). Suppose thatj = «*(/, 0) and X is a /-sample. 

For every m ^ 1 there is a j-sample Y such that: 
1. Bush(y) is i-equivalent to Bush(A'), 
2. ifu<xe Yandlh(w) < m then [u, x] isj-extensible, and 
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3. if x, y are distinct elements of Y and u <, x A y then there is d 6 {/, r} such 
that [ud, z] is j-extensible for every ud <, z e Y. 

PROOF (by induction on the cardinality lA'l of X). The case |A"| = 0 is trivial. 
Case \X\ = 1. Let a be the only element of X. Choose x ^ a of length at least m. 

By Claim 2 in §3.2 there is y > x such that [x, y] is /-extensible. Since [e, a] is /-
extensible there is b ^ y such that [e, b] is /-equivalent to [e, a]. Y = {b} is the 
desired/-sample. 

Case \X\ > 1. Let a be a/-oldest element of X. Bush(Z) is the composition of 
[e, a] and a certain grafting function / on [e, a]. We build the bush of the desired 

y-sample Y as the composition of some extension [e, b] of [e, a] and some grafting 
function g on [e, b]. 

Extending [e, a]. As in the case lA'l = 1 above, build b ^ a such that [e, b] is 
./'-equivalent to [e, a] and for every u ^ b, if lh(u) < m then [u, b] is/-extensible. 

Building g. It is easy to see that every tree in Range(/) is the bush of some j -
sample. By the induction hypothesis, for every Bush(A'1) in Range(/) there is a 
/-sample Yx such that Bush( Yx) is /-equivalent to Bush(Ar

1) and Yx satisfies the prop­
erties 2 and 3 stated in the Elongation Theorem. Let 

S = {Bush^ ) : Bush^j) e Range(/)}. 

By Theorem 2 in §2.4 there is a grafting function g on [e, b] such that Range(g) s 
S and the composition TV of [e, b] and g is /-equivalent to Bush(A'). 

There is a Y such that TV = Bush( Y). This is the desiredy'-sample. Q 

§4.2. Merging. 
THEOREM 1. Suppose that {a} is aj-sample and m = lh(a). Suppose that Y is a 

j-sample and Y satisfies the properties 2 and 3 stated in the Elongation Theorem. 
Then there is a b > a such that [e, b] is j-equivalent to [e, a], and {b} [) Y is a j -
sample, and for every y e Y, both [b A y, b] and [b A y, y] are j-extensible. 

PROOF. Let X = {x A y: x, y are distinct elements of Y). Build a sequence 
<a,: 0 < / <, k} as follows. Set a0 = a. Suppose a, is built already. If a, 4 Bush(A") 
set k — i and stop. If a, e Bush(A') then, by property 3, there is a d, e {I, r] such that 
[atdi, z] is/-extensible for every a,dt < z e Y. Set ai+l = a,d,. 

Set a' = ayd' where d' e {/, r) and a' $ Bush(T). By Lemma 2 in §3.2 there is 
a" > a' such that [a', a"] is/-extensible. Since [e, a] isy'-extensible, there is b > a" 
such that [e, b] is/-equivalent to [e, a]. 

In order to prove that b is the desired extension of a it suffices to check that for 
every y e Y, both [b A y, b] and [b A y, y] are /-extensible, [b A y, b] extends 
a /-extensible interval [a1, a"]. By Claim 3 in §3.2, [b A y, b] is extensible. If 
lh(b A y) < m then [b A y, y] is/-extensible by virtue of property 2. Otherwise b A 
y = ai+x for some / < k, and [b A y, y] is/-extensible by the choice of ai+1. • 

COROLLARY 2. Suppose that j = h*(i, 0) and both {a} and X are j-samples. Then 
there are b > a and aj-sample Y such that [e, b] is j-equivalent to [e, a], Bush(K) is 
i-equivalent to Bush(A'), {b} {] Y is aj-sample, and for every y e Y, both [b A y, b] 
and [b A y, y] are j-extensible. 

PROOF. Just combine the Elongation Theorem (with m = lh(a)) and Theorem 1. 

• 
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THEOREM 3 (MERGING THEOREM). Suppose thatj = h*(i,0)andX, Yarej-samples. 
There are j-samples X', Y' such that Bush(A") is i-equivalent to Bush(A'), Bush(l") 
is i-equivalent to Bush(y), X' U Y' is aj-sample, and for every xeX',ye Y', both 
[x A y, x] and [x A y, y] arej-extensible. 

PROOF (by induction on \X\). The case \X\ = 0 is trivial. Corollary 2 takes care 
ofthecase|A'| = 1. Suppose \X\ > 1. 

Let a be ay-oldest element in X. By Corollary 2 there are b > a and ay-sample 
Yi such that [e, b] is /equivalent to [e, a], Bush( Y{) is /-equivalent to Bush( Y), 
{b} U Y\ is a ./'-sample, and for every y e Yh both [b A y, b] and [b A y, y] are j -
extensible. 

Bush(A') is the composition of [e, a] and a certain grafting function fa. By The­
orem 2 in §2.4 there is a grafting function fb on [e, b] such that Range(/4) £ 
Range(/0) and the composition of [e, b] and/^ is /-equivalent to Bush(A'). The com­
position of [e, b] and/, is Bush(A'1) for some/sample X\. 

Let [e, c] = [e, b] f] Bush^i). Bush(A'1) and Busr^y^are the compositions of 
[e, c] and certain grafting functions f, gt respectively. Without loss of generality 
cl < b and cr e Bush^i). We built new grafting functions/, g on [e, c] in such a 
way that the compositions of [e, c] with/, g are the bushes of the desired /samples 
X', Y'. 

Let Domain(/), Domain(g) be equal to Domain(/i), Domain(gi) respectively. 
If (x, d) belongs to Domain(/j) — Domain^) set/(x, d) = f^x, d). If (x, d) be­
longs to Domain^) — Domain^) set g(x, d) = gi(x, d). Suppose that (x, d) 
belongs to both Domain(/J) and Domain^) . Note that d = r if x = c. It is easy 
to see that /|(JC, d) and g\(x, d) are the bushes of some/samples U, V respectively. 
It is easy to see that Bush(t/) e Range(/S) s Range(/0). Hence \U\ < \X\. By the 
induction hypothesis there are/samples U', V such that Bush(t/') is /-equivalent 
to Bush(t/), Bush(K') is /-equivalent to Bush(K), V (J V is a /sample, 
and for every x e W y e V, both [JC A y, x] and [x A y, y] are /extensible. Set 
f{x, d)= W and gix, d) = V. 

It is easy to see that the composition of [e, c] and /(respectively g) is the bush of 
some/sample A"(respectively Y'). By the Second Composition Theorem Bush(Ar') 
is /-equivalent to Bush(A'i), and Bush(J") is /-equivalent to Bush(yj). It is easy to 
check that A", Y' are the desired/samples. • 

CHAPTER 5. FORCING 
In this chapter we use forcing to prove the main theorem of this paper. The 

main theorem is stated in §5.1 and is proved in §5.3. We suppose that the reader has 
some knowledge about forcing. The paper Shoenfield [1971] suffices for our pur­
poses. 

§5.1. The Main Theorem. Let 0(v1; v2) be a formula in the monadic language 
of trees saying that vj is not empty and v2 is a singleton subset of vx. Evidently the 
full binary tree T satisfies the sentence Vv13v2^(v1, v2). 

As usual, ZFC is Zermelo-Fraenkel set theory with the axiom of choice. Models 
of ZFC will be called worlds. 

THEOREM 1 (MAIN THEOREM). Let ^*(vl5 v2) be a formula in the monadic language 
of trees with free variables as shown. Let Wbe a world. Suppose that, in W, 
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(A) T (= Vv1Vv2(^*(v1, v2) -• 9KV1, v2)), and 
(B) T f= (for every vj there is a unique v2 with <j>*(v\, v2)). 
77ien there is another world W where <j>* fails to satisfy (A) or (B). 
Theorem 1 will be proved in §5.3. 
COROLLARY 2. There is no formula <j>*(yi, v2) in the monadic language of trees that 

satisfies the conditions (A) and{2>) in any world. 
PROOF OF COROLLARY 2. Rabin [1969] constructed a decision procedure for the 

monadic second-order theory of the full binary tree T. (See a simpler decision pro­
cedure for the same theory in Gurevich and Harrington [1982].) The decision 
procedure works in ZFC; it does not use any extra set-theoretic assumptions. If 
<j>* satisfies (A) and (B) in some world W, the decision procedure verifies (A) and 
(B) in W. It verifies therefore that (A) and (B) follow from ZFC, which contradicts 
Theorem 1. • 

§5.2. The forcing notion. Let a<^<y<5bt natural numbers. The number 
a will be specified in the next section. About /3, y and 5 we suppose only that they 
are large enough to meet all requirements of this and the next sections. There will 
be only a handful of requirements and each will have the form 

jS > (a number depending on a), or 
7" > (a number depending on a, /3), or 
8 S: (a number depending on a, /3, y). 
Let W be our ground world. Our forcing notion P consists of all 5-samples. 

In other words, 5-samples are our forcing conditions. We say that a forcing condi­
tion q is stronger than a forcing condition p (symbolically p <, q) tip £ q and no 
y e q is 5-older than any xep.In the sequel p and q (with or without subscripts) 
range over P. We do not distinguish between elements of W and their canonical 
forcing names. Let U = {{x, p): peP and x ep}. Evidently U is a name for the 
union of the generic filter. 

THEOREM 1. For i = 1, 2 suppose that p( is a forcing condition, A{ c pit and 
pt forces Tha(J, U, A,) = f,-. Suppose that the structures (Bush(/>,), A,) are (3-
equivalent. Then ti = t2-

PROOF. If G, is a generic filter over P that contains /?, then Th"(r, (JG„ A,) = 
t{ in W(G,). We build generic filters (?i, G2 such that/?! e Gi, p2 e G2 and W(G{) = 
W(G2). Then we prove that the structures {T, \JGU A{) and (T, (JG2, A2) are 
a-equivalent. 

For every j = 1, 2 let g( be the grafting function on Bush(/>,) that grafts a copy of 
T into each "bud" of Bush(/>,). Thus the composition of Bush(/>,) and gt is equal 
to T. For every forcing condition q let/?, * q be 

{xdy: (x, d) e Domain(g,), x £/>,-, y e q). 

It is easy to see that p{*q is a forcing condition. Bush(/?,*^) is the result of grafting 
a copy of Bush(^) into each "bud" (x, d) e Domain(g,) with x $/?,. 

Let G be an arbitrary generic filter over P, and G{ — {peP: p <. pt*q for 
some q e G}. Clearly Gh G2 are generic filters over P and W{G-d = W(G2) = W(G). 
Let us work now in W(G). 
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The algorithm COMP2 of §2.4 computes Th«(7; (jGy, A,) from the h(a, 2)-
theory of the structure 

M'i = (Bush(/>,), Pi, Ah D, R<), 

where V = L*< ( l a , [jG,-, A,) and R> = R*<(la, (JG,-, A,). Thus it suffices to 
prove that M[ and M2 are h(a, 2)-equivalent. 

Let Mi = (Bush(/?,), A,). It is easy to see that the same formula defines px in 
Mi and defines p2 in M2. The formula says that /?, is the set of end-points. Recall 
that U = <JJt: t e la-2-Box> where L\ abbreviates L?{ (1«, (jGy, At), and similarly 
for R'. It is easy to see that for every t the same formula defines L\ in Mi and de­
fines L\ in M2, and similarly for R'. If f = Tha(r, 0, 0) then LJ = p( and we can 
use the previous formula. If t = Tha(r, (J(/, 0) then the formula says that Vt is 
the set of elements x e Bush(/>,) — p{ such that x does not have a left successor in 
Bush(/?,). In other cases the formula says L\ = 0. Since Mx and M2 are ^-equi­
valent and /3 is sufficiently larger than h(a, 2) we have that M[ and M't are /*(«, 2)-
equivalent. Q 

THEOREM 2. Suppose that p\, p2 are forcing conditions, Ax c ph A2 c p2t and 
(Bush(pi), Ai), (Bush(p2), A2) are -{-equivalent. Suppose also that pi forces 
Tha(T, U,Ai) = h for some h. Then p2 forces lh.a(T, U,A2) = tv 

PROOF. Take q2 > p2 such that q2 forces Tha(7; U, A2) = t2 for some t2. It 
suffices to prove that t2 = t\. 

Let g2 be the grafting function on Bush(/?2) such that the composition of 
Bush (/>2) and g2 is equal to Bush(q2). Require y > h*(fi,1). By Theorem 2 in §2.4 
(withw = |3 and k = 1) there is a grafting function gt on B u s h ^ ) such that 
Range(gj) c Range(g2) and if C is the composition of B u s h ^ ) and gj then (C, y^) 
is /3-equivalent to (Bush(q2), A2). It is easy to see that C = Bush(gj) for some 
forcing condition q\ ^ px. Clearly, qx forces Tha(T, U, A{) = th By Theorem 1, 
h = t2. • 

THEOREM 3. The empty condition forces Th"(T, U) = sfor some s. 
PROOF. Suppose that forcing conditions pi, p2 force 7ha(T, U) = f1; Tha(:T, [/) = 

t2 respectively. It suffices to prove that ti = t2. 
By the Merging Theorem (with i — y and j = 5) there are forcing conditions 

qi, q2 such that Bush^) , Bush(<72) are /3-equivalent to Bush^ ) , Bush(/?2) re­
spectively and qi U <72 is a forcing condition stronger then each of qx and q2. By 
Theorem 2, ^t, #2 force Tha(r, U) = r1; Tha(T, U) = t2 respectively. But qx U <J2 

forces both Tha(r, U) = fx and Tha(r, U) = t2. Hence, tr = t2. D 

§5.3. Proving the Main Theorem. In this section we prove Theorem 1 of §5.1. 
Suppose that a formula <f>*(vi, v2) satisfies the conditions (A), (B) in some world 
W. We specify the number a of §5.2 as the quantifier depth of <f>*. We intend to 
prove that (f>* fails to satisfy (A) or (B) in any world W{G) where G is a generic 
filter over P. Suppose the contrary. Then there is p forcing T \= <j>*{U, {a}) for 
some binary word a. We suppose that p is a minimal forcing condition that forces 
T (= (f>*(U, {a}). In particular p forces a e U. 

CLAIM 1. The condition p contains a. 
PROOF. If p contains some b < a then there is no q > p that contains a. Hence 
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p forces a4 U (recall that U = {(*, q): xeq and qeP}) which is impossible. If 
p does not contain any b < a then some p' ^ p contains a word b > a. Hence 
there is no q > p' that contains a. Hencep' forces a$ U which is impossible. 
The only remaining possibility is that/? contains a. • 

CLAIM 2. .Every element ofp — {a} is d-older than a. 
PROOF. Let p0 = {xep; either x = a or x is 5-older than a}. By virtue of the 

minimality of p it suffices to prove that/>0 forces T \= (j>*(U, {a}). Let G be a generic 
filter over P that contains pQ. It suffices to prove that T f= 0*(UG> (a)) i n ^ ( G ) -
We work in W(G). 

Let g be the grafting function on Bush(/>0) such that the composition of Bush(/?0) 
and g is equal to T. The function g grafts a copy of T into each "bud" of Bush(/?0). 
The algorithm COMP2 of §2.4 computes Tha(T, (JG, {a}) from the h(a, 2)-
theory of the structure M = (Bush(/?0), p0, {a}, L, R) where L = L*(la, (JG, {a}) 
and R = J?*(l«, (JG, {a}). Note that L = L»(l«, (JG, 0) and /{ - rt*(l«, U G - °) 
because {a}|g(;c, d) is empty for every (x, d) s Domain(g). 

It is easy to see that every ({jG)\g(x, d) is a generic filter over P. By Theorem 3 in 
§5.2, Th«(g(x, </), (UC)lg(x, </)) does not depend on G. Hence Th«(g(x, d), (|JG)| 
g(x, */), 0) does not depend on G. Hence the sequences Z-, R do not depend on G. 
Hence Th«(r, (JC, {a}) does not depend on G. However Tha(J, {JG, {a}) implies 
<f>*({jG, {a}) if G contains p. Hence Th«(r, UG, {a}) implies #*(\JG, {a}) for 
every G that contains />0- D 

If p = {a} let B = {e}. If p - {a} is not empty let B = Bush(/> - {a}). Let 
b be the longest prefix of a that belongs to B. By Claim 2 in §3.2 there are a' > al 
and a" > ar such that [a, a'] and [a, a"] are 5-extensible. By Claim 2, [ft, a] is 5-
extensible. Hence there are ax > a' and a2 > a" such that [b, ai] and [b, a2] are 
5-equivalent to [b, a]. Let ph p2 be obtained from p by replacing a by ax, a2 re­
spectively. It is easy to see that/?j, p2 and />i U p2 are forcing conditions. 

CLAIM 3. Both Bush(/?i, {aj) a«d Bush(/>2, {̂ 2}) w g -[-equivalent to 
Bush(/>, {a}). 

PROOF. TO uniformize notation let a0 = a and />0 = p. Let C, = Bush(p,) for 
/ = 0, 1, 2. Every C, is the composition of B and some grafting function g, on B. 
The algorithm COMP2 computes Th>-(C„ {a,}) from the % , l)-theory of the 
structure Mt = (B, {Z>,}, V{\r, {b,)), R{(\r, {b,))) where U, /?' abbreviate 
L*', 7J*' respectively. It is easy to see, however, that the structures M, are all 
identical. • 

By Claim 3 and by Theorem 2 in §5.2 we have that px forces T N <f>*(U, a{) 
and p2 forces T p= 0*(£/, a2). Then px U p2 forces both these statements, which 
contradicts our assumption about <j>*. The Main Theorem is proved. • 
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