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DECISION PROBLEM FOR SEPARATED DISTRIBUTIVE LATTICES 

YURI GUREVICH1 

Abstract. It is well known that for all recursively enumerable sets X1, X2 there are 
disjoint recursively enumerable sets Y1, Y2 such that Y1 c X1, Y2 c X2 and Y1 U Y2 = 

X1 U X2. Alistair Lachlan called distributive lattices satisfying this property separated. 
He proved that the first-order theory of finite separated distributive lattices is decidable. 
We prove here that the first-order theory of all separated distributive lattices is un- 
decidable. 

Introduction. A distributive lattice with 0 is separated if it satisfies the following 
separation property: for every x1, x2 there are Yi < x1 and Y2 < x2 such that Yil Y2 
are disjoint (i.e. Yi A Y2 = 0) and Yi V Y2 x1 V x2. Alistair Lachlan introduced 
separated distributive lattices in [La] in connection with his study of the first-order 
theory of the lattice of recursively enumerable sets. He mentioned to me a question 
whether the first-order theory of separated distributive lattices is decidable. The 
answer is negative: in ?2 a known undecidable theory is interpreted in the first- 
order theory of separated distributive lattices. The known undecidable theory is 
the first-order theory of the following structures: a Boolean algebra with a distin- 
guished subalgebra. About undecidability of it see [Ru]. 

Actually the first version of the undecidability proof used the closure algebra 
CACD of Cantor Discontinuum, i.e. the Boolean algebra of subsets of Cantor Dis- 
continuum with the closure operation. CACD is easily interpretable in the sepa- 
rated distributive lattice of functions f from Cantor Discontinuum into {0, 1, 2} 
such thatf1(2) is clopen. By [GS1] a finitely axiomatizable essentially undecidable 
arithmetic reduces to the first-order theory of CACD, hence to the first-order theory 
of the mentioned separated distributive lattice of functions, hence to the first-order 
theory of separated distributive lattices. The last step is somewhat complicated by 
the fact that [GS1] does not interpret the standard model N of arithmetic in CACD. 
(Even though [GS2] reduces the second-order theory of N to the first-order theory 
of CACD, [GS3] proves that N cannot be interpreted in CACD.) However the 
Boolean algebra of subsets of Cantor Discontinuum with a distinguished subal- 
gebra of clopen (closed and open) sets is easily interpretable in CACD. This way I 
came to use Rubin's result which made the undecidability proof very simple. From 
the other side the cited result of [GS1] can be used to reprove Rubin's theorem and 
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to prove undecidability of the first-order theory of the following structures: a 
complete Boolean algebra with a distinguished subalgebra, see [GKM]. 

Lachlan proved that the first-order theory of finite separated distributive lattices 
is decidable by interpreting this theory in the monadic theory of finite trees. Since 
his proof is not published we bring out it here, see ?4. 

The author thanks Alistair Lachlan for useful discussions, and the anonymous 
referee for a thorough report contributing to further simplification of the undecid- 
ability proof. 

?1. Boolean pairs. For the sake of brevity a pair A - B of Boolean algebras, 
where B is a subalgebra of A, will be called a Boolean pair. We consider Boolean 
pairs as models for the language of Boolean algebras augmented by a unary pre- 
dicate symbol. 

THEOREM I (SEE [Ru]). The first-order theory of Boolean pairs is undecidable (and 
creative). 

?2. Interpreting Boolean pairs in separated distributive lattices. Suppose A v B 
is a Boolean pair. Let L(A, B) be the sublattice of the direct product A x B con- 
sisting of pairs (a, b) with a > b. 

Claim 1. L(A, B) is separated. 
PROOF. Given (a1, b1), (a2, b2) in L(A, B) set 

a3 = (a1-b2) v b1, b3 = bl, 

a4 = (a2-a1) v (b2-b1), b4 = b2-bl. 

It is easy to check that (a3, b3) < (a,, bl), (a4, b4) < (a2, b2), (a3, b3) A (a4, b4) = 0 
and (a3, b3) v (a4, b4) = (a,, bl) V (a2, b2). E 

If x A y = 0 and x v y = z (in arbitrary lattice with 0) we say that x, y parti- 
tion z and we write x + y = z. 

Claim 2. The diagonal {(b, b): b E B} is definable in L(A, B). 
PROOF. This is the set of elements of L(A, B) which have complements. En 
Claim 3. {(a, 0): a E A} is definable in L(A, B). 
PROOF. The desired formula a(x) says that y < x -+ y = 0 for any diagonal ele- 

ment y. E- 
Claim 4. {(b, 0): b E B} is definable in L(A, B). 
PROOF. The desired formula P3(x) says that for some diagonal element y, x is the 

greatest element such that x < y and a(x). El 
THEOREM 5. The first-order theory of Boolean pairs is interpretable in the first- 

order theory of separated distributive lattices. 
PROOF. Above it has been shown that an arbitrary Boolean pair can be defined 

in a uniform way in a separated distributive lattice. En 
Theorem 1 of ? 1 and the previous theorem give 
COROLLARY 6. The first-order theory of separated distributive lattices is undecid- 

able (and creative). 

?3. The monadic theory of finite trees. A tree is a partial ordering T such that 
{y: y > x} is linearly ordered in T for every x E T. The monadic language of order 
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is obtained from the first-order language of order by adding variables for point sets 
and atomic formulas of the form x E Y. Quantification of the set variables is 
allowed. The monadic theory of a tree Tis the theory of Tin the monadic language 
of order when the set variables range over arbitrary subsets of T. 

THEOREM 1. The monadic theory offinite trees is decidable. 
Theorem 1 is well known. It is due to [Do] and [T & W]. It follows easily from the 

main result of [Ra]. Recall that the infinite binary tree IBT is the set of all words 
in alphabet {O, 1} ordered as follows: x > y if x is an initial segment of y. Rabin 
proved that the monadic theory of IBT is decidable. Finite subsets are definable 
in the monadic theory of IBT. Every finite sub model of IBT is a finite tree, 
every finite tree is embeddable into IBT. Thus the monadic theory of finite trees 
is decidable. 

Let us sketch a more direct proof of Theorem 1. Every finite tree can be con- 
structed from singleton trees by the following two operations: 

(i) the disjoint union T1 + T2 of trees T1, T2, and 
(ii) forming a new tree T+ from a given tree T by adding a new element greater 

than any element in T. 
Define n-theories with respect to [La]. Check that the n-theory of T1 + T2 is com- 

putable from the n-theories of T1, T2, and the n-theory of T+ is computable from 
the n-theory of T. That gives two operations on n-theories. The collection of n- 
theories of finite trees is the least collection containing the n-theory of a singleton 
tree and closed under these two operations. 

?4. Finite separated distributive lattices. For the sake of brevity a subset X of a 
tree T will be called a cone if y < x E X -+ y E X for y E T. The collection Cone(T) 
of cones of Tis closed under intersections and unions. Thus Cone(T) is a sublattice 
of the Boolean algebra of subsets of T. In particular Cone(T) is distributive. 

Claim 1. For every finite tree T the lattice Cone(T) is separated. 
PROOF. Suppose X1, X2 are cones of T and M is the set of maximal elements of 

X1 U X2. Let M1 = M n X1 and M2 = M - M1. Let Yj be the cone generated 
by Mi for i < 1. Then Y 5c Xi for i < l and Y1, Y2 partition X1 U X2. Ln 

An element x of a lattice L is called join irreducible if for every y, z in L, x = y 
v z implies either x = y or x = z. If L is a lattice with 0 let JI(L) be the set of non- 
zero join irreducible elements of L ordered with respect to L. 

Claim 2. If L is a separated distributive lattice then JI(L) is a tree. 
PROOF. Suppose x, Y1, Y2 are nonzero join irreducible elements of L and x < yj 

for i < 1. There are z1 < Yi and Z2 < Y2 such that Yi V Y2 = Z1 + Z2. Without loss 
of generality Yi # z1. But Yi = (Yi A z1) + (Yi A Z2), hence Yi Yi A Z2 and 

Y1 < Z2 < Y2- E] 
Claim 3. Suppose L is a finite separated distributive lattice and T = JI(L). Then 

L is isomorphic to Cone(T). C1 
PROOF. The desired isomorphism assigns the join of X to each cone X of T. 
Claims 1, 3 of this section and Theorem 1 of ?3 give 
THEOREM 4. The first-order theory of finite separated distributive lattices is inter- 

pretable in the monadic theory offinite trees. Hence it is decidable. 
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