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I. Introduction 

Exchange of information between executing pro- 

cesses is one of the primary reasons for process 

interaction. Many distributed systems implement 

explicit message passing primitives to facilitate 

intercommunication. Typically, a process executes 

a write command to pass a message to another pro- 

cess, and the target process accepts the message 

by executing a read command. The semantics of 

write and read may differ considerably depending 

on the methods used for storing or buffering mes- 

sages that have been sent but not yet accepted by 

the receiving process. 

Because message passing systems are so widely 

used, it is important to develop formal techniques 

for reasoning about them. In this paper we in- 

vestigate the possibility (impossibility) of using 

linear temporal logic to characterize the seman- 

tics of different message buffering mechanisms. 

This logic was originally introduced as a formal 

system for reasoning about sequences of events 

that are totally ordered in time. Recently, lin- 

ear temporal logic has been proposed by Manna and 

Pnueli [MPSl] and Owicki and Lamport [OLS0] as an 

appropriate formal system for reasoning about par- 

allel programs. The logic permits the descrip- 

tion of a program's execution history without the 

explicit introduction of program states or time. 

Moreover, important correctness properties such 
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as mutual exclusion, deadlock freedom, and absence 

of starvation can be elegantly expressed in this 

system. 

Specifically, we consider FIFO buffers 

(queues), LIFO buffers (stacks) and unordered 

buffers (bags). The set of distinct messages that 

can be written into the buffer is called the mes- 

sage alphabet, we specify a message buffer as the 

set of all valid infinite input/output message 

sequences. Thus, characterizing a message buffer 

in temporal logic consists of obtaining a formula 

that is true exactly on these sequences. For un- 

bounded buffers, we show that it is impossible to 

obtain such a formula in first order linear tem- 

poral logic that is i~dependent of the underlying 

interpretation (i.e. message alphabet). Nor is it 

possible to obtain such a formula in propositional 

linear temporal logic (PTL) when the message alpha- 

bet is finite. It is possible, however, to give a 

formula in first order linear temporal logic that 

gives a domain-independent characterization of 

bounded buffers. In fact, if the message alphabet 

is finite, then such a formula can be expressed in 

PTL. Although such bounded message buffers can be 

characterized using w-regular expressions (or mon- 

adic second order theory of one successor), it is 

not obvious that they can be expressed in PTL since 

this logic is provably less expressive than w-regu- 

lar expressions [WOSl]. 

Since the formula we obtain may be quite com- 

plicated, we introduce an extension of PTL in which 

certain atomic propositions are designated as aux- 

iliary. The auxiliary propositions are not inter- 

preted and are treated like existentially quantified 

monadic predicates. We give simple formulae in the 

extended logic which characterize message buffers 
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of fixed size over a finite alphabet. 

We also consider the problem of axiomatizing 

the various types of message buffers described 

above. A model of a message buffer is an infinite 

sequence of states denoting a series of legal read/ 

write operations on the buffer. The theory of a 

message buffer is the set of all PTL formulae which 

are true in all models of the buffer. Since bound- 

ed buffers over finite alphabet can be character- 

ized in PTL and since PTL has a complete axiom sys- 

tem it can easily be shown that bounded buffers are 

axiomatizable in PTL. We show that, in general, 

unbounded FIFO buffers are not axiomatizable. Sur- 

prisingly, it is possible to axiomatize unbounded 

LIFO buffers and unbounded unordered buffers; in 

fact, the theories of these buffers are decidable. 

The paper is organized as follows: Section 2 

defines the syntax and semantics of the linear tem- 

poral logic that we use in the remainder of the 

paper. In Section 3 we specify precisely those 

properties of message buffers that we would like 

to capture in temporal logic. Section 4 shows that 

bounded buffers can be characterized in the logic 

and describes how uninterpreted auxiliary propo- 

sition sylnbols can be added to simplify this con- 

struction. In Section 5 we prove that it is im- 

possible to give a domain independent character- 

ization of unbounded message buffers in first 

order temporal logic. We also show that unbounded 

FIFO message buffers are not axiomatizable in PTL 

while unbounded LIFO and unordered buffers are 

axiomatizable. The paper concludes in Section 6 

with a summary and discussion of our results. 

2. Linear Temporal Loqic 

A well-fornedformu~a in PTL is either an 

atomic proposition or is on the form lfl, fl ^ f2' 

Xfl' fl U f2' Yfl' fl S f2 where fl,f2 are well- 

formed formulae. In addition, the following abbre- 

viations will be used: 

flv f2 =- I (~flA1f2)' fl D f2 =- Ifl V f2' 

Ff -= True U f, Gf =- iFlf- 

A state is a mapping from the set of atomic 

propositions into the set {True, False}. An inter- 

pretation is an ordered pair <t,i> where t is 

an infinite w-sequence of states and i ~ 0 is an 

integer specifying the present state. We define 

the truth of a formula f in an interpretation 

(t,i) (t,il = f) inductively as follows: 

t,i ~ P where P is atomic iff 

ti(P) = True; 

t,i ~ fl ^ f2 iff t,i ~ fl and t,i ~ f2; 

t,i ~ if I iff t,i ~ fl; 

t,i b Xf I iff t,i+l ~ fl; 

t,i ~ fl U f2 iff Bk ~ i such that t,k ~ f2 

and Vj such that i ~ j < k, 

t,j ~ fl; 

t,i ~ Yfl iff i>0 and t,i-i ~ fl; 

t,i ~ fl S f2 iff Bk ~i S,k ~ f2 and 

Vj such that k < j ~ i 

t,j ~ fl; 

X,U,Y,S are the "next-time", "until", "last-time", 

and "since" operators respectively. 

We will also consider a restricted version 

of the first order temporal logic. The language 

of this logic includes variables, function symbols, 

relation symbols and the universal quantifier in 

addition to the symbols in the propositional ver- 

sion of the logic. The type of the language is a 

tuple which gives the function symbols, the rela- 

tion symbols with their arities. The variables are 

partitioned into two groups: local variables whose 

values depend on the current state and global var- 

iables whose values are state independent. Atomic 

formulae have the same syntax as in the usual, first 

order case. The set of well formed formulae is the 

smallest set containing the atomic formulae and 

closed under universal quantification over global 

variables, boolean connectives, and the above tem- 

poral operators. 

A model T is a triple (A,a,s) where A is 

the ~omain; ~ assigns meanings to the function 

symbols, relation symbols, and global variables; 

and s is a ~-sequence of states. A state assigns 

values from ~ to the local variables and truth 

values to the atomic propositions. An interpreta- 

tion in this case is a pair <T,i> where T is 

a model and i ~ 0 specifies the present state. 

Truth of an atomic formula in an interpretation is 

defined as in the usual first order case; truth 
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of a composite formula is defined as in the case of 

propositional temporal logic with following addi- 

tion: T,i ~- Vxf iff for each c 6 £ T ,i ~ f 
c 

where T is T with the meaning assigned to the 
c 

global variable x changed to the value c. 

3. What Are Message Buffers? 

We characterize a message buffer by the set 

of legal read~write sequences allowed on the buffer. 

A write operation writes a message into the buffer; 

a read operation reads a message from the buffer 

and deletes it. At most one read or write opera- 

tion is permitted at any instant of time. In the 

case of bounded buffers a write request will be re- 

jected when the buffer is full; similarly, a read 

request on an empty buffer will be rejected. Re- 

jected read/write requests are not included in the 

sequences of legal operations characterizing the 

buffer. We consider below three types of message 

buffers: FIFO buffers (queues), LIFO buffers 

(stacks), and unordered buffers (bags). In FIFO 

buffers the earliest written message in the buf- 

fer is the output for a read request; with LIFO 

buffers the latest written message in the buffer 

is used; and with unordered buffers any message 

present in the buffer is output. We also require 

that each physical message written into the buf- 

fer is ultimately read; this is the liveness 

property of buffer behavior. 

Let E be the message alphabet and ~ be 

the set of atomic propositions {R I ~ 6 ~} U 

{W 10 £ ~}. Let ~--~ ~ be the set of atomic 

propositions in the language. 

ST = {~ I ~: ~ ~ {True,False } such that 

~(P) = True for at most one P in ~} 

We consider each member of ST to be a state; if 

R (W) is true in a state, then it indicates that 

the message o is read (written) from (into) the 

buffer in that state. 

Let t 6 ST* U ST W and i 0 < i I < ... be 

all the instances at which some messages ~0,oi,... 

are read from the buffer, i.e., tik(R k ) = True 

for k > 0 • Then Ir (t) denotes the sequence 
-- r 

(o0,(~ 1 .... ). Similarly, we define ~w(t). Let 

t (i) denote the sequence (t0,t I .... ,ti) , then 

nb(i) = length(~w(t(i))) - length(z (t(i))) is the 
r 

number of messages in the buffer at the instance i. 

FS E,k is the set of all infinite sequences 

of states which denote legal series of read/write 

operations on a FIFO buffer of size k. LS 
[,k 

and USs, k are the corresponding sets of sequences 

for LIFO and unordered buffers respectively. Un- 

bounded buffers will be denoted in this scheme of 

notation by k = ~. 

For k ~ 0 and k = 

: {t 6 ST ~ 1 for all i ~ 0 0~nb(i) ~k FSz, k 

and ~ (t (i)) is a prefix of 
r 

~w(t (i)) and ~r(t) = ~w(t)}. 

LSE, k = {t 6 ST w I for all i ~ 0 0 < nb(i)< k 

and if for some o 6 E, t,i ~ W then 

there exists j > i such that t,j > RO, 

nb(j-l) = nb(i) and VZ i < i < j-i 

nb(Z) ~ nb(i)} 

USz, k = {t 6 ST ~ I for all i ~ 0 0 ~ nb(i) ~k 

and for all o 6 S, the number of writes 

of the message o upto i ~ the number 

of reads of the message o upto i, and 

for infinitely many i, nb(i) : 0] 

In the case of both LIFO and unordered buffers 

we require that the buffer should become empty 

infinitely often, in order to satisfy the liveness 

requirement. 

For a finite alphabet ~, a formula f in PTL 

characterizes a FIFO message buffer of size k 

(unbounded FIFO buffer) if 

Vt 6 ST ~ t,0 ~ f iff t 6 FSz, k (t 6 FSz,~). 

Similarly we define what it means to characterize 

LIFO and unordered buffers ~ PTL. 

Let L be a language of first order linear 

temporal logic of type T with local variables 

read_val, write_val and with atomic propositions 

R,W. Let T = (E,~,s) be a model of type T. In 

any state s.,l if si(R) = True then it signifies 

the reading of message si(read val) in that state, 

a~d if s. (W) = True then it signifies the writing 
1 

of message s.(write val) in that state. With s, 

we associate any sequence t defined as follows: 
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For all i ~ 0 ti: ~ ~ {True, False} such that 

for all 0 6 Z, 

ti(R O) = True iff si(R ) = True and si(read_val ) 

: o; 

ti(W ~) = True iff si(W ) = True and si(write val) 

A first order linenr tem!~oral formula f of 

type T is a (domain indopendent) oharacterisa- 

tion of a FIFO buffer of sise k (unbounded FIFO 

buffer) if for all T = (Z,e,s) of type : T,0 ~ f 

iff t 6 FSz, k (t 6 FS[,~). Similar definitions 

Nold for LIFO and unordered buffers. 

A model of a messaoe buffer is an infinite 

sequence of states denotinq a legal series of read/ 

write operations on the buffer, as given above. 

The theory of a message buffer is the set of all 

PTL formulae which are true in all interpretations 

(t,i) where t is a model of the buffer. We say 

that a message buffer is axiomatizable if there 

exists a recursive set of axioms from which the 

formulae in the theory of the buffer can be deduced 

using some inference rules. 

4. Characterizing Bounded Buffers 

In this section we characterize bounded buf- 

fers over a finite alphabet using propositional 

linear temporal logic; we also give domain inde- 

pendent characterizations in first order linear 

temporal logic. We let fb k, £b k, ub k denote 

formulae in propositional temporal logic charac- 

terizing FIFO, LIFO, and unordered message buffers 

of size k over the finite message alphabet ~. 

Here we give formulae for buffer size = 1 and 2; 

in the full paper we show how to obtain these for-- 
J 

mulae for an arbitrary buffer size k. 

Let Z be a finite message alphabet, and 

~ = {R I o 6 ~} L' {W O I O 6 ~} be the set 

of atomic propositions. Throughout this section we 

use the following abbreviations: 

w = \/ w 

o6Z o 

R = ~/ R 
U 

o6Z 

EX= /~ A 
°i~O2 1 (RoIA RO2) Ao1/\~O21 (Wo] WO2) A 

1(W A R) 

I = G (Ex) 

'I' asserts that at any instant at most one opera- 

tion occurs on the buffer, and reads, writes are 

mutually exclusive. 

In the case of buffer size = 1 the buffer 

behavior is as follows: 

(a) The writes and reads occur alternately; 

(b) The message read in each read operation 

is the message written by the previous write oper- 

ation. Thus, fbl = I A fa A fb where 

f = G(W ~ X(IW U R)) A G((R A X(F R)) a 

X(IR O W)); 

fb = G( /\ (R m (1W S Wa))). 
o6Z o 

It is easily seen that fa and fb assert proper- 

ties (a) and (b), respectively. 

Intuitively, the operation of a buffer of 

size = 2 can be described as follows. Initially, 

writes and reads occur alternately; whenever a 

read occurs the buffer becomes empty, and after each 

write the buffer will have exactly one message. 

This continues until two writes occur successively 

without a read operation in between, and the buffer 

becomes full (formula £2 expresses this). Sub- 

sequently, reads and writes will again begin to 

alternate. After each read the buffer will have 

one message and after each write operation the 

buffer becomes full. This may continue forever, or 

until two reads occur successively without a write 

in between, making the buffer empty (r 2 expresses 

this); now the previous sequence repeats. This 

behavior is common for FIFO, LIFO and unordered 

buffers of size = 2. The formulae £2' r2 are 

given below: 

£2 = W A (1R U W) 

r 2 = R A (1W S R) 

In the remainder of this section we will fre- 

quently use the formula alt(p,q,c) given below: 

alt(p,q,c) = [(g U c) v G(g A lC]] A 

[(ic U p) ~ (lq U p)] 

where g = (pmX(ip U q)) A (q m [X(lq U p) 
v X(lq U c)]) 
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The first conjunct in alt(p,q,c) asserts that 

either there is a future instant at which c occurs 

and until this instant p,q occur alternately, or 

throughout the future p,q occur alternately with- 

out c occuring anywhere. The second conjunct 

asserts that if p occurs then it occurs before q. 

Thus, the previous intuitive description of the be- 

havior of the buffer of size 2 is captured by the 

formula bv given below. 

bv = alt(W,R,12) A G[£ 2 ~ X alt(W,R,r2)] ^ 

G[r 2 ~ X alt(W,R,£2)] 

bv asserts that £2,r2 occur alternately with al- 

ternating read and writes occurring in between. 

Any read after £2 but before the next r 2 is on 

a full buffer, while any read after an r 2 but be- 

fore the next ~2 is on a buffer containing one 

message. The formulas read-on-full, read-on-single 

given below characterize reads on a full buffer and 

reads on a buffer with one message, respectively. 

read-on-full = R A (ir 2 S £2 ) 

read-on-single = R A [(i£ 2 S r 2) V 

1(True S ~2)] 

For FIFO buffers, a read on a full buffer reads 

the message written by the write before the previous 

write. 

fb 2 = I A bv A g A h where 

= G(read-on-full D 4\ R g 
o 

D [IW S (W A Y(IW S W ))]), 

h = G(read-on-sinqle m ~ [R m (1W S W )]). 

The formula on the left side of 'm' in g is 

true when reads occur on a full buffer, while the 

formula on the right side asserts that the message 

read at these instances is the message written by 

the last but one write operation. 'h' asserts that 

read operations on a buffer containing a single mes- 

sage, read the message written by the previous write 

operation. 

THEOREM 4.1. For any infinite sequence of 

states t, t,0 ~ fb 2 iff t 6 FSz, 2. 

Let t 6 LSz, 2. If t,i ~ r2, then there 

exists j < i such that t,j ~ £2" The message 

read at the instance i is the message written at 

the instance j. If t,i ~ R and t,i ~ r2, then 

the message read at the instance i is the message 

written in the previous write operation. These 

properties are expressed by g' and h' respec- 

tive ly. 

g' = G(r 2 DOi\ [R ~ =- I£ 2 S (£2 A WO)]) 

h' = G( (nr 2 A R) = /\ [R O -= nW SW O] ) 
OEZ 

Let b 2 = I A by A g' A h' 

THEOREM 4.2. For any infinite sequence of 

states t, t,0 ~ Zb 2 iff t 6 LSz, 2. [] 

Let t 6 USE, 2. Then for every o 6 E , for 

all i >- 0 the number of messages of value 0 

written into the buffer upto the instance i is 

greater than or equal to the number of messages of 

value 0 read from the buffer upto the instance i, 

and they do not differ by more than 2. For a given 

o, we can obtain a formula bv asserting the 

above property by replacing R by R , W by W O 

in by. 

Let ub 2 = I A bv A /\ bv 
s6Z 

The following theorem can be easily proved: 

THEOREM 4.3. For any infinite sequences of 

states t, t,0 ~ ub 2 iff t 6 USE, 2. [] 

All the formulae fb2, £b2, ub 2 are in prop- 

ositional linear temporal logic and are dependent 

on the message alphabet Z. By making the follow- 

ing changes we can convert them into formulae in 

first order linear temporal logic that give domain 

independent characterizations of buffers of size 2. 

(i) Replace all R by ((read_val = o) A R) 
o 

and W O by ((write__val = ~) A W) 

(ii) Replace all /\ (conjunctions over ~) by 

It can easily be proved that the resulting 

formulae give domain independent characterizations 

of buffers of size 2. 

Below we show that by introducing auxiliary 

propositions we can characterize bounded message 
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buffers more elegantly. The syntax of the well 

formed formulae in this new logic is exactly the 

same as in the propositional linear temporal logic, 

except that some propositions are designated as 

auxiliary propositions and are not interpreted. 

Thus let ~= '~A [] ~i be the set of atomic prop- 

ositions where ~A is the set of auxiliary propo- 

sitions. As usual, an interpretation S' is a pair 

<s',i> where s' is an infinite sequence of states 

(s o , 
g 

Sl,...), each state being a mapping from ~I 

into {True, False], and i ~ 0 designates the 

present state. We define truth of a formula f in 

an interpretation <s',i> (denoted by s',i ~ f) 

as follows: 

s',i ~ f iff there exists a sequence 

s = (s0,sl,...) such that s,i ~ f where for 

all j ~ 0 s.: ~ ~ {True,False] is an 
3 

extension of s[. 
3 

In this new logic we can characterize bounded 

buffers more concisely. We show this for a FIFO 

buffer of size 2. A FIFO buffer of size 2 can be 

considered as two FIFO buffers each of size 1 in 

tandem as shown in Figure i. 

W ~ I R ° 

Figure i 

External writes come into the left buffer while 

external reads are from the right buffer. Whenever 

the left buffer is full and the right buffer is 

empty the message in the left buffer is internally 

read and is written into the right buffer. We con- 

sider this internal reading and writing to be 

occurring simultaneously and capture it by the 

auxiliary propositions I for ~ 6 ~. Let 

fbl(<, E)~ ~ be the formula characterizing a buffer 

i, where %,% indicate vectors of prop- of size 

ositions. The sequence of operations on the left 

buffer is characterized by fbl(W ,I ~), and the 

sequence of operations on the right buffer is char- 

acterized by fbl(I ,R ~). Let 

fbl(<%' 

where the propositions in 

propositions. 

are the auxiliary 

LEMMA 4.2. s,0 ~ fb 2 %/~ s 6 FSE, 2. 

For the general case of a buffer of size k 

we use a somewhat more complicated approach with 

k auxiliary propositions P0'PI ' .... Pk" We will 

assert that P. is true at an instance i iff 
3 

the buffer has j messages before the operation 

of the i th instance. 

h' : q [ /\ 7 (P£ A P ) ^ 
m 

0~£<m~k 

/~ ((P£ A W) ~ X PZ+I ) A 
0_<£<k 

/\ ((P~ A R) ~ X 
O<~_<k 

(Pk ~ IW)] A P0 

P£_I ) A (Po D IR) ,% 

The first clause asserts that no more than one PZ 

is true at any instance, the second clause asserts 

that if Pl is true at an instance and the oper- 

ation is a write operation then at the next in- 

stance P£+I is true, the third clause asserts 

similar property for read operation, the last two 

clauses assert that there are no writes on a full 

buffer and no reads on an empty buffer. 

Let 

fb k = I A h' A G( /\ (Pl m /\(R mDC(O,£)))) 
0<£~k 

where DC(o,£) asserts that the £th previous 

write is the message o. It is easily seen that 

fb k characterizes FIFO buffers of size k. 

THEOREM 4.4. t,0 ~_ fb k i~f t 6 FSz, k m 

Let Zb k = I A h' A 

G ( /\ (P ~ /\[R m (ip~_ 1 S(W O A P£_l )) ])) 
O<Z_<k £ o 

The last clause asserts that the message read at 

any instance when the buffer has Z messages is 

same as the message written at the last instance 

when the buffer has i -i messages. The following 

theorem can be easily proved. 

THEOREM 4.5. t,0 L Zb k ~f t 6 LSE, k. 
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Similarly we can obtain a formula for unordered 

buffers. 

5. Characterizing Unbounded Buffers 

Let ~ be a finite set of atomic propositions 

and s = (s0,s 1 .... ) be an infinite sequence of 

states where each state is a mapping from ~ into 

{True, False}. Let f be a formula in proposi- 

tional temporal logic and SF(f) denote the set of 

subformulae of f. It is easily seen that 

card(SF(f)) ~ length(f). For i ~ 0 let 

[i]s, f = {g 6 SF(f) 1 s,i ~ g}. 

LEMMA 5.1. Let 0 ~ i ~ j be such that 

[i]s,f = [J]s,f" Then s,o ~ f iff s' ,0 ~ f 

where s' .. ,s ,s ,s ). 
= (s0'sl' " i ]+i 3+2 .... 

THEOREM 5.2. Unbounded message buffers (unor- 

dered, FIFO or LIFO) cannot be characterized in 

propositional linear temporal logic. 

The above theorem can be proved by a simple 

argument using the previous lemma. 

THEOREM 5.3. There is no domain independent 

characterization of unbounded message buffers 

(unordered, FIFO or LIFO) in first order linear 

temporal logic. 

Proof. Suppose there is a formula f of 

type T in first order temporal logic, which is a 

domain independent characterization of an un- 

bounded buffer on models of type T. Consider any 

model of type T with finite domain. Then f 

characterizes unbounded message buffers in this 

model. Since the domain of this model is finite, we 

can replace all universal quantifiers by finite 

conjunctions, and by some other trivial changes we 

can obtain a formula f' in propositional temporal 

logic characterizing unbounded buffers over this 

domain. But this contradicts the Theorem 5.3 D 

We have proved that it is impossible to give a 

domain independent characterization of unbounded 

message buffers. However, there are partially in- 

terpreted temporal logics in which unbounded message 

buffers can be characterized. Assume that there are 

two local variables write-history, read-history 

such that at any instance write-history contains 

the sequence of messages written into the buffer, 

while read-history contains the sequence of mes- 

sages read from the buffer. Then the following 

formula fb characterizes the behavior of an un- 

bounded FIFO buffer: 

fb = g A h where 

g = G(read-history ~ write-history), 

h = G(V hist (hist = write-history 

F read-history = hist)) 

where ~ is interpreted as the prefix relation, V 

is interpreted as quantification over the set of all 

finite sequences of the message alphabet. 'g' 

asserts that the sequence of messages read from the 

buffer is a prefix of the sequence of messages 

written into the buffer; 'h' asserts that each 

message written into the buffer is ultimately read 

from the buffer. It can easily be shown that the 

above logic is undecidable. 

Axiomatization of message buffers in PTL is a 

weaker notion than expressiveness. We show below 

that in general unbounded FIFO buffers are not 

axiomatizable. We also show that unbounded LIFO 

buffers and unbounded unordered buffers are axiom- 

atizable though they are not expressible in PTL. 

THEOREM 5.4. Bounded FIFO, LIFO and unordered 

buffers over any finite alphabet l are axiomatiz- 

able in PTL. 

Proof. Let fb k be the formula in PTL char- 

acterizing the FIFO buffer of size k over a fin- 

ite alphabet E. 

Let ~b k = True S (fb k ^ IY True). 

For any t and i ~ 0, t,i ~ iY(True) iff i = 0 

Hence for any t and i ~ 0, t,i ~ ~b k iff 

t,0 ~ fbk, i.e. iff t 6 FSz, k. Let A be any 

consistent and complete axiomatization for PTL. 

Then A U {~b k} is a consistent and complete axiom- 

atization for FIFO buffers of size k over Z. Sim- 

ilarly we can give an axiomatization for bounded 

LIFO and unordered buffers over a finite alphabet. 

[] 
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THEOREM 5.5. For any E such that 

card(E) ~ 2, the theory of unbounded FIFO buffers 

over E is not axiomatizable. (This result was 

suggested by Albert Meyer.) 

Proof. Given a Turing machine M we can recur- 

sively obtain a formula f such that f is in the 

theory of unbounded FIFO buffer over E ={0,i} 

0 < theory of iff M halts on all inputs. Thus Z2 

unbounded FIFO buffers over any E with 

card(E) ~ 2. Hence theory of unbounded FIFO buffer 

over E is not axiomatizable for any E with 

card(Z) ~ 2. In fact, it can be shown that this 

1 complete. D theory is HI- 

Let FS = U FSE, k. Then the theory of fin- 
k ~ 1 

ire FIFO message buffers is the set of all PTL for- 

mulae true in all interpretations over the models 

in FS. It can easily be shown that this theory is 

0 _ complete also not axiomatizabie and that it is HI u 

Sometimes it is more realistic to consider 

models of FIFO buffers which are recursive; i.e. 

models for which we can recursively determine the 

truth value of an atomic proposition at any point 

on the model. For this case also, it can be shown 
0 

that the theory of these models is ~3- complete. 

The degenerate case in which the message al- 

phabet has a single element is also interesting 

since it corresponds to processes that communicate 

using signals. 

THEOREM 5.6. The theory of unbounded FIFO 

buffers over E where E has a single element, is 

decidable. 

Proof. We say that an infinite sequence of 

states t is ultimately periodic with starting 

index £ and period p if V i ~ £ t. = t. 
l 1+p" 

We can easily prove that a formula f is satisfiable 

on a t 6 FSE,~ iff there exists a t' 6 FSE, ~ 

such that t' is ultimately periodic with starting 
I I If 

index 2 c'Ifl and period 2 c'IfL for some con- 

stant c and f is satisfiable on t'. From this 

we can easily get a decision procedure for satisfi- 

ability of f in FSE, ~. Thus validity of f in 

FSz, ~ is decidable. The details will be given in 

the full paper. D 

THOEREM 5.7. The theory of unbounded LIFO 

buffers over a finite alphabet is decidable. 

Proof. For each formula f in PTL we can ob- 

tain a finite state automaton Mf on infinite 

strings such that Mf accepts exactly those se- 

quences t such that t,0 ~ f (each state in t 

is a mapping from the set of atomic proposition 

appearing in f into {True, False}). From Mf 

we can obtain a pushdown automata Pf operating 

on infinite strings. Pf uses its stack to make 

sure that the sequence of read/write operations 

represented by the input string is a legal series 

of read/write operations on the buffer, while at 

the same time the finite state control of Pf 

makes state transitions exactly as Mf. Pf accepts 

an infinite string iff its finite state control 

goes through any of a set of final states infinitely 

often. Pf accepts an input t iff t 6 LS~,~ 

and t,O ~ f. Thus f is satisfiable on a 

t 6 LSE, ~ iff Pf accepts some input. The latter 

problem can be reduced to a finite set of questions 

regarding whether an ordinary pushdown automaton 

(on finite strings) accepts any string. Hence the 

problem of satisfiability of a formula on a sequence 

in LSz, ~ is decidable, o 

THEOREM 5.8. For a finite E, satisfiab{lity 

of a formula on a model of an unbounded unordered 

message buffer over E is decidable iff reach- 

ability problem for vector addition systems of 

dimension card(Z) is decidable. [] 

The proof of the above theorem will be given 

in the full paper. Hence if the reachability prob- 

lem for vector addition systems of finite dimension 

is decidable (as claimed by many researchers), then 

the theory of unbounded unordered buffers over a 

finite message alphabet is decidable. 

6. Conclusion 

We have examined the possibility of using lin- 

ear temporal logic to express the semantics of dif- 

ferent message buffering systems. We have shown 

that it is possible to characterize bounded message 

buffers but not unbounded ones. We have also con- 

sidered axiomatization of the theory of various 
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message buffer systems; unbounded FIFO buffers are, 

in general, not axiomatizable, while unbounded LIFO 

and unordered buffers are axiomatizable. 

The techniques we have used to obtain our im- 

possibility results should also be useful in showing 

that other properties are not expressible (not 

axiomatizable) in linear temporal logic. In addition 

we also believe that our extension of propositional 

linear temporal logic to include auxiliary pro- 

positions is quite natural and may prove useful in 

verifying concurrent systems. We can show that our 

logic is at least as powerful as Wolper's extensions 

of linear time logic [WO81] and is exactly as ex- 

pressive (although not as concise) as the monadic 

second order theory of one successor. 
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