
CAN MESSAGE BUFFERS BE CHARACTERIZED IN LINEAR TEMPORAL LOGIC?

A. P. Sistla
E. M. Clarke

Harvard University
Cambridge, Massachusetts

N. Francez
The Technion
Haifa, Israel

Y. Gurevich
University of Michigan
Ann Arbor, Michigan

I. Introduction

Exchange of information between executing pro-

cesses is one of the primary reasons for process

interaction. Many distributed systems implement

explicit message passing primitives to facilitate

intercommunication. Typically, a process executes

a write command to pass a message to another pro-

cess, and the target process accepts the message

by executing a read command. The semantics of

write and read may differ considerably depending

on the methods used for storing or buffering mes-

sages that have been sent but not yet accepted by

the receiving process.

Because message passing systems are so widely

used, it is important to develop formal techniques

for reasoning about them. In this paper we in-

vestigate the possibility (impossibility) of using

linear temporal logic to characterize the seman-

tics of different message buffering mechanisms.

This logic was originally introduced as a formal

system for reasoning about sequences of events

that are totally ordered in time. Recently, lin-

ear temporal logic has been proposed by Manna and

Pnueli [MPSl] and Owicki and Lamport [OLS0] as an

appropriate formal system for reasoning about par-

allel programs. The logic permits the descrip-

tion of a program's execution history without the

explicit introduction of program states or time.

Moreover, important correctness properties such

This research was supported by NSF Grant MCS79-08365.

Permission to copy without ~e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
commercial advantage, the ACM copyright notice and the title of the
publication and i~ date appear, and notice is given that copying is by
permission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, requires a ~e and/or specific permission.

© 1982 ACM0-89791-081-8/82/008/0148 $00.75

as mutual exclusion, deadlock freedom, and absence

of starvation can be elegantly expressed in this

system.

Specifically, we consider FIFO buffers

(queues), LIFO buffers (stacks) and unordered

buffers (bags). The set of distinct messages that

can be written into the buffer is called the mes-

sage alphabet, we specify a message buffer as the

set of all valid infinite input/output message

sequences. Thus, characterizing a message buffer

in temporal logic consists of obtaining a formula

that is true exactly on these sequences. For un-

bounded buffers, we show that it is impossible to

obtain such a formula in first order linear tem-

poral logic that is i~dependent of the underlying

interpretation (i.e. message alphabet). Nor is it

possible to obtain such a formula in propositional

linear temporal logic (PTL) when the message alpha-

bet is finite. It is possible, however, to give a

formula in first order linear temporal logic that

gives a domain-independent characterization of

bounded buffers. In fact, if the message alphabet

is finite, then such a formula can be expressed in

PTL. Although such bounded message buffers can be

characterized using w-regular expressions (or mon-

adic second order theory of one successor), it is

not obvious that they can be expressed in PTL since

this logic is provably less expressive than w-regu-

lar expressions [WOSl].

Since the formula we obtain may be quite com-

plicated, we introduce an extension of PTL in which

certain atomic propositions are designated as aux-

iliary. The auxiliary propositions are not inter-

preted and are treated like existentially quantified

monadic predicates. We give simple formulae in the

extended logic which characterize message buffers

148

of fixed size over a finite alphabet.

We also consider the problem of axiomatizing

the various types of message buffers described

above. A model of a message buffer is an infinite

sequence of states denoting a series of legal read/

write operations on the buffer. The theory of a

message buffer is the set of all PTL formulae which

are true in all models of the buffer. Since bound-

ed buffers over finite alphabet can be character-

ized in PTL and since PTL has a complete axiom sys-

tem it can easily be shown that bounded buffers are

axiomatizable in PTL. We show that, in general,

unbounded FIFO buffers are not axiomatizable. Sur-

prisingly, it is possible to axiomatize unbounded

LIFO buffers and unbounded unordered buffers; in

fact, the theories of these buffers are decidable.

The paper is organized as follows: Section 2

defines the syntax and semantics of the linear tem-

poral logic that we use in the remainder of the

paper. In Section 3 we specify precisely those

properties of message buffers that we would like

to capture in temporal logic. Section 4 shows that

bounded buffers can be characterized in the logic

and describes how uninterpreted auxiliary propo-

sition sylnbols can be added to simplify this con-

struction. In Section 5 we prove that it is im-

possible to give a domain independent character-

ization of unbounded message buffers in first

order temporal logic. We also show that unbounded

FIFO message buffers are not axiomatizable in PTL

while unbounded LIFO and unordered buffers are

axiomatizable. The paper concludes in Section 6

with a summary and discussion of our results.

2. Linear Temporal Loqic

A well-fornedformu~a in PTL is either an

atomic proposition or is on the form lfl, fl ^ f2'

Xfl' fl U f2' Yfl' fl S f2 where fl,f2 are well-

formed formulae. In addition, the following abbre-

viations will be used:

flv f2 =- I (~flA1f2)' fl D f2 =- Ifl V f2'

Ff -= True U f, Gf =- iFlf-

A state is a mapping from the set of atomic

propositions into the set {True, False}. An inter-

pretation is an ordered pair <t,i> where t is

an infinite w-sequence of states and i ~ 0 is an

integer specifying the present state. We define

the truth of a formula f in an interpretation

(t,i) (t,il = f) inductively as follows:

t,i ~ P where P is atomic iff

ti(P) = True;

t,i ~ fl ^ f2 iff t,i ~ fl and t,i ~ f2;

t,i ~ if I iff t,i ~ fl;

t,i b Xf I iff t,i+l ~ fl;

t,i ~ fl U f2 iff Bk ~ i such that t,k ~ f2

and Vj such that i ~ j < k,

t,j ~ fl;

t,i ~ Yfl iff i>0 and t,i-i ~ fl;

t,i ~ fl S f2 iff Bk ~i S,k ~ f2 and

Vj such that k < j ~ i

t,j ~ fl;

X,U,Y,S are the "next-time", "until", "last-time",

and "since" operators respectively.

We will also consider a restricted version

of the first order temporal logic. The language

of this logic includes variables, function symbols,

relation symbols and the universal quantifier in

addition to the symbols in the propositional ver-

sion of the logic. The type of the language is a

tuple which gives the function symbols, the rela-

tion symbols with their arities. The variables are

partitioned into two groups: local variables whose

values depend on the current state and global var-

iables whose values are state independent. Atomic

formulae have the same syntax as in the usual, first

order case. The set of well formed formulae is the

smallest set containing the atomic formulae and

closed under universal quantification over global

variables, boolean connectives, and the above tem-

poral operators.

A model T is a triple (A,a,s) where A is

the ~omain; ~ assigns meanings to the function

symbols, relation symbols, and global variables;

and s is a ~-sequence of states. A state assigns

values from ~ to the local variables and truth

values to the atomic propositions. An interpreta-

tion in this case is a pair <T,i> where T is

a model and i ~ 0 specifies the present state.

Truth of an atomic formula in an interpretation is

defined as in the usual first order case; truth

149

of a composite formula is defined as in the case of

propositional temporal logic with following addi-

tion: T,i ~- Vxf iff for each c 6 £ T ,i ~ f
c

where T is T with the meaning assigned to the
c

global variable x changed to the value c.

3. What Are Message Buffers?

We characterize a message buffer by the set

of legal read~write sequences allowed on the buffer.

A write operation writes a message into the buffer;

a read operation reads a message from the buffer

and deletes it. At most one read or write opera-

tion is permitted at any instant of time. In the

case of bounded buffers a write request will be re-

jected when the buffer is full; similarly, a read

request on an empty buffer will be rejected. Re-

jected read/write requests are not included in the

sequences of legal operations characterizing the

buffer. We consider below three types of message

buffers: FIFO buffers (queues), LIFO buffers

(stacks), and unordered buffers (bags). In FIFO

buffers the earliest written message in the buf-

fer is the output for a read request; with LIFO

buffers the latest written message in the buffer

is used; and with unordered buffers any message

present in the buffer is output. We also require

that each physical message written into the buf-

fer is ultimately read; this is the liveness

property of buffer behavior.

Let E be the message alphabet and ~ be

the set of atomic propositions {R I ~ 6 ~} U

{W 10 £ ~}. Let ~--~ ~ be the set of atomic

propositions in the language.

ST = {~ I ~: ~ ~ {True,False } such that

~(P) = True for at most one P in ~}

We consider each member of ST to be a state; if

R (W) is true in a state, then it indicates that

the message o is read (written) from (into) the

buffer in that state.

Let t 6 ST* U ST W and i 0 < i I < ... be

all the instances at which some messages ~0,oi,...

are read from the buffer, i.e., tik(R k) = True

for k > 0 • Then Ir (t) denotes the sequence
-- r

(o0,(~ 1). Similarly, we define ~w(t). Let

t (i) denote the sequence (t0,t I ,ti) , then

nb(i) = length(~w(t(i))) - length(z (t(i))) is the
r

number of messages in the buffer at the instance i.

FS E,k is the set of all infinite sequences

of states which denote legal series of read/write

operations on a FIFO buffer of size k. LS
[,k

and USs, k are the corresponding sets of sequences

for LIFO and unordered buffers respectively. Un-

bounded buffers will be denoted in this scheme of

notation by k = ~.

For k ~ 0 and k =

: {t 6 ST ~ 1 for all i ~ 0 0~nb(i) ~k FSz, k

and ~ (t (i)) is a prefix of
r

~w(t (i)) and ~r(t) = ~w(t)}.

LSE, k = {t 6 ST w I for all i ~ 0 0 < nb(i)< k

and if for some o 6 E, t,i ~ W then

there exists j > i such that t,j > RO,

nb(j-l) = nb(i) and VZ i < i < j-i

nb(Z) ~ nb(i)}

USz, k = {t 6 ST ~ I for all i ~ 0 0 ~ nb(i) ~k

and for all o 6 S, the number of writes

of the message o upto i ~ the number

of reads of the message o upto i, and

for infinitely many i, nb(i) : 0]

In the case of both LIFO and unordered buffers

we require that the buffer should become empty

infinitely often, in order to satisfy the liveness

requirement.

For a finite alphabet ~, a formula f in PTL

characterizes a FIFO message buffer of size k

(unbounded FIFO buffer) if

Vt 6 ST ~ t,0 ~ f iff t 6 FSz, k (t 6 FSz,~).

Similarly we define what it means to characterize

LIFO and unordered buffers ~ PTL.

Let L be a language of first order linear

temporal logic of type T with local variables

read_val, write_val and with atomic propositions

R,W. Let T = (E,~,s) be a model of type T. In

any state s.,l if si(R) = True then it signifies

the reading of message si(read val) in that state,

a~d if s. (W) = True then it signifies the writing
1

of message s.(write val) in that state. With s,

we associate any sequence t defined as follows:

150

For all i ~ 0 ti: ~ ~ {True, False} such that

for all 0 6 Z,

ti(R O) = True iff si(R) = True and si(read_val)

: o;

ti(W ~) = True iff si(W) = True and si(write val)

A first order linenr tem!~oral formula f of

type T is a (domain indopendent) oharacterisa-

tion of a FIFO buffer of sise k (unbounded FIFO

buffer) if for all T = (Z,e,s) of type : T,0 ~ f

iff t 6 FSz, k (t 6 FS[,~). Similar definitions

Nold for LIFO and unordered buffers.

A model of a messaoe buffer is an infinite

sequence of states denotinq a legal series of read/

write operations on the buffer, as given above.

The theory of a message buffer is the set of all

PTL formulae which are true in all interpretations

(t,i) where t is a model of the buffer. We say

that a message buffer is axiomatizable if there

exists a recursive set of axioms from which the

formulae in the theory of the buffer can be deduced

using some inference rules.

4. Characterizing Bounded Buffers

In this section we characterize bounded buf-

fers over a finite alphabet using propositional

linear temporal logic; we also give domain inde-

pendent characterizations in first order linear

temporal logic. We let fb k, £b k, ub k denote

formulae in propositional temporal logic charac-

terizing FIFO, LIFO, and unordered message buffers

of size k over the finite message alphabet ~.

Here we give formulae for buffer size = 1 and 2;

in the full paper we show how to obtain these for--
J

mulae for an arbitrary buffer size k.

Let Z be a finite message alphabet, and

~ = {R I o 6 ~} L' {W O I O 6 ~} be the set

of atomic propositions. Throughout this section we

use the following abbreviations:

w = \/ w

o6Z o

R = ~/ R
U

o6Z

EX= /~ A
°i~O2 1 (RoIA RO2) Ao1/\~O21 (Wo] WO2) A

1(W A R)

I = G (Ex)

'I' asserts that at any instant at most one opera-

tion occurs on the buffer, and reads, writes are

mutually exclusive.

In the case of buffer size = 1 the buffer

behavior is as follows:

(a) The writes and reads occur alternately;

(b) The message read in each read operation

is the message written by the previous write oper-

ation. Thus, fbl = I A fa A fb where

f = G(W ~ X(IW U R)) A G((R A X(F R)) a

X(IR O W));

fb = G(/\ (R m (1W S Wa))).
o6Z o

It is easily seen that fa and fb assert proper-

ties (a) and (b), respectively.

Intuitively, the operation of a buffer of

size = 2 can be described as follows. Initially,

writes and reads occur alternately; whenever a

read occurs the buffer becomes empty, and after each

write the buffer will have exactly one message.

This continues until two writes occur successively

without a read operation in between, and the buffer

becomes full (formula £2 expresses this). Sub-

sequently, reads and writes will again begin to

alternate. After each read the buffer will have

one message and after each write operation the

buffer becomes full. This may continue forever, or

until two reads occur successively without a write

in between, making the buffer empty (r 2 expresses

this); now the previous sequence repeats. This

behavior is common for FIFO, LIFO and unordered

buffers of size = 2. The formulae £2' r2 are

given below:

£2 = W A (1R U W)

r 2 = R A (1W S R)

In the remainder of this section we will fre-

quently use the formula alt(p,q,c) given below:

alt(p,q,c) = [(g U c) v G(g A lC]] A

[(ic U p) ~ (lq U p)]

where g = (pmX(ip U q)) A (q m [X(lq U p)
v X(lq U c)])

151

The first conjunct in alt(p,q,c) asserts that

either there is a future instant at which c occurs

and until this instant p,q occur alternately, or

throughout the future p,q occur alternately with-

out c occuring anywhere. The second conjunct

asserts that if p occurs then it occurs before q.

Thus, the previous intuitive description of the be-

havior of the buffer of size 2 is captured by the

formula bv given below.

bv = alt(W,R,12) A G[£ 2 ~ X alt(W,R,r2)] ^

G[r 2 ~ X alt(W,R,£2)]

bv asserts that £2,r2 occur alternately with al-

ternating read and writes occurring in between.

Any read after £2 but before the next r 2 is on

a full buffer, while any read after an r 2 but be-

fore the next ~2 is on a buffer containing one

message. The formulas read-on-full, read-on-single

given below characterize reads on a full buffer and

reads on a buffer with one message, respectively.

read-on-full = R A (ir 2 S £2)

read-on-single = R A [(i£ 2 S r 2) V

1(True S ~2)]

For FIFO buffers, a read on a full buffer reads

the message written by the write before the previous

write.

fb 2 = I A bv A g A h where

= G(read-on-full D 4\ R g
o

D [IW S (W A Y(IW S W))]),

h = G(read-on-sinqle m ~ [R m (1W S W)]).

The formula on the left side of 'm' in g is

true when reads occur on a full buffer, while the

formula on the right side asserts that the message

read at these instances is the message written by

the last but one write operation. 'h' asserts that

read operations on a buffer containing a single mes-

sage, read the message written by the previous write

operation.

THEOREM 4.1. For any infinite sequence of

states t, t,0 ~ fb 2 iff t 6 FSz, 2.

Let t 6 LSz, 2. If t,i ~ r2, then there

exists j < i such that t,j ~ £2" The message

read at the instance i is the message written at

the instance j. If t,i ~ R and t,i ~ r2, then

the message read at the instance i is the message

written in the previous write operation. These

properties are expressed by g' and h' respec-

tive ly.

g' = G(r 2 DOi\ [R ~ =- I£ 2 S (£2 A WO)])

h' = G((nr 2 A R) = /\ [R O -= nW SW O])
OEZ

Let b 2 = I A by A g' A h'

THEOREM 4.2. For any infinite sequence of

states t, t,0 ~ Zb 2 iff t 6 LSz, 2. []

Let t 6 USE, 2. Then for every o 6 E , for

all i >- 0 the number of messages of value 0

written into the buffer upto the instance i is

greater than or equal to the number of messages of

value 0 read from the buffer upto the instance i,

and they do not differ by more than 2. For a given

o, we can obtain a formula bv asserting the

above property by replacing R by R , W by W O

in by.

Let ub 2 = I A bv A /\ bv
s6Z

The following theorem can be easily proved:

THEOREM 4.3. For any infinite sequences of

states t, t,0 ~ ub 2 iff t 6 USE, 2. []

All the formulae fb2, £b2, ub 2 are in prop-

ositional linear temporal logic and are dependent

on the message alphabet Z. By making the follow-

ing changes we can convert them into formulae in

first order linear temporal logic that give domain

independent characterizations of buffers of size 2.

(i) Replace all R by ((read_val = o) A R)
o

and W O by ((write__val = ~) A W)

(ii) Replace all /\ (conjunctions over ~) by

It can easily be proved that the resulting

formulae give domain independent characterizations

of buffers of size 2.

Below we show that by introducing auxiliary

propositions we can characterize bounded message

152

buffers more elegantly. The syntax of the well

formed formulae in this new logic is exactly the

same as in the propositional linear temporal logic,

except that some propositions are designated as

auxiliary propositions and are not interpreted.

Thus let ~= '~A [] ~i be the set of atomic prop-

ositions where ~A is the set of auxiliary propo-

sitions. As usual, an interpretation S' is a pair

<s',i> where s' is an infinite sequence of states

(s o ,
g

Sl,...), each state being a mapping from ~I

into {True, False], and i ~ 0 designates the

present state. We define truth of a formula f in

an interpretation <s',i> (denoted by s',i ~ f)

as follows:

s',i ~ f iff there exists a sequence

s = (s0,sl,...) such that s,i ~ f where for

all j ~ 0 s.: ~ ~ {True,False] is an
3

extension of s[.
3

In this new logic we can characterize bounded

buffers more concisely. We show this for a FIFO

buffer of size 2. A FIFO buffer of size 2 can be

considered as two FIFO buffers each of size 1 in

tandem as shown in Figure i.

W ~ I R °

Figure i

External writes come into the left buffer while

external reads are from the right buffer. Whenever

the left buffer is full and the right buffer is

empty the message in the left buffer is internally

read and is written into the right buffer. We con-

sider this internal reading and writing to be

occurring simultaneously and capture it by the

auxiliary propositions I for ~ 6 ~. Let

fbl(<, E)~ ~ be the formula characterizing a buffer

i, where %,% indicate vectors of prop- of size

ositions. The sequence of operations on the left

buffer is characterized by fbl(W ,I ~), and the

sequence of operations on the right buffer is char-

acterized by fbl(I ,R ~). Let

fbl(<%'

where the propositions in

propositions.

are the auxiliary

LEMMA 4.2. s,0 ~ fb 2 %/~ s 6 FSE, 2.

For the general case of a buffer of size k

we use a somewhat more complicated approach with

k auxiliary propositions P0'PI ' Pk" We will

assert that P. is true at an instance i iff
3

the buffer has j messages before the operation

of the i th instance.

h' : q [/\ 7 (P£ A P) ^
m

0~£<m~k

/~ ((P£ A W) ~ X PZ+I) A
0_<£<k

/\ ((P~ A R) ~ X
O<~_<k

(Pk ~ IW)] A P0

P£_I) A (Po D IR) ,%

The first clause asserts that no more than one PZ

is true at any instance, the second clause asserts

that if Pl is true at an instance and the oper-

ation is a write operation then at the next in-

stance P£+I is true, the third clause asserts

similar property for read operation, the last two

clauses assert that there are no writes on a full

buffer and no reads on an empty buffer.

Let

fb k = I A h' A G(/\ (Pl m /\(R mDC(O,£))))
0<£~k

where DC(o,£) asserts that the £th previous

write is the message o. It is easily seen that

fb k characterizes FIFO buffers of size k.

THEOREM 4.4. t,0 ~_ fb k i~f t 6 FSz, k m

Let Zb k = I A h' A

G (/\ (P ~ /\[R m (ip~_ 1 S(W O A P£_l))]))
O<Z_<k £ o

The last clause asserts that the message read at

any instance when the buffer has Z messages is

same as the message written at the last instance

when the buffer has i -i messages. The following

theorem can be easily proved.

THEOREM 4.5. t,0 L Zb k ~f t 6 LSE, k.

153

Similarly we can obtain a formula for unordered

buffers.

5. Characterizing Unbounded Buffers

Let ~ be a finite set of atomic propositions

and s = (s0,s 1) be an infinite sequence of

states where each state is a mapping from ~ into

{True, False}. Let f be a formula in proposi-

tional temporal logic and SF(f) denote the set of

subformulae of f. It is easily seen that

card(SF(f)) ~ length(f). For i ~ 0 let

[i]s, f = {g 6 SF(f) 1 s,i ~ g}.

LEMMA 5.1. Let 0 ~ i ~ j be such that

[i]s,f = [J]s,f" Then s,o ~ f iff s' ,0 ~ f

where s' .. ,s ,s ,s).
= (s0'sl' " i]+i 3+2

THEOREM 5.2. Unbounded message buffers (unor-

dered, FIFO or LIFO) cannot be characterized in

propositional linear temporal logic.

The above theorem can be proved by a simple

argument using the previous lemma.

THEOREM 5.3. There is no domain independent

characterization of unbounded message buffers

(unordered, FIFO or LIFO) in first order linear

temporal logic.

Proof. Suppose there is a formula f of

type T in first order temporal logic, which is a

domain independent characterization of an un-

bounded buffer on models of type T. Consider any

model of type T with finite domain. Then f

characterizes unbounded message buffers in this

model. Since the domain of this model is finite, we

can replace all universal quantifiers by finite

conjunctions, and by some other trivial changes we

can obtain a formula f' in propositional temporal

logic characterizing unbounded buffers over this

domain. But this contradicts the Theorem 5.3 D

We have proved that it is impossible to give a

domain independent characterization of unbounded

message buffers. However, there are partially in-

terpreted temporal logics in which unbounded message

buffers can be characterized. Assume that there are

two local variables write-history, read-history

such that at any instance write-history contains

the sequence of messages written into the buffer,

while read-history contains the sequence of mes-

sages read from the buffer. Then the following

formula fb characterizes the behavior of an un-

bounded FIFO buffer:

fb = g A h where

g = G(read-history ~ write-history),

h = G(V hist (hist = write-history

F read-history = hist))

where ~ is interpreted as the prefix relation, V

is interpreted as quantification over the set of all

finite sequences of the message alphabet. 'g'

asserts that the sequence of messages read from the

buffer is a prefix of the sequence of messages

written into the buffer; 'h' asserts that each

message written into the buffer is ultimately read

from the buffer. It can easily be shown that the

above logic is undecidable.

Axiomatization of message buffers in PTL is a

weaker notion than expressiveness. We show below

that in general unbounded FIFO buffers are not

axiomatizable. We also show that unbounded LIFO

buffers and unbounded unordered buffers are axiom-

atizable though they are not expressible in PTL.

THEOREM 5.4. Bounded FIFO, LIFO and unordered

buffers over any finite alphabet l are axiomatiz-

able in PTL.

Proof. Let fb k be the formula in PTL char-

acterizing the FIFO buffer of size k over a fin-

ite alphabet E.

Let ~b k = True S (fb k ^ IY True).

For any t and i ~ 0, t,i ~ iY(True) iff i = 0

Hence for any t and i ~ 0, t,i ~ ~b k iff

t,0 ~ fbk, i.e. iff t 6 FSz, k. Let A be any

consistent and complete axiomatization for PTL.

Then A U {~b k} is a consistent and complete axiom-

atization for FIFO buffers of size k over Z. Sim-

ilarly we can give an axiomatization for bounded

LIFO and unordered buffers over a finite alphabet.

[]

154

THEOREM 5.5. For any E such that

card(E) ~ 2, the theory of unbounded FIFO buffers

over E is not axiomatizable. (This result was

suggested by Albert Meyer.)

Proof. Given a Turing machine M we can recur-

sively obtain a formula f such that f is in the

theory of unbounded FIFO buffer over E ={0,i}

0 < theory of iff M halts on all inputs. Thus Z2

unbounded FIFO buffers over any E with

card(E) ~ 2. Hence theory of unbounded FIFO buffer

over E is not axiomatizable for any E with

card(Z) ~ 2. In fact, it can be shown that this

1 complete. D theory is HI-

Let FS = U FSE, k. Then the theory of fin-
k ~ 1

ire FIFO message buffers is the set of all PTL for-

mulae true in all interpretations over the models

in FS. It can easily be shown that this theory is

0 _ complete also not axiomatizabie and that it is HI u

Sometimes it is more realistic to consider

models of FIFO buffers which are recursive; i.e.

models for which we can recursively determine the

truth value of an atomic proposition at any point

on the model. For this case also, it can be shown
0

that the theory of these models is ~3- complete.

The degenerate case in which the message al-

phabet has a single element is also interesting

since it corresponds to processes that communicate

using signals.

THEOREM 5.6. The theory of unbounded FIFO

buffers over E where E has a single element, is

decidable.

Proof. We say that an infinite sequence of

states t is ultimately periodic with starting

index £ and period p if V i ~ £ t. = t.
l 1+p"

We can easily prove that a formula f is satisfiable

on a t 6 FSE,~ iff there exists a t' 6 FSE, ~

such that t' is ultimately periodic with starting
I I If

index 2 c'Ifl and period 2 c'IfL for some con-

stant c and f is satisfiable on t'. From this

we can easily get a decision procedure for satisfi-

ability of f in FSE, ~. Thus validity of f in

FSz, ~ is decidable. The details will be given in

the full paper. D

THOEREM 5.7. The theory of unbounded LIFO

buffers over a finite alphabet is decidable.

Proof. For each formula f in PTL we can ob-

tain a finite state automaton Mf on infinite

strings such that Mf accepts exactly those se-

quences t such that t,0 ~ f (each state in t

is a mapping from the set of atomic proposition

appearing in f into {True, False}). From Mf

we can obtain a pushdown automata Pf operating

on infinite strings. Pf uses its stack to make

sure that the sequence of read/write operations

represented by the input string is a legal series

of read/write operations on the buffer, while at

the same time the finite state control of Pf

makes state transitions exactly as Mf. Pf accepts

an infinite string iff its finite state control

goes through any of a set of final states infinitely

often. Pf accepts an input t iff t 6 LS~,~

and t,O ~ f. Thus f is satisfiable on a

t 6 LSE, ~ iff Pf accepts some input. The latter

problem can be reduced to a finite set of questions

regarding whether an ordinary pushdown automaton

(on finite strings) accepts any string. Hence the

problem of satisfiability of a formula on a sequence

in LSz, ~ is decidable, o

THEOREM 5.8. For a finite E, satisfiab{lity

of a formula on a model of an unbounded unordered

message buffer over E is decidable iff reach-

ability problem for vector addition systems of

dimension card(Z) is decidable. []

The proof of the above theorem will be given

in the full paper. Hence if the reachability prob-

lem for vector addition systems of finite dimension

is decidable (as claimed by many researchers), then

the theory of unbounded unordered buffers over a

finite message alphabet is decidable.

6. Conclusion

We have examined the possibility of using lin-

ear temporal logic to express the semantics of dif-

ferent message buffering systems. We have shown

that it is possible to characterize bounded message

buffers but not unbounded ones. We have also con-

sidered axiomatization of the theory of various

155

message buffer systems; unbounded FIFO buffers are,

in general, not axiomatizable, while unbounded LIFO

and unordered buffers are axiomatizable.

The techniques we have used to obtain our im-

possibility results should also be useful in showing

that other properties are not expressible (not

axiomatizable) in linear temporal logic. In addition

we also believe that our extension of propositional

linear temporal logic to include auxiliary pro-

positions is quite natural and may prove useful in

verifying concurrent systems. We can show that our

logic is at least as powerful as Wolper's extensions

of linear time logic [WO81] and is exactly as ex-

pressive (although not as concise) as the monadic

second order theory of one successor.

Acknowledgement

The authors wish to acknowledge Albert Meyer's

insightful suggestions; he suggested that we should

look at the problem from a model theoretic point of

view and provided the proof of Theorem 5.5.

Bibliography

[GPSS80] D. Gabbay, A. Pnueli, S. Shealah, J. Stavi,

"Temporal analysis of fairness," Seventh ACM Sym-

p0sium on Prinei~?les of Programming Languages,

Las Vegas, Nevada, Jan. 1980.

[MPSI] Z. Manna, A. Pnueli, "Verification of con-

current prograr~s," The Correctness Problem in

Computer Science, International Lecture Series in

Computer Science, Academic Press, London, 1981.

[Ow76] S. Owicki, '~A consistent and complete de-

ductive system for verification of parallel

programs," 8th Annual Symposium on Theory of

Computing, 1976.

[OL80] S. Owicki, L. Lamport, "Proving liveness

properties of concurrent programs," Unpublished

report, October 19~0.

[Pn77] A. Pnueli, "The temporal logic of programs,"

Proceedings of the 18th Symposium on Foundations

of Computer Science, Providence, RI, Nov. 1977.

[WoSl] P. Wolper, "Temporal logic can be more

expressive," Proceedings of the 22nd Symposium on

Foundations of Computer Science, Nashville, TN,

Oct. 1981.

156

