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Abstract-The structure of chains in the optimal chain decomposition of a periodic schedule S is 
investigated. A finite oriented graph termed the Linis Graph (LG) is defined which serves as the key for this 
investigation. The edges of the LG are trip-types of S and the vertices of the LG represent terminals. It is 
proved that there is an Euler cycle for a connected LG satisfying natural precedence relations between 
arrival and departure times. Expansion of this cycle in a real time gives a “master-chain” of trips which, 
being repeated periodically, gives an infinite periodic chain. Time-shifted periodic replication of this chain 
allows obtaining a group of twin-type periodic chains forming an optimal fleet over S. It is proved that if the 
LG has m connected components then there is an optimal fleet consisting of m groups of similar periodic 
chains. It is shown that if the graph of terminals is connected and the LG is disconnected then it is possible 
to obtain a twin-type fleet over S by adding to S “dummy” trip-types. A general approach to constructing a 
twin-type fleet of minimal size for this case is described. The relation of the theory developed to the 
so-called center problem is discussed. 

1. INTRODUCTION 

This paper treats some problems arising in the latest stages of planning transportation activities. 
Assume that the following decisions have been already made: trips which have to be carried out 
during the planning period (say, a year) are chosen; a preliminary estimation of the fleet size has 
been made and possible changes in the departure/arrival times in order to minimize the fleet 
size have been already done. (It is assumed that each vehicle can carry out any trip in the 
schedule.) The next phase in planning transportation work should be constructing routes for 
individual vehicles, or more formally, decomposing the schedule into chains each of which 
represent a sequence of trips carried out by one physical vehicle. If this decomposition is made 
properly, the minimal fleet size should be equal to a certain constant determined in the 
following way (see Bartlett (1957), Salzborn (1974), Linis and Maksim (1967), Gertsbakh and 
Gurevich (1977)): let d,(t) be an integer valued function defined as the difference between the 
number of departures and arrivals occuring at terminal a during the time [0, t]. Then the 
minimal fleet size (MFS) is equal to the total deficit, D: 

(Here the sum is taken over the set A of all terminals appearing in the schedule.) 
The chains in the optimal decomposition constitute an important object for solving further 

problems connected with the implementation of the schedule, namely, the assignment of crews 
to trips and vehicles and the maintenance of the vehicles. The structure of chains in the optimal 
chain decomposition will be the main subject of this paper. 

In this paper we deal with purely periodic schedules. This means that there is a time unit 
called the period (a week, a day, etc.) such that all trips whose departures take place in a period 
are always repeated in the next one. 

Periodic schedules are widely used in different kinds of transportation systems because they 
attract more passengers: people prefer to use stable, periodically repeated trips to which they 
get accustomed to in the course of time. In addition, the periodic component of the schedule 
usually serves as a frame for the whole time-table to which additional trips should be added 
according to passenger demand during the peak periods. 

In this paper we shall investigate the possibility of decomposing the schedule into a number 
of periodic twin-type chains. Such decomposition makes every vehicle to repeat the same 
sequence of trips where each sequence contains “twins” of all trips appearing in one period. 
This implies that the arrival times of any vehicle to any given terminal contain a periodic 
subsequence of times to, to+ T*, to+ 2T*, . . . , to+ /CT*, . . . , period T* being the same for all 
vehicles. Thus each vehicle does the same amount of transportation work during time T* (say, 
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the same total mileage) and visits all terminals mentioned in the schedule. Therefore, all 
vehicles are in similar conditions and the total transportation work is uniformly distributed 
between them. It is a common rule to send each vehicle to maintenance after completing a fixed 
amount of work (e.g. an aircraft has to be checked after each 500 hr spent in the air). A 
twin-type fleet allows to distribute the maintenance times uniformly over any calendar period 
for each vehicle thus providing a uniform load distribution for repair facilities. Besides, if these 
facilities are located in a terminal mentioned in the schedule no additional trips will be needed 
to provide arrival of vehicles to the repair station. 

Twin-type fleet might be convenient for crew scheduling because an assignment of one or 
several crews to each vehicle provides automatically that all crews will have the same load. 
Also the process of computerized scheduling simplifies considerably when the chains are of 
twin-type. It is worth noting that practical scheduling experts prefer usually to think about the 
schedule in terms of chains; here again twin-type representation is convenient for manual and 
graphical operation. 

Let us term the fleet which consists of groups of similar periodic chains as homogeneous. The 
main subject of this paper is to develop a theory for constructing a homogeneous optimal fleet. 

Let us consider an example illustrating our results and providing an intuitive background for 
their derivation. 

Example 1 
We have a schedule containing six different trip-types named a, p, y, 6, cp, $ which has to be 

carried out in every calendar period of length T (see the upper part of Fig. 1). The letters a, b, 
c, e designate the departure/arrival terminals. We say that a trip belongs to the kth period if its 
departure takes place in this period, i.e. if the departure time t satisfies the inequality 
(k - l)T s t < kT, k = 1, 2,. . . . A trip belonging to the kth period will be denoted by a lower 

index k: a(k), P(k), etc. The schedule is purely periodic. The lower part of Fig. 1 shows the 
deficit functions of the schedule. Recall that the deficit function d,(t) for terminal a increases 
by one at each departure from a and decreases by one at each arrival at a (see Gertsbakh and 

Gurevich (1977)). 
Note that deficit functions become periodic with period T already after time T. The time span 

between two neighbouring maxima of a deficit function will be called a “hollow”. We see that 
hollows of d,,(t) form two sequences with period T each. We will say that dh(t) has two hollow 
types b, and b,. d,(t), d,(t) and d,(t) have just one hollow type each: a,, c, and e,. 

d,(t ) 

2 

I 

dbW) 
I 

d&t ) 

I 

d,(t) 
I 

Fig. I. A periodic schedule and its deficit functions. 
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Fig. 2. The Linis Graph of the schedule given on Fig. 1. 

We say that cp goes from a, to b, because its departure is located in the hollow of type a, and 
its arrival is located in the hollow of type b,. The same holds for other trip-types. 

Now let us construct an oriented graph (the Linis Graph) whose vertices are the hollow types 
and whose oriented edges are the trip-types. This graph is shown on Fig. 2 and we can see the 
fact that it contains two connected components. 

For trip-types (Y, p, y, S corresponding to the larger component of the graph it is possible to 
construct the following infinite chain having period 3T (see Fig. 1): 

?I)+ Pm+ Y(Z)-+ so,+ q4)‘P(4)’ Y(s)+ a(6)’ (Y(7)’ (1.2) 

MI__ 

In order to carry out all the trips of type (Y, p, y, 6, except possibly for some trips in a finite 
number of periods, the chain (1.2) should be “copied” twice, each time with one T shift: 

a(2) + P(2) + Y(3) + a(4) + a,S) + P(S) += Y(6) -+ s(7) + a,S) + 

LII (1.3) 
a(3) + P(3) + Y(4) + &5) + a(6) + P(6) + Y(7) -+ &.) + a(9) + 

II- 

The following two infinite similar chains with period 2T serve the second component: 

The system of five chains (1.2), (1.3), (1.4) decomposes the whole schedule, except for trips y(,,, 
S,,,, Sc2), I/+,,. It is easy to join them to the existing chains “from the left”: put S,,, before (Yak), 

{y(,)+ S,2,} before (Y,~) and &,, before (pc2). Thus we obtained a homogeneous fleet over the given 
schedule. 

Note that the total number of chains is equal to the minimal fleet size which is five, as one can see 
from the deficit functions. Note that all chains are “good” in the sense defined in Gertsbakh and 
Gurevich (1977), specifically each pair of neighbouring trips in a chain satisfies the following 
local property: the arrival of the first one and the departure of the second one are located in the 
same hollow. It is worth noting that the trip-types in chains (1.2), (1.3) constitute an Euler cycle 
over the corresponding component of the Linis Graph. 

It is convenient now to introduce the notion of a regular chain: it is an infinite, periodic chain 
containing trips of all types appearing in the schedule; between any two trips of the same type 
there is exactly one trip of each other type. For example, chains (1.2), (1.3) are regular for the 
schedule which contains only trip-types (Y, p, y, 6. 

It is not possible to decompose the given schedule into five regular chains. However, there is 
a possibility to find a decomposition into six regular chains. Indeed, a regular chain could be 
constructed if there were edges between b, and b, (thus providing that the Linis Graph 
becomes connected). In order to achieve this, let us add to the schedule a new “dummy” 
trip-type E from b to b shown by dotted lines on the top of Fig. 1. Carrying out this trip means 
in practical terms that a vehicle staying at b just before t, (the “departure” time of E) must stay 
at b until the “arrival” of E at t,. 

Now r&(t) has only one hollow-type and the corresponding Linis Graph becomes connected 
(see Figs. 1 and 3). The following Euler cycle for this graph is admissible regarding the 
precedence relations between arrivals and departures: I,!J + cp + E + /3 + y + S + (Y. In this way 
we arrive at a regular chain 

h) -+ (P(2) + E(3) + P(3) + Y(4) -+ &5) -+ a,6) + Icr(7) + (1.5) 
1 I I 

having period 6T. It is clear that in order to carry out all trips in the schedule, except for some 
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Fig. 3. The Link Graph after adding dummy trips. 

finite number of trips in the beginning, this chain should be “copied” five times by adding r = 1, 
2, 3,4, 5 to trip lower indices. The fleet size is now six. So, in order to decompose the schedule 
into a system of regular chains, it was necessary to increase the minimal fleet size by one and to 
“glue” together the components of the Linis Graph. This is always possible if both components 
have vertices representing the same terminal. 

Our exposition will be as follows. Section 2 contains a series of definitions and two auxillary 
propositions which are necessary from proving theorems in Section 3. This section contains 
Theorem 1 which states that a connected Linis Graph of a periodic schedule permits construc- 
ting an Euler cycle which satisfies specific precedence relations. The expansion of this cycle in 
a real time gives a “master chain” in which the arrival and departure times of each pair of 
adjacent trips are located in one hollow. This master chain serves as a basis for obtaining an 
optimal fleet consisting of D regular (and similar) chains (Theorem 2). Section 3 is concluded by 
Theorem 3 which generalizes Theorem 2 for the case where the Linis Graph has several 
connected components. Section 4 considers the problem of obtaining a homogeneous fleet 
consisting of only one group of twin-type chains for the case when the Linis Graph is 
disconnected. Section 5 contains some concluding remarks concerning the relation between the 
results obtained and so-called center problem. 

2. DEFINITIONS AND AUXILLARY PROPOSITIONS 

2.1 Trip, periodic schedule, deficit function, peak-zones and hollows, regular chains 
For the reader’s convenience we repeat with slight changes several definitions from Gerts- 

bath and Gurevich (1977). 
Let A be a finite non-empty set of elements (called terminals). Letters a, b, . . . will denote 

terminals. A trip is a 4-tuple p = (p 1, p2, p3, p4) where p 1, p2 E A, p3, p4 are real numbers 
such that 06~3 < p4; pl and p2 represent departure and arrival terminals respectively; p3 is 
the departure time (from p l), p4 is the arrival time (to ~2). 

For a set X, #X will denote the power of this set, i.e. the number of elements in it. 
Let S be a set of trips (finite or infinite). For this set, define the following three functions for 

each terminal a E A. 

departure function: d,(t, a) = # {p E S: p 1 = a A p3 s t}, 
arrival function: d2(t, a) = # {p E S: p2 = a A p4 < t}. 
deficit function: d,(t) = d,(t, a) - d,(t, a). (2.1) 

The first function, d,(t, a) is equal to the number of departures from terminal a, up to instant 
t (including the departure at this finite moment). d,(t, a) has a similar meaning with respect to 
arrivals at terminal a. 

A set S of trips is called a schedule if it satisfies the following conditions: 

(i) {pES:pl=ar,p3st}isfiniteforeveryaand t. 
(ii) d,(t) is bounded for every terminal a. I 

(2.2) 

Both of these conditions are quite natural: (i) restricts the total number of departures and, 
therefore, the number of arrivals in every terminal on a fixed finite time span; (ii) restricts the 
difference between arrivals and departures over an infinite time span. 

The graph of the deficit function for terminal a can be obtained in the following manner: add 
one at every departure from a and subtract one at every arrival in a. 

The following properties of a deficit function are almost obvious: for every terminal a, d,(t) 
is stepwise, right-continuous; it has a maximum value D(a) = max,,” d,(t) and d,(O) 2 0. 
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We say that trip p belongs to interval [t,, t2) if its departure time lies within this interval: 
t, < p3 < t,. Schedule S will be called periodic with period T if for each trip (p 1, p2, p3, ~4) E S 
the trip (p 1, ~2, p3 + T, p4 + T) E S. In other words, each trip is “copied” infinitely many times 
by shifting it to the right by time T. 

Let S be T-periodic. We will number trips belonging to [0, T) by an upper index: 

PI,,, P:,,, . . . , P;,,; the “COPY” Of P{,, belonging to [(k - l)T, kT) is denoted p&), k 2 1. Trips in S 
having a fixed upper index i form a trip-type ei: ei = {pfk), k 2 1). Precedence relation between 
two trips p and q (denoted p + q) means that p2 = q 1 and p4 s q3. 

A set of trips C is called a chain if all trips in C can be arranged in a sequence 
p-+qdr+s+W+‘. . . Physically, each chain is a sequence of trips which might be per- 
formed by one vehicle. 

A set F of chains is called a fleet over S iff each trip in S belongs to one and only one chain in 
F (the schedule is decomposed into chains constituting the set F). The subject of greatest 
interest is a decomposition containing the minimal possible number of chains. The minimal fleet 
size (MFS) of the given schedule S is defined as follows: 

MFS = min{#F: F is a fleet over S}. (2.3) 

A chain itself is a schedule. The chain C is called T-periodic iff (~1, ~2, ~3, ~4) E 
C + (p 1, ~2, p3 + T + T, p4 + T . T) E C. A chain C is called T-regular in S if (i) it is qXXiOdiC 

and infinite; (ii) it contains trips of each type; (iii) between any two. trips of the same type there 
is exactly one trip of each other type. For example, the sequence (1.6) is a 6-regular chain in 

schedule S = {a(i), P(i), y(i), S,i,, p(i), +ci,, E(i), i 3 1). The deficit function d,(t) will be termed 
T-periodic for t 2 t* if d,(t) = d,(t + T) for t 3 t*. 

From Lemma 2.1 in Gertsbach and Gurevich (1977) it follows that for a T-periodic schedule, 
all deficit functions should be also T-periodic. 

Definition of a peak-zone of d,(t). A peak-zone of d,(t) is a closed interval L satisfying the 
following conditions: L has at least two points, there are no arrivals into a nor departure from a 
during (min L, sup L), d,(t) = D(a) for min L <t<supL; either minL=O or minL>O and 
there is E > 0 with d,(t) < D(a) for [min L - E, min L); if sup L = max L <m then there is E > 0 
with d,(t) < D(a) for t E [max L, max L + l ). 

Definition of a hollow of d,(t). If L is the first peak-zone of d,(t) and 0 <min L, then 
[0, min L] is a hollow of d,(t). If L,, L, are successive peak-zones of d,(t) (with L, following 
L,) then [max L,, min L2] is a hollow of d,(t) (it may be that max L, = min L,). If L is the last 
peak-zone of d,(t) and sup L = max L < cc, then [max L, m) is a hollow of d,(t). 

Only T-periodic schedules will be considered in this paper. 
We say that two hollows of d,(t) are of the same type if one of them can be obtained from 

the other by one or several shifts by T. We denote hollows of d,(t) by symbols ai, i 2 1, and 
assign the same symbol to hollows of the same type. Consider a typical interval [kT, (k + l)T] 
and number the hollows within it from the left to the right by a,, a2,. . . . If kT is in a hollow, 
say h (which implies that also (k + l)T is in a hollow, say h’) denote h and h’ by the same 
symbol a,. Figure 4 illustrates the principle of numbering hollows. 

2.2 The Linis Graph. Balanced functions and balanced graph. f, g-Euler cycle 
The object of our main concern will be a special construction, an oriented graph termed the 

Linis Graph. 
Dejinition of the Linis Graph. The Linis Graph of schedule S, LG(S) is a finite oriented 

graph LG(S) = (V, E) where the vertices are hollow types of deficit functions and the edges are 

d, (t) 

3 

2 

I 
ime 

(K-I)T t; t’; kT 
I II 

t2 ‘2 
(KiI)T t 

Fig. 4. Hollow types of d,(r): hollows h, and hz are of the same type. 
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trip-types; if trip e = (el, e2, e3, e4) E S is of type ei E E, e3 is located in a hollow of type el,, 
e4 is located in a hollow of type e2i, then edge e, comes out from vertex el, and enters vertex 
e2i. (See Introduction for examples of LG(S)). 

A nonformal description of the Linis Graph is given in the paper of Linis and Maksim (1967), 
Section 4. 

In LG(S) each vertex v E V has even degree: the number of edges entering v is equal to the 
number of edges coming out from v. 

Assume that LG(S) is connected. We want to construct a Euler cycle (i.e. a closed tour 
containing all edges, each only once) satisfying the following condition: if e, e’ are successive 
edges in the cycle and p, p’ are trips of trip-types e, e’, respectively, p4 and p’3 are located in 
the same hollow, then 

p4sp’3. (2.4) 

Specific relationship between arrival-departure times of trips which are located in one hollow 
motivate the following: 

Definition of balanced functions. Let Z, J be finite sets, R be the set of reals and f : I + R, 
g : J -+ R (i.e. f, g are finite real-valued functions with domains Z, J, respectively). f and g are 
balanced if either Z and J are empty or (i) #Z = #J and (ii) Id,,(t) = # {j: g(j)< t, j EJ}- # 
{i: f(i) s t, i E I} is negative in the interval [min mgf, max mgg) and zero outside it. Id,(t) will 
be termed the local deficit function of f, g. In the case when Z and J are edges entering vertex v 
and coming from v, respectively, (i) means that the number of edges entering v is equal to the 
number of edges leaving v. The values of f, f(l), . . . ,f(k), represent arrival times at v and the 
values of g, g(l), g(2), . . . , g(k) represent departure times from v. (ii) is a precise description 
that these times are located in one hollow: in any point between the earliest arrival and the 
latest departure the local deficit function is negative. 

Note that if f and g are balanced, then min mgf < min mgg and max mgf < max mgg. Instead 
of “Id,,(t) is zero outside [min mgf, max mgg)” it suffices to request “the local deficit function 
is nonpositive everywhere”. . 

We use the notation f’ = f 1 Z -{a} for the restriction of f onto the domain Z - {cx}. Assume a 
pair of arrival-departure times is deleted from a hollow. It is important for our further 
exposition that all the arrival-departure times left still belong to one hollow. 

Lemma 1. If f : Z +R, g : J + R be finite balanced functions, (Y E I, /3 E J, f’ = f\Z -{a}, 
g’ = g/J - {p}, f(a) < g(p). Then f’, g’ are balanced iff f’ = g’ = 0 or I d,(t) < -2 in the interval 

L = [min rngf’, max mgg’) n [f(a), g(p)). 
The proof is not complicated and we omit it. Let us explain the lemma by an example. 

Consider a hollow-configuration shown in Fig. 5. After deleting f(a) = p,4 and g(p) = p,3 one 
obtains L = [p24, ~~3) fl [p,4, ps3) = [p24, p53) and the condition of Lemma 1 is violated. Dotted 
lines show the deficit function after deleting p,4, p,3 and it is seen that the original hollow had 
disintegrated into two hollows. If, on the contrary, one takes f(a) = p24, g(p) = pi3 then 

L = [p24, p33), I d,(t). < -2 for t E L and f’, g’ again create a hollow( the change in the form of 
the original deficit function is shown by lined area). 

The next claim is that it is always possible to delete a pair f(a), g(p), f(a) s g(p) by keeping 
f’, g’ balanced. 

Corollary 2. Let f: Z + R, g : J -+ R be finite balanced functions. Then for each a! E Z there is 
p E J such that f(a) < g(p) and f’ = f ( Z -{a}, g' = g 1 J -{p} are balanced. 

The idea of the proof is simple: take for the arrival time f(a) the departure time g(p) which is 

jzqTP3p33i P44 PS 3 P63 t 

time 

Fig. 5. A fragment of a deficit function d,,(t) and a hollow a, formed by arrivals at times p,4, p24, p,4 and 
by departures at times pi3, ~~3, p63. 
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the nearest departure time to f(a) from the right; delete f(a), g(p) and the original hollow 
remains one hollow. One can check that by means of Fig. 5. 

Dejinition. Let G = (V, E) be a finite oriented graph, f : E + R, g : E + R. f, g will be called 
balanced on G if for each u E V, fl{e E E: e enters v} and g 1 {e E E: e leaves v} are 
balanced. 

We will consider often an oriented graph G together with a pair of balanced functions on it. It 
is convenient to give the following. 

Definition. Let G = (V, E) be a finite oriented graph, f : E + R, g : E + R be balanced on G. 
Then the triple (G,f, g) will be called a balanced graph. If G is connected the above triple is 
termed a connected balanced graph. 

Definition. Let (G = (V, E), f : E + R, g : E + R) be a balanced graph and C = (e,, e2, . . . , e,) 
be a sequence of distinct edges of G. C is called an f, g-path if ei enters the vertex u left by ei+, 
and f(eJ s g(ei+J, i = 1,. . . , n - 1. If, in addition, e,, enters u left by e, and f(e,)Sg(e,) C is 
called an f, g-cycle. If n = #E (i.e. C contains all edges of E) and C is a cycle then it will be 
termed an f, g-Euler cycle. 

3. CONSTRUCTING AN f,g-EULER CYCLE. REGULAR CHAINS. 

OPTIMAL TWIN-TYPE FLEET. 

3.1 f, g-Euler cycle 
Consider a balanced graph (G = (V, E), f : E + R, g : E + R). We assume in subsections 3.1- 

3.3 that G is connected. Our goal is to find an f, g-Euler cycle whenever it is possible. 
The proof of the existence of a Euler cycle for a connected oriented graph with each vertex 

of even degree is based on the following facts (see, e.g. Berge (1958), Chap. 17): it is always 
possible to find some cycle C,; after deleting C, from the original graph, the connected 
components of the remaining graph can be arranged by the inductive hypothesis into cycles 

C,, . . . , C,, ; these cycles can be “glued” together with C,, into one cycle which is the desired 
Euler cycle. Our proof goes along the same lines. A complication arises in proving that it is 
possible to glue together two f, g-cycles with a common vertex. 

Lemma 3. Let (i) (G = (V, E), f : E + R, g : E + R) be a balanced graph; 

(ii) C, = (e,, e2,. . . , ek) and C2 = (e;, el, . . . , eh) be two f, g-cycles with no common edges; 
(iii) C, and C, pass through a vertex v E V; 
(iv) any edge incidental u belongs to C, or C2. 

Then C, and C, can be concatenated into one f, g-cycle. 
The outline of the proof is the following. Assume there are two pairs of adjacent edges 

(e,, e,+,) and (e;, e;,,) belonging to C,, C,, respectively, incidental to u such that intervals 
[f(eJ, g(e,+,)) and [f(e&g(e;+,)) have a nonempty intersection (see, e.g. Fig. 6). Assuming 
without loss of generality that f(ei) of we can obtain one cycle by “jumping” from e, to 
e;,,, returning to v along C, and “jumping” back to C, from e; to e,+, (see Fig. 6). It is always 
possible to find two pairs of edges with the above property. Indeed, assume this is not true and 
there is a point t, and E > 0 such that all arrivals to u and departures from u in C, are in 
(-co, t,- E) and all arrivals to 2) and departures from u in C2 are in (t,+ E, x). Let f,, 
(respectively g,) be the restriction of f (respectively g) onto the set of edges entering 
(respectively leaving) u. Note that fO, g, is a pair of balanced functions. The corresponding local 
deficit function is I dfoYg(f). to is located in the interval between the earliest arrival to u and the latest 
departure from u. But 1 d,,,,(t,) = 0 which is impossible.0 

Fig. 6. How to glue together two f, g-cycles. 
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Theorem 1. Let (G = (V, E), f : E += R, g : E --) R) be a connected balanced graph. Then there 
is an f, g-Euler cycle. 

Proof. By induction on #E. For #E = 0 it is obvious. Let the theorem be true for BE < n 
and consider a connected balanced graph with RE = n + 1. Take an arbitrary u,, E V and an 
edge e, coming out from uO. We want to construct an auxillary f, g-cycle containing e,. Let 

(e,, e,, . . . , e,) be an f, g-path such that f ) {e E E: e enters v, ef ei, i < m} and g ({e E E: e 
leaves v, e # ei, 0 < i s m} are balanced for each u. e, enters some vertex u. By Corollary 2 
there is always an edge e’ leaving u such that f 1 {e E E: e enters u, ef ei, i s m} and g 1 {e E E: 
e leaves u, ef e,, 1 c i s m, ef e’} remain balanced. If e’ f e,, define e,,, = e’ and proceed. 
Otherwise stop and the path C, = (e,, . . . , e,) is the desired auxillary f, g-cycle. If #C, = n + 1 
the theorem is proved. Otherwise define E’ = E - Co, V’ = {v: u E V, u incidental to e E E’} and 
consider G’ = (V’, E’). It splits into connected components Gi = (Vi, E,), i = 1, . . . , k. It is easy 
toseethatforeachi=l,... , k f IEi and g (Ei are balanced on Gi. By the induction hypothesis 
there is an f, g-Euler cycle for each Gi, say Ci. There is a vertex u belonging to C,, and C, 
because G is connected. Now use Lemma 3 whose conditions are satisfied to concatenate C, 
with C,. Then concatenate Cz with C, U C,, etc. until an f, g-balanced Euler cycle is obtained.0 

Theorem 1 suggests the following algorithm for constructing an f, g-Euler cycle. Construct an 
auxillary cycle C, and delete all its edges from G; for the remaining graph construct another 
auxiliary cycle C,, etc. Assume that a sequence Co, C,, . . . , C, is obtained until G gets 
exhausted. Then glue together C, with C,_, into one cycle, say CL_, using Lemma 3, glue 
together C;_, with Cr_2, etc. until all Ci will be concatenated into one f, g-Euler cycle. 

3.2 Constructing a balanced Linis Graph 
Let us construct the Linis Graph LG(S) for the T-periodic schedule S. Our goal is to define 

balanced functions f : E --* R, g : E + R representing the arrival/departure times. 
Let h be some hollow of hollow type ai of the deficit function d,(t) and I,,, J,, be the sets of 

trips whose arrival and departure times, respectively, are located in h. Let to = min(p4: p E Iai}. 
For each p E I,, let us define the local arrival time at ai as p4* = p4- t, and for each q E J,,, let 
us define the local departure time from ai as 43* = q3 - t,. It is clear that if h,, h, are different 
hollows of hollow type ai and p&, p:,,,, are different trips of the same trip type pk with arrival 
(departure) times located in h,, h,, respectively, then their local arrival (departure) times are 
equal. Therefore, the local arrival/departure times are defined for each hollow type ai in a 
unique way. Define now I,,, J,, as the sets of trip-types whose arrival and departure times, 
respectively, are located in some hollow h of hollow type ai. Define functions fat: Ia, +R, 

g, : J,, +R as follows: if pk E I,,, then fa,(pk) = pk4*; if qk E J4, then gaj(qk) = qk3*. 
Denote I = UaE4 UiIaty.J = UuEA Ui Jai and define f : I -+ R, g : J + R m such a way that their 

restriction onto I,,, J,, coincide with f,,, goi. Clearly, f, g will be balanced on LG(S). The triple 
(LG(S) = (V, E), f : I + R, g : J + R) is a f, g-balanced graph termed a balanced Linis Graph. 

3.3 Constructing regular chains 
Let us construct a balanced Linis Graph and a f, g-Euler cycle. Without loss of generality it 

might be written in the following chain form 

p’+p2+. . .-sp”, (3.1) 

where pi is a trip-type. Each trip-type in S appears in (3.1) once and only once. 
Now construct an infinite periodic chain C” according to the following rules. 
(1) Take trip p,& (belonging to the i,th period on the periodic part of the deficit functions); let 

p ,1,,,4 E h; join to p li ) the trip of trip-type p2 whose departure time is located in the same hollow 
h. Let this be trip p$. Clearly, p:i,,4 < p:i,,3 because (3.1) is an f, g-Euler cycle. Proceed until 
a trip of trip-type p” is picked. Denote the obtained sequence of trips by Cl’: 

(3.2) 

C,’ is a chain. We call it a master chain. Let p;,,,4 E h’. Consider the trip-type p’ departing from 
h’ and let it be p$,+,). 
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(3.3) 

and 

p={c,“+czo~. . .~cp+c”,+,-~~~). (3.4) 

Obviously, Co is a T-regular chain in S (see Subsection 1.2). Now obtain T- 1 additional 
T-regular chains in S, C’, . . . , CT-‘, where Ck ’ IS obtained from Co by adding the integer k to all 
lower indices of trips in Co, k = 1,. . . , T- 1: 

ck={c,k+C?k+. . . + c,” +cf+,-. . .}, (3.5) 

Crk=b:i,+k+T.r)+. “+PGn+k+7 r$. (3.6) 

In this way we arrive at a set F” of T T-regular chains in S: F” = {Ci, 0 s i S T - 1). Their 
union is a schedule denoted So: So = U ;S,j C’. Clearly, (S-SO) is finite. We say that So contains 
almost all trips of S. 

It is possible to add the trips in S-S’ to chains of F” “from the left” to obtain a fleet over S 
of size T. It can be done by extending to the left the chains in F” by adding to them the missing 
trips of S-SO (see Example 1). In this way we arrive at a system of chains F = 
{t”,OSkST- l}, where C” is obtained from Ck by extending it to the left. Clearly, F is a fleet 
over S and each chain in F is T-regular. 

F will be termed a set of twin-type chains with respect to S or a twin-type fleet over S. 
CO, . . . , C?’ will 

Proof. We must prove only that T is equal to the total deficit D (see (1.1)). 
(1”) Assume that max,,o d,(t) = D(a) > 0 and let F(a) G F be the set of chains whose first trip 

departs from a. Define t* as the latest departure time of the first trips in F(a) and let 

t, = min{t: d,(t) = D(a) and t 2 t*} 

(t, is the left end of a peak-zone of d,(t) which is the nearest to t* from the right). 
Let h be a ,hollow of d,(t). Define Arr(h) = {p: p2 = a, p4 E h}, Dep(h) ~,{p: p 1 = a, p3 E h}. 
Let p, E C’, p,2 = a, p,4 G t, and pZ be the direct successor of p, in C’. Let us prove that 

p,3 < t,. Assume that p,3 > t,. Then p,3 E h, where h, is a hollow of d,(t) which is “balanced”: 
#Arr(h,) = #Dep(h,). Therefore, there is a trip pj E Arr(h,) such that its direct successor in F, 
say p4f! Dep(h,). Continuing this reasoning one obtains an infinite sequence of trip pairs 

bk, Pk+,h k 2 1) such that Pk+l is the direct successor of pk in F but the arrival time of pk and 
the departure time of p k+i are not located in one hollow. This means that in one of the chains of 
F” there will appear a pair of adjacent trips, say p +q such that p4 and q3 are located in 
diferent hollows. But this contradicts properties of F”. 

(2”) By the definition of d,(t) and F d,(t,) = X~iEFcoj {# of dep. from a on [0, t,] in Ci-# of 
arr. to a in Ci on [0, t,]} + ~~~~~~~~~~ {# of dep. from (Y on [O, t,l in C’-# of arr. to a on [0, t,] 
in Ci}. Each di E F-F(a) begins with an arrival at a; if it takes place at t’, t’ < t,, then it is 
followed in F by a departure from a at t” s t,, as proved in 1”. Thus the second sum is zero. 

If a chain begins with p, p 1 = a and each arrival to a on [O, t,] in it is followed by a departure 
from a on [0, t,] (which is exactly our case as proved in l”), then each bracket in the first sum is 
equal to 1. Thus, d,(t,) = #F(a). 
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Let b E A be such that no chain begins with a trip departing from b. Then dh(f) s 0 and thus 
maxtsO d,,(t) = d,,(O) = 0. Now 

D= c, D(a)= x D(a)= 2 d,(t,)= x (#F(a))= #F= 7.0 
CIEA (a: D(o)>O) (a. D(a)>O) LIEA 

3.4 Disconnected Linis Graph 
This case does not pose difficulties and the following generalization of Theorem 2 is valid: 
Theorem 3. Suppose (i) S be a T-periodic schedule; (ii) The Linis Graph of S is disconnected 

and contains s connected components LG,(S) = (Vi, Ei), i = 1,. . . , s. 
Then: 

(1) S is partitioned into s subschedules s,, . , S,, Si containing all trips in S of trip-types 
constituting the set Ei, i = 1, . . . , s ; 

(2) For each i, i=l,... , s, there is a positive integer 7i and a system of 7i chains 
F’(i) = {C”(i), . . . , P-‘(i)} such that (a) Si = U>:A Ck(i) contains almost all trips in $; (b) Each 
chain in F’(i) is Ti-regular with respect to Si; (c) Ck(i) is obtained from Ckm’(i) by adding 1 to 
all lower indices of trips in Ck-l(i), k = 1,. . . , q - 1; 

(3) For each i = 1,. . , s there is a twin-type fleet F(i) over $ consisting of ~~ chains; 
(4) F = {F(i), i = 1,. . . , S} iS an Optid fleet OVer s, i.e. z;=, Ti = MFS. 

To prove Theorem 3 let us define s pairs of balanced functions f,,,: I,,, + R, J, + R, 
m = 1,2,. . . , s, by restricting f and g onto the domains I,,, and J,,, representing local arrival and 
departure times for the subschedule $,, containing trip-types of the set E,. Triples (LG,(S) = 

(Vi, Ei), .fi, gi), i = 1,. . ( , s are fi, g-balanced graphs. We construct for them twin-type fleet F(i) 
over Si exactly as it was described in Theorem 2. Claims (l), (2) and (3) follow immediately. To 
prove (4) we repeat first word for word (1”) of Theorem 2 and (2”) of this Theorem with 
obvious changes in formulas for d,(t,). Denote by F(i, a) the subset of chains of F(i) which 
start with departure from a. Similarly for 2”, one obtains that d,(t,) = #F(a) where F(a) = 
U I=, F(i, a) and that the total deficit D = #F = Xl=, T~.O 

Remark 1. It is clear that if an optimal twin-type fleet over S does exist then the Linis Graph 
of S is connected because each chain in the fleet “visits” hollows of all types. Therefore, the 
connectedness of the Linis Graph is a necessary and sufficient condition for the existence of an 
optimal twin-type fleet over S. 

Remark 2. The optimal twin-type fleet is not unique if the Linis Graph has more than one 
f, g-Euler cycle: each such cycle can serve as a basis for a master chain which, being expanded 

in real time and replicated, produces an optimal twin-type fleet. 

4. MORE ABOUTTWIN-TYPE FLEET OVER S WHENGL(S)IS DISCONNECTED 

Let us examine when a twin-type fleet over S can exist if GL(S) is disconnected and has 
several connected components GL,(S) = (Vi, E,), i = 1, . . . , s. It is clear that a twin-type fleet 
(not necessary an optimal one) over a schedule exists if and only if this schedule has a 
connected Linis Graph. So, we can ask if there is a method to change the given schedule S in 
order to obtain a new schedule with a connected Linis Graph. Of course, such a method does 
exist if we are allowed to add to S new real trips. We do not consider in this paper such an 
option. The only tool we have at our disposal is adding to S fictitious, “dummy” trips, as was 
done in Example 1 (see Introduction). Let us explain this point. 

In this section we denote terminals by a(l), a(2), . . . , a(m). 
Assume that each of the sets V,, VZ, . . . , V, contains at least one hollow type of terminal 

a(j). Let a,(j), . . . , a,(j) be hollow types of deficit function daci,(t) and let [t(j), t’(j)] be a 
peak-zone of dacj,(t) in its periodic part. Define the set S(j) of dummy trips as follows: 

S(i) = b(k) = (a(i), a(i), t(i) + kT, W + W, k 2 01 (4.1) 

and consider the schedule S’ = S U S(j). All deficit functions of S’ remain as they were for S 
except for d&t). The new deficit function of a(j), dacj,(t), has changed and now its maximum 
is &a(j)) = max dacj,(t) + 1. One can easily check that for t E [t’(j) + kT, t(j) + kT + T), d,,j,(t) < 
&a(j)). This means that dacj,(t) has in its periodic part hollows of only one type denoted a,(j). 

What are the changes in GL(S’) in comparison with GL(S)? All vertices of type ai within 
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G&(S) are replaced by vertex a,(j); each edge e E Ei from a,(j) E Vi to u E Vi is replaced by 
edge from a,(j) to v. The new subgraphs of GL(S’) corresponding to GLr(S), i = 1,. . . , r will 
have now one common vertex a,(j) and will form one connected component in GUS’); the sets 

V,, V,, ’ . , V, now are “glued” together. 
So, we have a tool to glue together connected components of the disconnected Linis Graph. 

Assume that p + w + q is a fragment of some chain in the fleet over S’ where p, q E S and w is 
a dummy trip. “To carry out” w means that a vehicle arrived in p2 at time p4 must remain in 
terminal p2 until time q3. S’ is essentially the same schedule S; adding dummy trips to S means 
only increasing the time spent by vehicles in terminals. More formally, adding S(j) to S forces 
us to build chains by overlapping some peak-zones of the deficit functions of the schedule S, 
which is, in fact, a violation of rules for constructing an optimal fleet over S. 

Now we need to define an oriented graph called the graph of terminals. 
Definition. The graph of terminals of schedule S, GT(S) is a finite oriented graph GT(S) = 

(V, E) where the vertices are terminals and the edges are trip-types; if trip e = 
(a(j), a(k), e3, e4) E S is of trip-type e, E E then the edge e, comes out from vertex a(j) and 
enters vertex a(k). 

Now define a set B C A, B = {a(i): d&t) has more than one hollow type}. For each a(r) E B 
define the corresponding sequence of dummy trips S(r), similar to (4.1) and consider a new 
schedule S* = S U (lJfOcrjEBI S(r)). Its Linis Graph is GUS*) = (V, E), where V is the set of 
terminals and E is the set of trip-types of S*. The only difference between GUS*) and GT(S) 
is that in GL(S*) there are loop-type edges from a(i) to a(i), a(i) E B, created by dummy 
trip-types. Therefore, GL(S*) is connected if and only if GT(S) is connected. Therefore, there 
is a way to obtain a twin-type fleet over S iff GT(S) is connected. 

From now on let GT(S) be connected. One can look for a most economic way to complement 
S by sets of dummy trips. This is illustrated by the following. 

Example 2. Let GL(S) have three connected components GLi(S) = (Vi, Ei), i = 1, 2, 3, and 
V, = {a,(l), a,(2)}, V, = {a,(l), a,(2), a,(3)}, V, = {aJl), a,(3)}. If we add to S the sequence S(2) 
then V, and Vz are glued together; adding S(3) will result in a connected Linis Graph. On the 
other hand, adding only one sequence of dummy trips S(1) would immediately lead to a 
connected Linis Graph. 

In most practical problems the Linis Graph has not too many components and the smallest 
set of dummy trips can be found easily by means of a simple enumeration. Note that the set of 
potential candidates for T* can be reduced by excluding terminals which appear in only one 
component of the Linis Graph. 

Assume that adding Q dummy trip types in terminals {a(i$), . . . , n(r#} = A(Q) provides a 
connected Linis Graph and there is no other set of terminals of smaller size with the same 
property. We call A(Q) the core set. In example 2 A(Q) = {a(l)}. 

The above discussion can be summarized in the following 
Theorem 4. Suppose (i) S is a T-periodic schedule; (ii) GT(S) is connected; (iii) GL(S) is 

disconnected; (iv) The core set of the Linis Graph of S is {a(l), . . . , a(Q)}. 
Then the optimal twin-type fleet over S contains D + Q twin-type chains. 

Proof. For each terminal a(j) in the core set define the sequence of dummy trips (4.1) where 
[t(j), t’(j)] is a peak zone of the deficit function d,(j,(t) in its periodic part. Consider the 
schedule 

S* = S U (jt, S(j)). (4.4) 

By the definition of the core set, the Linis Graph of S* is connected. Then by Theorem 2 it 
allows construction of a twin-type fleet whose size is equal to the total deficit of S*, D+ Q. It 

follows from the definition of the core set that the minimal number of sequences of dummy 
trips added to S in order to obtain a schedule with a connected Linis Graph is Q. Thus, the fleet 
of size D + Q is optimal along all twin-type fleets over SO 

5. CONCLUDING REMARKS: THE CENTER PROBLEM; ADDING TRIPS 

TO THE SCHEDULE. 

The following problem is of interest for planning transportation systems (see Gertsbach and 
Gurevich (1977), Section 3.2). Assume that there is a set of terminals A* called center. It is 
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necessary to construct a fleet of minimal size having the following property: each chain in the 
fleet must go through a terminal belonging to the center. 

If there are connected components of the Linis Graph which do not contain representatives 
of A*, then one can try to use the dummy trip technique (see Section 4) to glue such 
components to those which contain representatives of the center set. If it is possible to obtain a 
new Linis Graph with center representatives in each of its connected component then a fleet 
satisfying the center property can be found. 

It can be said that the center problem may have no solution at all if the graph of terminals is 
disconnected. An example is GL,(S) = (Vi, E,), i = 1, 2, V, = {a,, a,, b,}, VZ = {c,, c2, e,}. A* = 
{a, b}. It is clear, that it is not possible to obtain any fleet which would contain chains visiting 
terminals a, c, e, b. Of course, such chains could be obtained if we were allowed to add new 
trips to the original schedule, say from a to c and from c to a, thus providing a connection 
between components of the Linis Graph. Here we enter a new circle of problems connected 
with adding real trips to the schedule. We will make only some brief remarks. 

Adding new trips can give many surprising results which might be classified into two main 
groups: changing the fleet size, including the decrease of it; changing the structure of the 
optimal chain decomposition. The only work in this area we know is a paper of Ceder and Stern 
(1982) in which the influence of adding deadheading trips on the fleet size has been investigated 
for a nonperiodic schedule. 

Remark. In November 1981 we became aware about the existence of a recent paper by Linis 
and Maksim (1980), “The number of transportation units needed for a schedule”, published in 
Moldavian Math. Collection (in Russian). Independently of us, Linis and Maksim obtained 
some of the results presented in this paper and, in particular, a theorem which is similar to our 
Theorem 1. 
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