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Two notes on formalized topology
by

Yuri Gurevich (Beersheva)

Abstract. The first order topology and the full second order logic are interpretable each in
the other. The monadic topological theory of the Euclidean plane and the full second order theory
of 2% are interpretable each in the other.

§ 0. Introduction and the results. The full (pure) second order language has
variables for elements, monadic predicates, dyadic predicates and so on; all;these
variables are quantifiable. It has no non-logical constants. Without loss of generality
it has no functional variables, The full second order theory of a non-zero cardinal 5 is
the theory of a set S of cardinality % in the full second order language (n-adic predi-
cate variables range over all n-adic predicates on §). The full second order logic
is the theory of all non-empty sets in the full second order language.

The pure monadic language is the part of the full pure second order language
having variables for elements and monadic predicates only. In this case it is convenient
for us to interpret the predicate variables as set variables and to write x € ¥ instead
of ¥(x). The (monadic) topological language is obtained from the pure: monadic
language by adding the symbol of the closure operation. Let I be a topological space.
The monadic theory of U is the theory of U in the monadic topological language
{when the set variables range over all subsets of U/). :

According to [4), the first order theory of U is the first order theory of the lattice
of closed subsets of U. It is a little more convenient for us to define the first order.
theory of U as the theory of U in the topological language when the set variables
range over the closed subsets of U. It is essentially the same theory in the case of Ty
spaces (only 7' spaces are regarded in [4]).

We say here that theory T is interpretable in theory T, iff there exists an algor-
ithm f associating a sentence [ (@) in the language of T, with each sentence ¢ in the
language of T, in such a way that ¢ is a theorem of T, iff ' (¢) is a theorem of T,.

Grzegorczyk interpreted the first order arithmetic (i.e., the first order theory
of the standard model of arithmetic) in the first order topological theory of the
Euclidean plane (see [1]). Rabin proved decidability of the first order"theory of the
real line (see [5]). Assuming the Continuum Hypothesis Shelah interpreted the first
order arithmetic in the monadic topological theory of the real line (see [6]).
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According to [4], the first order topological theory of the Euclidean plane and the
second order arithmetic are interpretable each in the other. The second order arith-
metic and the full second order theory of ¥, are interpretable each in the other. The
1ast theory is an object of the set theory and in that sense the authors did the maximum,
The authors interpreted also the second order arithmetic in the first order theory
of the class of all T; spaces.

Note that the full third order logic is easily interpretable in the full sccond order
one. Hence the first order theory of the class of T spaces (respectively normal spaces,
compact Hausdorff spaces and so on) is interpretable in the full second order logic.
We prove here the following two theorems.

THEOREM 1. The full second order logic is interpretable in the first order theory
of any class of topological spaces containing all compact Hausdorff spaces.

TurorEM 2. The monadic topological theory of the Euclidean plane and the full
second order theory of 2%° are interpretable each in the other.

These two theorems were announced in [2]. According to [3], the monadic
topological theory of the real line and the full second order theory of 2% are mutually
interpretable in the constructive universe (in ZF+V = L).

§ 1. Proof of Theorem 1. The pure dyadic language is the part of the full second
order language having variables for elements and dyadic predicates only. Let DL
be the theory of non-empty sets in the pure dyadic language. The full second order
logic is easily interpretable in DL. (Treat {x: E(x,x)} as the set of points,
{a: P(a, a)} as the set of pairs of points, L(a, %) as “x is the left component of a”,
R(a, x) as “x is the right component of a”. Then for example,

Ja(L(a, ¥) AR(a, y) A Q(a, 2))

is an arbitrary 3-adic predicate on the set of points.)

Let SDL be the theory of non-empty sets in the pure dyadic langnage when the
predicate variables range over dyadic symmetric irreflexive predicates.

DL is interpretable in SDL. (Let E; = {x: E(c;, x)} where i = 0, 1, 2. Treat E,
as the main set of points and E,, E, as auxiliary sets. If E,, E;, E, are mutually
disjoint and L(R) is a one-one correspondence between Eq and E; (between E,and Ey)

* then Jab(L(x, a) A R(y, b)Y Q(a, b)) is an arbitrary dyadic predicate on E,. The
trick is well-known.) :

Let X be a class of topological spaces containing all compact Hausdorff spaces.
In the rest of this section we interpret SDL in the first order theory of K.

Any discrete subset of a topological space is the difference of two closed sets:
its closure and its derived set (this note is due to [4]). Hence without loss of generality
we can assume that the set variables range over closed and discrete subsets.

It is easy to write a formula ¢ (x, y, z, X, Z) in the topological language stating
“in the first order topology that X and Z are disjoint, x and y are different points
tn X, zeZ and there exists a closed Y such that X nY = {x,3}, YnZ = {3}
and Y—{x, y} is connected. In order to interpret SDL in the first order theory of K
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4t is enough, given a non-zero cardinal %, to find U e K and discrete disjoint X, Z< U
such that |X| =3 and ¢ defincs a one-one correspondence between Z and
{{x, y}: x and p are different elements of X}.

Fix a non-zero cardinal ». Firstly, we build an auxiliary topological space V.
The set of points of ¥ is equal to » U {{u, B, t): a<B<x, tis a real number and
0<t<1}. The open basis of V' consists of the following sets:

(@) {{a. B, t): tel} where a<f and I is an open subinterval of (0, 1); and

(i) {f} v {w, B,t): a<f and >t} U {(B,y,t): f<y and t<1,} where
1y, t, are positive real numbers less than 1.

In other words we regard » as a discrete space and for every a< 8 we add a set
(¢, B) = {uo, B, 1): 0<t<1} in such a way that [o, B] = («, By LU {«, B} is a closed
arc connecting o and f.

V is normal. To prove that, let 4, and 4, be closed and disjoint subsets of V.
Each arc [a, ] is normal, hence there exist G,(x, f) and G,(x, f) such that
A; 0 [, fleGia, fycla, f] and Gy(a, p), G,(x, B) are disjoint and open in [a, B].
Without loss of generality, A; n {&, B} = G(o, B) n {a, B}. Let G; = U {Gilx, p):
a<pf}. G, and G, are open and disjoint neighborhoods of A4, and 4,, respectively.

Let U be a compactification of ¥, we work in U. Let X = » and

Z = {<“s ﬁ=%>: a<ﬂ}'

X and Z are discrete, and | X| = x. We prove that ¢ defines the function f(a; )
= {a, f, }>. For every a<f, ¥ = [, f]is closed, X n [a, Bl ={a, B}, Y N Z
= {(, B, 4>} and (a, f) is connected. Suppose that Y is closed, X n ¥ = {a, B},
XnY={{y,8,1>} and ¥—{a, B} is connected. For reduction to absurdity suppose
that {o, B} 5 {y, 6}.

Let us check that (y, ) is open. Clearly, (y, §)is openin V. Hence (7,0) = GV
for some open G. In particular, y, 8 ¢ G. ¥ is dense in U hence (7, 9) is dense in G
and Gc[y, 8). So (y, ) =Gy, 51—{v, &} )

Let B be the boundary of (y, 8). We check that B = {y, §}. Clearly, v, € B.
Let v € B. Then u e closure (y, 8) = [y, 6] and u € closure (U—(y, 9)) = U=, 9).
Hence u e {y, }.

Since Y—{a, f} is connected and intersects both (y, 5) and U~(y, ) then
Y~{a, B} intersects the boundary of (y, 8). But B~ (¥Y—{a, fP<x n (U~x%) =0
50 we have a contradiction. ~

§ 2. Proof of Theorem 2. Let R be the set of real numbers. By R? we denote
both the Euclidean plane and the set of ordered pairs of real numbers. Let T be the
monadic topological theory of R*. It is routine to interpret T'in the full second order
logic. According to § 1 it is enough to interpret the dyadic logic DL inT.

For each Z < R* define:

Z* = {Y: Y is a component of Z or Y is a component of R*~Z}; and
x~yp(modZ) iff there exists ¥eZ* such that xeY and yeY.
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It is easy to write formula W (x, p,z, X, Y, Z,,Z,,Z,) in the topological
language stating (in T) that x, ye X and XeZ}, YeZ3, x~z(modZ,) and there
exists ' e ¥ such that y~p'(modZ;) and y'~z(modZ,).

In order to interpret DL in T"it is enough to find X, ¥, 2,,2Z,, Z,c R? such
that | X| = 2" and ¥ defines 2 one-one correspondence between {{x, 10 x,pe X}
and {z: ze R*}. Let Q be the set of rational numbers, Choose X = Rx {0},
Y={0}xR, Z;=RxQ, Z,= QxR and Zy = {{a,b): a~be Q). Then
Wx,y,2,X,Y,Z,,2Z,,Z,) holds iff there exist a,be R such that x = (a, 0),
y=¢b,0) and z = {a, b).
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Borel sets with F,,-sections
by

J. Bourgain (Brussel)

Abstract. Let E, F be compact metric spaces, We characterize Borel sets 4 in ExF with
Fgs-sections,

Introduction. We consider two fixed compact metric spaces E and F. The
class % will consist of the Borel subsets A4 of Ex F such that for each x ¢ E the
section A(x) = {ye F; (x,y)e A} is closed in F. We will prove the following:

THEOREM 1. If' A is a Borel subset of Ex F such that each section A(x) is F,;
in F, then A belongs to the class 6,,.

This is an extension of the work of J. Saint-Raymond (see [13]), who established:

THEOREM 2. If a is a Borel subset of Ex F such that each section A(x) is F, in F,
then A belongs to the class 4,.

Theorem 1 is also related to my earlier paper [2].

Preliminaries. N will denote the set of all positive integers. Let' # = |J N¥,
k

taking N® = {@}. Thus # consists of the finite complexes of integers. If ce 4,
let |¢] be the length of ¢. If ¢,de %, we write ¢<d if ¢ is an initial section
of d. Let (p), be an enumeration of all prime numbers. If we associate O:
to & and the integer pi'.. pi¥ to the complex ¢ = (n,,..,n), & one-one map
of # into N is established. The induced ordering of # will be called the
standard ordering, Let A = NV, if ve # and ce @, we write c<v if ¢ is an
initial section of v,

If L is a compact metric space, then K(L) consists of all closed subsets of L and
is equipped with the exponential or Vietoris topology. This topology is compact
metrizable. I recall the following result (see [7]).

LeMMA |, Let P be a Polish subspace of the compact metric space L. Then the
subspace F(P) of K(L) consisting of those compact sets K in L such that K = K i P,
is Polish. . ‘ '
§ — Fundamenta Mathematicae T, CVIL/2
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