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THE JOURNAL OF SYMBOLIC LoGic 
Volume 44, Number 4, Dec. 1979 

MODEST THEORY OF SHORT CHAINS. I 

YURI GUREVICH 

Abstract. This is the first part of a two part work on the monadic theory of 
short orders (embedding neither w1 nor w1*). This part provides the technical 
groundwork for decidability results. Other applications are possible. 

?0. Introduction. A chain is a linearly ordered set. A chain is short iff it embeds 
neither o)1 nor Oj1. A chain is Specker iff it does not embed any uncountable sub- 
chain of the real line. It is easy to see that the property of shortness is expressible 
in the monadic (second-order) language of order. 

Rabin proved in [Ra] decidability of the monadic theory of the chain Q of the 
rational numbers. Shelah gave in [Sh] a method (a kind of elimination of quanti- 
fiers) and proved by this method among other results that every short Specker 
chain without jumps and end-points is monadically equivalent to Q. It is well 
known that there exist uncountable chains without jumps and end-points which 
are short and Specker. By [Sh], there exists also a non-Specker chain monadically 
equivalent to Q. Thus the monadic theory of Q is not categoric in the monadic 
logic. Shelah conjectured in [Sh] that this theory is finitely axiomatizable in the 
monadic logic. 

Working on this conjecture I come to the notion of p-modest chains where p is a 
positive integer. The exact definition may be found in [Gu] or [GS]. In the follow- 
ing it is important that p-modesty is expressible in the monadic language of order. 
By [Gu], a chain is monadically equivalent to Q iff it is short, has neither jumps nor 
end-points and is p-modest for every p. Under a consequence of the Continuum 
Hypothesis it is proved in [Gu] that the monadic theory of Q is not finitely axioma- 
tizable in the monadic logic. 

The notion of modesty led the authors to some nonimprovable decidability 
results about short chains. In order to obtain these results we elaborate here on 
Shelah's method mentioned above. 

In particular we give two finite versions of the Feferman-Vaught Theorem. They 
and their variations seem to be very applicable. 

?1. Finte fragments of theories. The subject of this section is the notion of n- 

theories. We extract this notion from [Sh]. It generalizes the notion of n-theories 
used by Lauchli in [La]. The original idea is due to Fraisse (and was rediscovered 
by Taimanov). 

Any theory in this paper is first-order if the contrary is not stated explicitly. With 
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each theory T we associate a set of formulae in the language of T called pseudo- 
atomic. 

DEFINITION 1.1. A theory T is admissible iff (i) the set of pseudo-atomic formulae 
in variables vj, ..., v1 (i.e. with free variables among vj, ..., v1) is finite and recursive 
in 1, and (ii) there exists an algorithm associating a pseudo-atomic formula q* with 
each atomic formula qo in such a way that sp and so* are equivalent in T. 

The following are some examples. 
(1) Let T be a theory with only a finite number of predicate and individual 

constants and without functional constants. If the set of pseudo-atomic formulae 
coincides with the set of atomic formulae in the language of T then T is admissible. 

(2) The theory of Boolean algebras with ordinary operations is admissible under 
an appropriate definition of pseudo-atomic formulae. 

(3) Recall that a set ring is an arbitrary set of sets closed under union, intersection 
and subtraction. We regard set rings as models for the first-order language with the 
identity sign, individual constant 0 and dyadic functional symbols for union, in- 
tersection and subtraction. Each term s in variables v1, ..., v, is equal in the theory 
of set rings to a term of the form Ujfnisji where sji is either vi or ((v1 U ... U vI) - 
vi). Thus the theory of set rings is admissible under an appropriate definition of 
pseudo-atomic formulae. 

Below, T is an admissible theory, M is a model of T, a = <a,, ..., alh(a)> and 
b = <b1, ...,blh(b)> are finite sequences of elements of M, = <Kn: 0 < n < lh( > 
is a finite sequence of natural numbers and e = <Kn: n < w)> is an infinite se- 
quence obtained from e by adding a tail of 0's. Of course here lh means length, so 
En = en if n < lh(O) and en = 0 otherwise. The sign ̂  will denote the concatena- 
tion of sequences. The power set of a set X will be denoted by PS(X). 

DEFINITION 1.2 (FORMAL n - a-THEORIES). T0(l) is the set of pseudo-atomic formu- 
lae of Tin vj, ..., v1. T0(l) = TO(l), T-+-1(l) = PS(Tn(I + tn)). Tn(t, 1) = T(l). 

DEFINITION 1.3. Th0(M, a) is the set of formulae p(vil, ..., vim) in T0(lh(a)) 
such that q(ail, ..., aim) holds in M. ThO(M, a) = ThO(M, a), Th-+-(M, a) - 

{Thn(M, a - b): lh(b) = On}. Thn(g, M, a) = Th"(M, a). 
Thn(M, a) (respectively Th0(M, a)) will be called the n - a-theory (respectively 

0-theory) of the augmented model <M, a>. One may call it also the n - a-type 
(respectively 0-type) of a in M. Two augmented models <M, a> and <N, c> will be 
called n - a-equivalent (respectively 0-equivalent) iff they have the same n - 

a-theory (respectively 0-theory). 
n - a-equivalency can be characterized by a variant of the Eherenfeucht's Game 

Criterion given in [Eh]. 
LEMMA 1.1. (i) Tn(l) is hereditarily finite and computable from n, In and 1. Con- 

versely, n, 1 + Zintji are computablefrom T,(l). 
(ii) Thn(M, a) c Tg(lh(a)). 
(iii) Thn(M, a) is computable from each of The (M, a ^ b) and Thn+1(M, a). 
(iv) Thn(M, Kafl, ..., aft>) is computable from Thn(M, <al, ..., a,>) and a per- 

mutation f of 1, ..., 1. 
The property Thn(M, a) = t is elementary for every t c Tn(lh(a)). For each 

formula qn in vj, ..., Vlh(a) there exist n and e such that the truth value of so(a) in M 
can be computed from Thn(M, a). We clarify these facts. 



MODEST THEORY OF SHORT CHAINS. I 483 

DEFINITION 1.4. rF(l) is the collection of Boolean combinations of formulae in 
TO(l). rf7+1(l) is the collection of Boolean combinations of formulae 3 v1+1 ... 3 vl+"lc 
where b ei fr(l + En). rf'(M, a) is the collection of formulae P(vi,, ..., vim) in 
rgn(lh(a)) such that (p(ai,, ..., aim) holds in M. 

THEOREM 1.2. (i) The truth value of "q e rfnS(M, a)" is computable from Thn(M, a). 
(ii) There exists an algorithm associating a formula (P E Fe"(l) with each t c Ten(l) 

in such a way that for every M and a = <a,, ..., a,>, t = Thn(M, a) if qP1(a) 
holds in M. 

PROOF. (i) The case n = 0 is clear. Let lh(a) = 1 and (p Gre F+1(l). W.l.o.g., 
so = 3 v1+1 ... 3 vl+nb where jb e rF(l + en). By the induction hypothesis, for each 
b with lh(b) = An, the truth value of "s 'E ren(M, a'b)" can be computed from 
Thn(M, a b). Hence the truth value of '\ e ren+1(l)" can be computed from 

{Thn(a'b): lh(b) = An}. 
(ii) If t c TO(l) then ft is the conjuction of (a) the formulae in t and (b) the nega- 

tions of the formulae in TO(l) - t. Let t c Tg+'(l). Then pt is the conjunction of 
(a) the formulae 3v1+1 ... 3 V+N(s where s e t and (b) the negations of the formulae 
3 v1+... 3VI+MPs where s e Tn+1(l) - t. Q.E.D. 

THEOREM 1.3. Suppose thatfor some n, Thn+1(M, a) is computable from Thn (M, a) 
where 7y = i(t lh(a)) is recursive. Then there exists a recursive function C(m, 1, 1) 
such that Thn+m(M, a) is computable from Thn(C(m, (, lh(a)), M, a). 

PROOF. Without loss of generality, 7(, 1) is always of length n. Define C(1, 1) 
- (t, 1) and C(m + 1, (, 1) = 72(C(m, (, I + t(n + m))^ <e(n + m)>, 1) if 
m ? 1. By induction on m we construct an algorithm Fm computing Tn+m(M, a) 
from Thn(C(m, A, lh(a)), M, a). The construction is uniform in m and gives the de- 
sired algorithm. 

By the condition of the theorem F1 is given. Let 1 = lh(a), a = C(m, A, I + 

t(n + m)) and 3 = a^<t(n + m)>. Then 

Thn+m+l(M, a) = {Th+m(M, a-b): lh(b) = t(n + m)} 
= {Fm(Thn(M, a b): lh(b) = t(n + n)} = {Fm(t): 

t Ei Thn+l(M, a)} 
= {Fm(t): t E Fl(Thn(r(1, 1), M, a))} 
= Fm+i(Thn(C(m + 1, A, 1), M, a)). Q.E.D. 

If the universal fragment of T is decidable it is convenient to use the following 
definition. 

DEFINITION 1.5. TrO(T, 1) is the set of ThO(M, a) where M is a model of T and a 
is a sequence of elements of M of length 1. TrO(T, 1) = TrO(T, 1) and .Trn+l(T, 1) = 

PS(Trn(T, 1 + en)). An element s of TrO(T, 1) is a trace (of length 1) of t e 
Tr(T, l + m) iff n = O and s = t nfT(l) or n > O and s is a trace of every t'-e t. 

LEMMA 1.4. Suppose that Tr0(T, 1) is computable from 1. Then Trn(T, 1) is comput- 
able from n, A, and 1; and the trace of length I of t E Tr(T, I + m) is computable from 
I and t. 

PROOF. Clear. 
In the remaining part of this paper we suppose that the nonlogical constants of 

the theory T in question are linearly ordered. This imposes a lexicographic order 
on every T0(l) and every Tn(l), Trn(T, 1). 
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?2. Finite versions of the Feferman-Vaught Theorem. Let T, T', T" be admissible 
theories. Suppose that T has an individual constant 0 and T' extends the theory of 
set rings. 

Let {Mi: i e I} be a nonempty set of models of T, J be a model of T' expanding 
a ring of subsets of I (to the language of T'), and M be a model of T" whose universe 
is a subset of the Cartesian product 11 of universes of models Mi. Suppose that for 
every xe-l, xeMiff {i: x(i) # O} E J. 

Let f, g be finite sequences of elements of M, I = lh(f) and f(i) = <A(0),...I 

f1(i)> for i e I. 
First version. Suppose that J contains every subset of L 
DEFINITION 2. 1. [n, 4, f] is the sequence < [n, 4, f]t: t c Tn(l) > where each 

[n, 4, f]t = {i: Thn(M,, f(i)) = t}. 
LEMMA 2. 1. {[n, Af~g]: lh(g) = En} coincides with the set of sequences R = < Rs: 

s c T(l + En) > of elements of J such that R is pairwise disjoint and s E t whenever 
Rs meets [n + 1, (,f]1. 

PROOF. Given R we build g such that R = [n, A, fg]. If i e Rs n [n + 1, 4, f]t 
take g(i) satisfying Thn(Mi, f(i)^g(i)) = s. Q.E.D. 

THEOREM 2.2. There exists a recursive function F(n, 4, 1) such that Thn(M, f) is 
computable from ThnF((n, a, 1), J, [n, 4, f]) providing that ThO(M, g) is computable 
from ThO(J, [0, 0, g]). 

PROOF. Let F(O, a, 1) be the empty sequence and 

F(n + 1, a, 1) = F(n, ~, 1 + tn)^ <m> 

where m = I T(l + tn)J. 
Let 7 = F(n, a, l + En) and C = F(n + 1, a, 1). It is sufficient to check that 

{Thn(J, [n, a, f-g]: ln(g) = En} is computable from Thn+1(J, [n + 1, 4, f]). The 
latter is the set of Thn(J, [n + 1, af]R) where R = <Rs: s c T(l + en)>. Now 
use Lemma 2.1. Q.E.D. 

Second version. We write Trn(m) instead of Trn(T, m). Suppose that TrO(m) is 
computable from m. 

Suppose that T has the identity sign and that there exists a distinguished model 
of T comprising exactly two elements. A model of T will be called trivial iff it is 
isomorphic to the distinguished model. If N is a model of T and a is a finite sequence 
of elements of N then the augmented model <N, a> is trivial iff N is trivial and 
a is a sequence of zeros. An element of Trn(m) is trivial iff it is n - a-theory of 
a trivial structure. 

We suppose that J contains every subset of I* = {i: Mi is not trivial}. 
DEFINITION 2.2. [n, a, f] is the sequence < [n, a, f],: t E Tr(l) > where [n, a, f]t = 

{i: Thn(Mi,f(i)) = t} if t is not trivial and [n, af]t = 0 if t is trivial. 
LEMMA 2.3. Every [n, a, belongs to J. 
PROOF. It is sufficient to check that X = [n, I, f -J* belongs to J. There exists 

S c {1, ..., 1l such that for each i e I - I*, Thn(M,, f(i)) = t iff {k: fk(i) # 0} = 

S. If Xk = i: fk(i) #0 - I* then X= ntXk: k e S} - U{Xk: k S}. Q.E.D. 
LEMMA 2.4. {[n, a, f~g]: lh(g) = an} coincides with the set of sequences R = 

<Rs: s e Tr(l + en)> of elements of J such that: 
(i) R is pairwise disjoint, 
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(ii)Rs = 0 ifs is trivial, 
(iii) each [n + 1, By f]t c U {Rs: s e t 
(iv) if R, does not meet any [n + 1, a, f]t then s belongs to the trivial element of 

Tr+1(l) 

PROOF. It is clear that every [n, a, f'g] with lh(g) = an satisfies (i)-(iv). 
Given R satisfying (i)-(iv) we build g such that [n, a, f~g] = R. If i E R, take 

g(i) satisfying Thn(M,, f(i)-g(i)) = s; if i does not belong to any R, let g(i) be the 
sequence of zeros in Mi of length On. We have to check only that for each k, Xk = 

{i: gk(i) - O} e J. It is easy to see that Xk is a union of sets R,. Q.E.D. 
DEFINITION 2.3. T(O, 4, 1) is the empty sequence 

T(n + 1, (, 1) = T(n, 4, 1 + tn)- < m> 

where m = ITrn(l + tn)l. 
THEOREM 2.5. Suppose that ThQ(M, g) is computable from Th0(J, [0, 0, g]). Then 

Thn(M,f) is computable from Th,(J, [n, 4,f]) where g7 = T(n, a, 1). 
The proof is similar to that of Theorem 2.2. 

?3. Relevancy. 
Terminology. A chain is a linearly ordered set. Each chain is regarded to be 

equipped with the interval topology. An interval is always open and nonempty. 
A subset of a chain is convex iff it is not empty and together with every two points 
it contains all points between them. Two points form a jump iff they are different 
and there is no point between them. A chain is complete iff every bounded point 
set has a supremum and an infimum. An equivalence relation E on a chain M is 
a congruence iff every equivalence class of E is convex. The corresponding quotient 
chain is denoted by MIE. 

DEFINITION 3.1. A chain is short iff it embeds neither 1), nor oa4. 
DEFINITION 3.2. Let K be a class of short chains and RI associate a ring RI(M) 

of subsets of M with each chain M in K. The pair <K, RI> is nice iff it satisfies 
the following conditions (N1)-(N7). 

(N1) K is closed under convex subchains and homomorphic images. There exists 
a chain in K without jumps and endpoints. 

(N2) Either all chains in K without jumps and endpoints are complete or none 
of them are. 

(N3) Rl(M) contains every finite subset of M. If X is a convex subchain of M 
then RI(X) = {X n Y: Y e RI(M)}. 

(N4) Let h be a homomorphism from a chain M e K onto a chain N e K. If 
X E RI(M) then h(X) e RI(N). If X c M and h(X) E RI(N) and X n h-1(y) E RI(M) 
for every y E N then X E RI(M). 

(N5) If E is a congruence on M e K then Rl(M/E) contains every subset of 

{X E M/E: IXI > 1}. 
(N6) If M e K has neither jumps nor endpoints, X c M is everywhere dense 

and either X or M - X belongs to RI(M), then there exists Ye RI(M) such that 
Y c X and both Y and X - Y are everywhere dense. 

(N7) M e Rl(M) either for every chain M in K without jumps and endpoints or 
for no one of them. 
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Note. RI is actually a functor from a category of chains to the category of set 
rings (in each case morphisms are the corresponding homomorphisms onto). 

In the rest of this paper <K, RI> is a nice pair. A subset X of M e K will be 
called relevant iff X e Rl(M). 

LEMMA 3.1. (a) K contains allfinite chains, w(the chain of natural numbers) and 

co* (the chain dual to co). 
(b) Every subset of co (respectively, co*) is relevant. 
PROOF. (a) Use (Ni). 

(b) Use (N5). 
In the rest of this paper our subject is the theory of chains in K with quanti- 

fication over relevent subsets. For technical reasons (see Lemma 3.4) we use the 
following language. 

Let L be the language of set rings enriched by a dyadic predicate constant < and 

individual constants co, c1, c2. Each M e K forms a natural model for L in the fol- 

lowing way: the variables range over the relevant subsets of M, < is the induced 

order of singletons, co = M if M e RI(M) and co = 0 otherwise, c1 = {min M} 

(respectively c2 = tmax M}) if M has a minimal (respectively maximal) point and 

cl = 0 (respectively c2 = 0) otherwise. Let T be the theory of the above described 

natural models. 
LEMMA 3.2. T is admissible under an appropriate definition of pseudo-atomic 

formulae. 
PROOF. See the third example in ?1. 
We write Trn(l) instead of Trn(T, 1). 
DEFINITION 3.3. An augmented chain (or an ac) is a structure M = <M, P> 

where M E K and P is a finite sequence of relevant subsets of M. The length of P 
is the weight of M. An ac <N, Q> is a subac (an interval) of M iff N is a convex 

subset (an interval) of M and Q = PIN. An ac <M, P> is trivial iff M is one- 

point and every member of P is empty. An element t of Trn(l) is trivial iff t is the 

n - a-theory of a trivial ac. 
LEMMA 3.3. (a) {Th?(M): M in an ac of the weight 1} is computable from 1. 

(b) Trn(l) is computable from n, t and 1. The trace of length 1 of t E Trn(l + m) 
is computable from 1 and t. 

(c) The trivial element of Trn(l) is computable from n, t and 1. 

PROOF. Clear. 
DEFINITION 3.4. An ac M = <M, P> is the sum of acs Mi with respect to a 

chain I iff there exist a congruence E on M and an order isomorphism f: I -* MIE 
such that Mi < f(i), PIf(i)>. If every 3i is isomorphic to an ac 5 then A is 
the product of I and 5. Let to, t1, t2 E Trn(l). to = t1 + t2 iff there exist acs MO, M1, 

M2 such that MO = M1 + M2 and ti = Thn(MR). to = a t1 (respectively to = 

a) t1) iff there exist acs MO, M1 such that Mo = c M1 (respectively Mo = 

cv* M1) and ti = Thn(M,). 
DEFINITION 3.5. Let M = <M, P> be an ac and E be a congruence on M. 

Then E(n, {, P) is the sequence <E1(n, (, P): t E Trq(lh(P))> where E1(n, , P) = 

{Xe MIE: Thn(X, P I X) = t} if t is not trivial and E1(n, {, P) = 0 if t is trivial. 

DEFINITION 3.6. An element s of Trn(l) is a prototype of t E Tr,(m) iff 7y = T(n, {, 1) 

and there exist an ac M = <M, P> and a congruence E on M such that s = 

Thn(M) and t = Th(MI/E, E(n, {, P)). (About T(n, (, 1) see Definition 2.3.) 
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LEMMA 3.4. Th0(M) is computable from ThO(M/E, E(O, 0, P)). 
PROOF. Clear. 
THEOREM 3.5. (a) The n - a-theory Thn(M) of an ac M = <M, P> of weight / 

is computable from Thn(M/E, E(n, {, P)) where y = T(n, {, 1). 
(b) There exists an algorithm satisfying the following condition. If t, t1, t2 belong to 

Trn(l) and t = t1 + t2 then the algorithm computes tfrom t1 and t2. 
(c) There exists an algorithm satisfying the following condition. If to, t1 belong to 

Trn(l) and to = c t1 (respectively to = t1) then the algorithm computes to 
from t1. 

(d) There exists an algorithm Pr such that s = Pr(t) whenever s is a prototype 
of t. 

PROOF. (a) follows from Theorem 2.5. 
(d) is just a reformulation of (a). 
(b) and (c) follow from (a) because the monadic second-order theory of two- 

point chains is decidable as well as the monadic second-order theory of W. The 
latter result proved in (Bu). Q.E.D. 

?4. Uniformity. Let M = <M, P> be an arbitrary ac, 1 = lh(P), X = <X, P I X> 
be a subac of M and I = <I, P I I> be an interval of M. 

DEFINITION 4.1. l is n - -uniform (respectively 0-uniform) iff M has neither 
jumps nor endpoints, P is pairwise disjoint and M is n - a-equivalent (respectively 
O-equivalent) to any interval of itself. 

THEOREM 4.1. Suppose that Al is 0-uniform. For every n and e there exists an 
n - a-uniform interval of M. 

PROOF. For every points x < y in M define f(x, y) = Thn([x, y), P I [x, y)). If 
x < y < z then f(x, y) + f(y, z) = f(x, z). In terms of ?1 in [Sh], f is an additive 
coloring of a densely ordered set M by a finite number of colors. By Theorem 1.3 
in [Sh], there exist an interval I of M, a subset Y c I and a "color" t such that Y 
is dense in I andf(x, y) = t for every x < y in Y. 

Let i = <J, P I J> be an arbitrary interval of I. Since M is short there exists a 
subchain Z c J n Y isomorphic to w)* + a and cofinal in J in both directions. 
Clearly Thn(J) (w* + )- t. Thus all intervals of I are n - a-equivalent and I 
is n - a-uniform. Q.E.D. 

If K' is a class of acs let Thn(K') = {Th(N): N e K'}. We use also the function 
T(n, S, m) defined in ?2. 

LEMMA 4.2. Let S c Trn(l) and K' be a class of acs of weight I closed under subacs. 
Thn(K) c S if S satisfies the following conditions: 

(S1) S contains the n - a-theory of every one-point ac in K'; 
(S2) t1 + t2 E S if t1, t2 E S and there exists an ac N1 + N2 in K' such that Th0(Ni) 

and ti have the same trace of length 0; 
(S3) o * t (respectively w* * t) belongs to S if there exists an ac W * N in K' such 

that ThO(N) and t have the same trace of length 0; and 
(S4) let N = <N, Q> E K' where N is the underlying chain of N. Thn(N) e S if 

there exists a congruence E on N such that <N/E, E(n, (, Q) > is n - T(n, l, I)-uniform 
and {t: E(n, {, Q) # 0} c S. 

PROOF. Assuming A e K', we prove that Thn(M) e S. 
A convex subset X of M will be called good iff Thn(X) e S. Define a relation 
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E on M as follows: xEy iff every convex subset between x and y is good. By (SI) 
and (S2), E is a congruence and M/E has no jumps. 

We show now that a convex subset X of M is good if every two points of X are 
E-equivalent. The general case is easily reducible to the case when X has exactly 
one end-point a. Suppose a = min X. (The proof is dual if a = max X.) Since 
M is short there exists an increasing sequence {x": n e 4} cofinal in X. By Ramsey's 
Theorem (which may be found in [CK]), there exist t and a subsequence {X"k: k e a} 
such that every {Xnk, Xnk+l] gives a subac whose n - a-theory is equal to t. By (S3) 
and (S2), X is good. 

By contradiction suppose that M is not good. By Theorem 4.1, there exists an 
interval I of M giving an n - 7y-uniform interval of <M/E, E(n, I, P)>. Use (S4) to 
check that every two points of I are E-equivalent which is impossible. Q.E.D. 

DEFINITION 4.2 (UNIFORM n - (-THEORIES). UO(A) = U(M) = ThO(M). Un+1(M) 
is the set of Un(I/E, R) such that vy = T(n, I, 1), I is an interval of M, E is a con- 
gruence on I, R = <Rt: teTrn(l + tn)>, <I/E, R> is n - 7y-uniform, Rt = 0 if 
t is the trivial element of Trn(l) and ThV(X) is a trace of t whenever x e Rt. The set 
{t: Rt # O} is the spectrum of Un(I/E, R) (and of Thn(I/E, R)). 

THEOREM 4.3. There exists an algorithm computing Thn(M) from Un(M) whenever 
M is n - a-uniform. 

PROOF. Assuming that M is (n + 1) - '-uniform we compute Thn+1(M) from 
the set U* of Thn(I/E, R) where r = T(n, I, 1), <I/E, R> is n -rj-uniform and 

Us, (I/E, R) E- Ue+1(M). 
Let K' be the set of acs <X, Q> = <X, (PIX)^Q> where lh(Q) = tn. It is 

enough to compute S' = Thn(K'). We first prove the following lemma. 
LEMMA 4.4. (a) The set SO = {Th:(N): N is a one-point ac in K'} is computable 

from U*. 
(b) Two subacs of M are (n + 1) - {-equivalent if they are O-equivalent. 
(c) Let tl, t2 e S' and M1, M2 e K and Th0(Mj) be a trace of ti. tl + t2 0 S' iff 

(i) M1 has a maximal point and M2 has a minimal point, or (ii) M is complete and 
M1 does not have a maximal point and M2 does not have a minimal point. 

(d)LetteS'. Then wteS'iff)* . teS'ifft + teS'. 
(e) If t E U* and S' includes the spectrum of t then t has a prototype and it belongs 

to S'. 
PROOF OF LEMMA 4.4. (a) SO is computable from {k: Pk # 0} which is computable 

from any t e U*. By Lemma 4.1, U* # 0. 
(b) Use the (n + 1)- {-uniformity. 
(c) and (d) are easy to check. 
(e) Let t = Thn(I/E, R). If Xe ?R, then s E S' and Thn(X, Q(X)) = s for some 

Q(X). All sequences Q(X) together form a sequence Q of relevant subsets of I such 
that Thn(I, Q) is the prototype of t. 

To complete the proof of the theorem let S be the least subset of Trn(l + tn) 
such that (i) SO c S, (ii) S satisfies (S2), (S3), and (iii) for each t e U*, if S includes 
the spectrum of t then t has a prototype and it belongs to S. By Lemmas 4.2 and 
4.4, S = Thn(K'). By Theorem 3.5, S is computable from U*. Q.E.D. 

THEOREM 4.5. Suppose that an arbitrary chain N belongs to K if there exists a 
congruence E on N such that (i) NIE e K, (ii) every X e N/F forms a chain belonging 
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to K and (iii) every subset of {X e NIE: IXI > 1} is relevant in N/E. Then Thn(K) 
is computable from U{UTI+1(N): N is an (n + 1) - (In-uniform ac of weight ITrn(O)I}. 

PROOF. Use Lemma 4.2. (We do not detail the proof since Theorem 4.5 is not 
used in what follows.) 

?5. Elimination of quantifiers. Let M E K, M = <M, P> be an arbitrary 0-uniform 
ac, / = lh(P), X = <X, PIX> be a subac of M, I <I, PII> be an interval 
of M. 

DEFINITION 5.1. If E is a congruence on M then M/E = <KM/E, E(O, 0, P)>. 
DEFINITION 5.2. Lh(l, 4, 1) = I and for each n ? 1, Lh(n + 1, A, 1) = 

Lh(n, T(n, a, 1), I Tr (/ +? n)I). 
About T(n, ~, 1) see Definition 2.3. 
THEOREM 5.1. There exists an algorithm F(n, 4, tf) such that iff(ThO(N)) = U1(N) 

for every 0-uniform ac N of weight < Lh(n, 4, 1) then F(n, a, Th0(M),f) = UQ(M). 
PROOF. The desired algorithm is built by recursion on n. Let Fn be an algorithm 

such that if f(ThO(N)) = UI(N) for every 0-uniform ac N of weight < Lh(n, A, m) 
then Fn(7 Th0(N), f) Un(N) for every 0-uniform ac N of weight m. Assuming 
that f(ThO(N)) = U1(N) for every 0-uniform ac N of weight < Lh(n + 1, A, 1) we 

compute Un(M) from n, A, ThO(M), and F,. 
If u E U'(M) then there exist an interval I of M and a congruence E on I such 

that I/E is 0-uniform and u = ThO(I/E). Let S(u) be the set of Th0(I/E, R) such that 

R =<Rt: t E Trn(l + en)>, <I/E, R> is 0-uniform, R, = 0 if t is trivial, R, 

Es(O, 0, PI) if s is a trace of t and s is not trivial, and Rt is disjoint from any 

E (0, 0, P1I) if the trace of t of length / is trivial. 

S(u) is computable from u (use the condition (N6) of Definition 3.2). Let 77 

T(n, a, 1) and N = <I/E, R> be as above. By Lemma 4.1, N as an n - i-uniform 

interval J. Un(J) = F,(77, ThO(J), f) = F,(n, ThO(N), f). Thus Un+1(M) 

IF ), s, f): s e S(u) and u e U'(M)}. Q.E.D. 
THEOREM 5.2. M is n - i-uniform if UI(N) is computable from ThO(N) for every 

0-uniform ac N of weight < Lh(n + 1, EIn, 1). 

PROOF. Let S be the set of Thn(X) such that either X is one-point or I is n - 

uniform where I is the interior of X, By Theorems 4.3 and 5.1, all n - i-uniform 

intervals of M are n - i-equivalent. By Lemma 4.2, it is sufficient to check that S 

satisfies conditions (Si)-(S4) where K' is the class of subacs of M. 

The cases of (S1)-(S3) are easy to verify. We verify (S4). Let 77 = T(n, 4, 1), 

E be a congruence on a convex X c MA, <X/E, E(n, A, PIX)> ben - 77-uniform and 

{t: Et(n, 4, PIX) 0 O} c S. We have to prove that Thn(X) E S. 

Without loss of generality lh(e) = n. Then u = Un(X/E, E(n, A, PIX)) E U+1(R). 

Let I be an n - i-uniform interval of M. By Theorem 5.1, Un+1(M) = Un+1(I). 

Hence u = Un(J/E', R) where J is an interval of I, E' is a congruence on J and R is 

a sequence <Rt: t E Trn(l)> such that Th( Y, PI Y) is a trace of t whenever Y E Rt. 

It is easy to see that R = E'(n, A, PjJ). By Theorems 4.3 and 3.5, Thn(X) = Thn(I). 

But Thn(I) e S. Q.E.D. 

THEOREM 5.3. Suppose that K1, K2, ... are subclasses of K and there exists an algo- 
rithm computing U'(N, Q) from Th0(N, Q) whenever there exists p such that N E 
and < N, Q> is a 0-uniform ac of weight less than p. Then there exists an algorithm 
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associating a pair (p, qi) with each sentence p in L in such a way that p' is either 5p 
or the negation of p andfor every q > p and every chain N E Kq without jumps and 
endpoints, N satisfies p'. 

PROOF. By ? 1, it is sufficient to construct an algorithm associating a pair (p, t) 
with arbitrary n and e in such a way that Thn(N) = t for every q ? p and every 
N e Kq without jumps and end-points. 

Let p = Lh(n + 1, (In, 0), q > p and N be a chain in Kq without jumps and end- 
points. The algorithm of Theorem 5.1 computes Un(N). By Theorem 5.2, Nis n - 

uniform. The algorithm of Theorem 4.3 computes Thn(N) from Un(N). Q.E.D. 
COROLLARY 5.4. Suppose that there exists an algorithm computing UI(N) from 

Th0(N) whenever N is a 0-uniform ac. Then there exists an algorithm associating a 
sentence q' with each sentence q in L in such a way that A' is either qD or the negation 
of 5p andfor every chain N in K without jumps and end-points, (the natural model for 
L formed by) N satisfies A'. 
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