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Abstract

According to Dirac’s bra-ket notation, in an inner-product space, the inner
product xx | yy of vectors x, y can be viewed as an application of the bra xx| to
the ket |yy. Here xx| is the linear functional |yy ÞÑ xx | yy and |yy is the vector y.
But often — though not always — there are advantages in seeing |yy as the function
a ÞÑ a � y where a ranges over the scalars. For example, the outer product |yyxx|
becomes simply the composition |yy � xx|. It would be most convenient to view
kets sometimes as vectors and sometimes as functions, depending on the context.
This turns out to be possible.

While the bra-ket notation arose in quantum mechanics, this note presupposes
no familiarity with quantum mechanics.

1 The question

Q1: Gentlemen, I have a question for you. But first I need to motivate it and explain
where I am coming from.

The question is related to the so-called inner-product spaces which are vector spaces
over the field R of real numbers or the field C of complex numbers, furnished with inner
product xx | yy, also known as scalar product. Euclidean spaces and (more generally)
Hilbert spaces are the most familiar examples of inner-product spaces. I’ll stick to the
case of C which is of greater interest to me.

LetH be an inner-product space over C, and let x, y range over the vectors inH . A
vector x gives rise to the linear functional y ÞÑ xx | yy that maps any vector y to the scalar
xx | yy. This linear functional is called a bra and denoted xx| in Dirac’s bra-ket notation,
introduced by Paul Dirac [1]. The vector y is called a ket and denoted |yy. Thus the
inner product xx | yy can be viewed as the application xx| |yy � xx|p|yyq of the bra xx| to
the ket |yy.

1Quisani is a former student of the first author.



By the way a side question occurs to me. If kets are vectors and bras are linear
functionals, then xx | yy can just be defined as the application xx| |yy in any vector space
V , rather than presumed to exist. Does the inner product contribute anything?

A2: It does. It provides a particular embedding |xy ÞÑ xx| of our vector space H to the
vector space of linear functionals on H , which is the dual of H in the theory of vector
spaces. Notice that the axiom xx | xy ¥ 0 makes good sense for inner product spaces but
not if we have no connection between |xy and xx|. IfH is a Hilbert space, in particular
ifH is finite dimensional, this embedding is an isomorphism.

Q: Thanks. Let me proceed to my main question. As I said, kets are vectors according
to Dirac, and the point of view that kets are vectors is ubiquitous. Here is a quote from
my favorite textbook on quantum computing: “The notation |�y is used to indicate that
the object is a vector” [2, p. 62].

But recently I watched a recorded lecture [3] by Reinhard Werner, a professor of
physics, who defined |yy as the linear function a ÞÑ a � y from scalars to vectors, so that
y is |yyp1q.

A: Did Prof. Werner compare the definitions?

Q: No, there was only one definition of kets in his lecture. But I think that the outer
product |yyxx| demonstrates an advantage of his approach. In the traditional approach,
|yyxx| is defined to be a (linear) function by fiat. For example, Nielsen and Chuang [2,
p. 68] write:

“Suppose |vy is a vector in an inner product space V , and |wy is a vector in an
inner product space W. Define |wyxv| to be the linear operator from V to W
whose action is defined by

�
|wyxv|

�
p|v1yq � |wy xv | v1y � xv | v1y |wy.”

I do not know how consistent Prof. Werner is in using his definition of kets, but for the
purpose of this discussion let me introduce a purely functional approach where a ket
|yy is always the function a ÞÑ a � y. In this approach, |yyxx| is simply the composition
|yy � xx| of two linear functions and thus |yyxx| is naturally a linear function, the same
function that Nielsen and Chuang define.

At last, I come to my question: Is a ket a vector or a function? It cannot be both, can
it?

A: Well, abuse of notation is common in mathematics, especially if the meaning is
obvious from the context.

Q: Mathematically, the purely functional approach is attractive. Since composition of

2The authors speaking one at a time



functions is associative, we can drop the parentheses in expressions like

|uy xv| |wy xx| |yy xz|.

But the purely functional approach has some problems. Consider the scalar product
xx | yy for example. The composition xx| � |yy is a linear operator on C, not a scalar.
We can define, by fiat, that the original xx | yy is, in the purely functional approach,
pxx| � |yyq p1q. It would be more natural, of course, to view |yy as a vector in the context
of scalar product.

I wonder whether one can take advantage of both approaches even if this leads to
abuse of notation. Maybe there is a resolution of this abuse so that the intended meaning
is obvious from the context.

2 Dirac terms

A: It seems that there are such resolutions. We need some analysis to understand what
is going on. This discussion may be more pedantic than usual.

To keep the notation simple, we restrict attention to kets and bras over the same
inner-product space H . For the purpose of the analysis, we put forward the following
tentative convention.

Tentative Convention. Every occurrence of a ket is marked as a vector ket or a func-
tion ket. If y is a vector then the vector ket |yy denotes the vector y but the corresponding
function ket |yy denotes the function a ÞÑ a � y. More generally, for any label L, the vec-
tor ket |Ly denotes some vector v⃗ in H , while the function ket |Ly denotes the function
a ÞÑ a � v⃗, from C toH , for the same vector v⃗. �

Q: You can avoid marking by declaring that, by default, kets are function kets; the
corresponding vector ket is |Ly(1).

A: This is correct. We stick to marking because of its symmetry. Your proposal may
give an impression of bias in favor of function kets.

You have mentioned inner products xx | yy and outer products |yyxx|. Let’s consider
more general products of alternating kets and bras.

Dirac terms: syntax. Kets and bras are Dirac characters. By a Dirac term3 we mean
a nonempty sequence of Dirac characters where kets and bras alternate; the sequence is



often furnished with parentheses.

More formally, Dirac terms are defined inductively. Dirac characters are terms. A
concatenation s1s2 of Dirac terms s1, s2 where kets and bras alternate is a Dirac term.

By default, a Dirac term s comes with enough parentheses to parse s, i.e. to deter-
mine how s is constructed from kets and bras by means of concatenation.

Q: Suppose some ket |Ly occurs more than once in a Dirac term. Can some occurrences
of |Ly be vector kets and some function kets?

A: Sure, why not?

Dirac terms: semantics.

Q: Since kets are disambiguated in the Tentative Convention, semantics seems obvious.

A: It is obvious, but we need to spell out details in order to pursue our analysis.

By induction, we define the intended values Valpsq of (or denoted by) Dirac terms s
and check that the the following equivalences hold.

E1 Valpsq is a linear function with domainH ðñ s ends with a bra, and
Valpsq is a linear function with domain C ðñ s ends with a function ket.

E2 Valpsq is a vector or a scalar ðñ s ends with a vector ket.
E3 Valpsq is a scalar or a scalar-valued function ðñ s starts with a bra.
E4 Valpsq is a vector or a vector-valued function ðñ s starts with a ket.

The value Val
�
xx|
�

of a bra xx| is the linear H Ñ C function denoted by xx|. The
ket values are described in the Tentative Convention above. The equivalences E1–E4
are obvious in these cases.

Let s be a concatenation s1s2 of constituent subterms (which satisfy E1–E4 of
course), and let V1,V2 be the values of s1, s2 respectively. Four cases arise depending on
whether V1,V2 are functions or not.

FF If V1 is a function and V2 is a function, then Valpsq is the composition V1 � V2, so
that Valpsq is a function whose domain is that of V2 and

ValpsqpAq �
�
V1 � V2

�
pAq � V1pV2pAqq for all A P DompV2q.

3While logicians speak about terms, computer scientists speak about expressions. Here we use the
logicians’ vocabulary for a very utilitarian reason: “term” is shorter than “expression.”



FN If V1 is a function but V2 is not then

Valpsq � V1pV2q.

NF If V1 isn’t a function but V2 is then Valpsq is the function V1 � V2 so that Valpsq is
a function whose domain is that of V2 and

ValpsqpAq �
�
V1 � V2

�
pAq � V1 � pV2pAqq for all A P DompV2q.

NN If neither V1 nor V2 is a function then

Valpsq � V1 � V2.

Q: I see that you overload the multiplication symbol � with different types.

A: We do. But notice that at least one of the factors is always a scalar. It is very
common to multiply scalars, vectors, and linear functions by scalars. But let’s check
that our definitions make sense and that the equivalences E1–E4 hold.

Clauses FF and FN make sense in that V2 belongs to or takes values in DompV1q.
Indeed, by E1, s1 ends with a bra or a function ket. If s1 ends with a bra, then Domps1q �
H by E1 for s1, and s2 starts with a ket, and the desired property follows from E4 for
s2. If s1 ends with a function ket, then Domps1q � C by E1 for s1, and s2 starts with a
bra, and the desired property follows from E3 for s2.

Clauses NF and NN also make sense, which is obvious if V1 is a scalar. Otherwise
V1 is a vector and it suffices to check that V2 is a scalar or scalar-valued function. By
E2, s1 ends with a ket. Hence s2 starts with a bra. Use E3 for s2.

It remains to check that Valpsq satisfies the equivalences E1–E4. By FF–NN, Valpsq
is a function if and only if V2 is a function, and if Valpsq is a function then its domain is
DompV2q, and if Valpsq is not a function then it is a vector or scalar. And of course s, s2

share the final character. Hence E1 and E2 hold.

Further, by FF–NN, Valpsq is a vector or vector-valued function if and only if V1 is
so. It follows that Valpsq is a scalar or scalar-valued function if and only if V1 is so. And
of course s, s1 share the first character. Hence E3 and E4 hold.

Q: Let me just note that your clause NF generalizes the definition of outer product |wyxv|
quoted in §1 provided that the vector spaces V and W coincide withH .



3 Associativity

A: It turns out that parentheses are unnecessary in Dirac terms because the partial oper-
ation

Valps1q � Valps2q � Valps1s2q

on the values of Dirac terms is associative. The operation is defined if the concatenation
s1s2 is a Dirac term, i.e. if kets and bras alternate in s1s2.

Q: What if Valpsiq � Valptiq? Will we have that Valps1s2q � Valpt1t2q?

A: Yes, because the concatenation clauses in the definition of Valps1s2q are formulated
in terms of Valps1q and Valps2q, without examining the terms s1 and s2.

Lemma 1. The partial operation � is associative. In other words, let s1, s2, s3 be Dirac
terms such that kets and bras alternate in the concatenation s1s2s3 and let V1,V2,V3 be
the values of s1, s2, s3 respectively. Then

pV1 � V2q � V3 � V1 � pV2 � V3q (1)

Proof. First examine V3. If V3 is a scalar, factor it out of the equation, so that (1)
becomes obvious. Similarly, if V3 is a scalar-valued function, then

pV1 � V2q � V3pAq � V1 � pV2 � V3pAqq holds for every A P DompV3q (2)

because the scalar V3pAq can be factored out of the equation. If V3 is a vector-valued
function, it suffices to prove (2) because it implies (1). In order to prove (2) for vector-
valued functions, it suffices to prove (1) for the case where V3 is a vector. In this case,
by E4, s3 starts with ket, s2 ends with a bra, and therefore, by E1, V2 is a function with
domainH .

Next examine V1. If V1 is a scalar, factor it out, and then (1) is obvious. If V1 is a
function then, using FF and FN in §2, we have:

pV1 � V2q � V3 �
�
V1 � V2

�
pV3q � V1pV2pV3qq

V1 � pV2 � V3q � V1 � pV2pV3qq � V1pV2pV3qq

It remains to prove (1) in the case where V1,V3 are vectors and V2 is a function with
domainH . Since V1 is a vector, s1 ends with a ket by E2, so that s2 starts with a bra and
V2 is a scalar-valued function by E3. We have

pV1 � V2q � V3 �
�
V1 � V2

�
pV3q � V1 � V2pV3q,

V1 � pV2 � V3q � V1 � pV2pV3qq � V1 � V2pV3q. □



4 Resolution

Q: What does the associativity buy you?

A: It allows us to prove a certain robustness phenomenon which can be illustrated on
the example where

s �
�
xx | yy

�
xu|

Let |vy be an arbitrary vector in H and c, d be the scalar products xx | yy and xu | vy,
respectively. If |yy as is a vector ket in s then, by value, i.e., writing terms instead of
their values (as it is commonly done)

s|vy �
��
xx | yy

�
xu|
	
|vy �

�
c � xu|q|vy � c � d.

If |yy is a function ket in s then xx| � |yy is the the operation of multiplying by c, and so
(again by value) we have

s|vy �
�
xx| |yy xu|

	
|vy �

�
xx| � |yy � xu|

	
|vy �

�
xx| � |yy

	
� d � c � d,

getting exactly the same result.

Lemma 2 (Robustness). Let s be a Dirac term and let a ket |yy occur in a particular
non-final position in sequence s. Valpsq is the same whether (the occurrence of) |yy in
that position is a vector ket or a function ket.

Proof. First suppose that |yy is the first character in s. By Lemma 1, we may assume
that s is a concatenation of |yy and some Dirac term s2. Let V,V2 be the values of |yy
and s2 respectively. By E3, V2 is a scalar or a scalar-valued function. Recall that there
is a vector v⃗ such that y is a marked version of v⃗. If |yy is a vector ket then V � v⃗, and if
|yy is a function ket it is the function Vpaq � a � v⃗.

If V2 is a scalar then, by NF–NN in §2,

Valpsq �

#
VpV2q � V2 � v⃗ if |yy is a function ket,
V � V2 � v⃗ � V2 � V2 � v⃗ if |yy is a vector ket.

Similarly, if V2 is a scalar-valued function then, by FF and FN, for every argument A of
V2, we have

ValpsqpAq �

#
VpV2pAqq � V2pAq � v⃗ if |yy is a function ket,
V � V2pAq � v⃗ � V2pAq � V2pAq � v⃗ if |yy is a vector ket.

This completes the proof in the case that |yy is at the beginning of s.



Now suppose that s � s1|yys2 where s1, s2 are Dirac terms with values V1,V2. By
Lemma 1, we may assume that s is the concatenation of s1 and |yys2, so that Valpsq
is determined by V1 and Val

�
|yys2

�
. By the first part of the proof, Val

�
|yys2

�
does not

depend on how the ket |yy is marked. It follows that Valpsq does not depend on how |yy
is marked. □

Now we drop the Tentative Convention of §2. The kets are not marked anymore.
One should be able to tell from the context whether a ket denotes a vector or a function.

Q: By the robustness lemma, we have a whole spectrum of possible resolutions of the
abuse of notation in question.

A: One natural resolution is to view kets as function kets where possible:

In a Dirac term, an occurrence of a ket is viewed as a vector if and only if it is the
final character in the term.

Q: The direct opposite strategy is to view an occurrence of a ket as a function if and
only if it is the first character in the term. I’m kidding.

A: Actually, a close relative of your strategy works: View an occurrence of a ket as a
function if and only if it is the first character and the last character is a bra.

Q: Explain.

A: If the first character is a bra or if the last character is a ket, then the given Dirac term
has the form

xx1| |y1y . . . xxn| |yny, xx1| |y1y . . . xxn| |yny xx0|, or |y0y xx1| |y1y . . . xxn| |yny.

Pair up every xxi| with |yiy and let c �
±

ixxi | yiy. Every ket is viewed as a vector, and
you get c, c � xx0|, or c � |y0y respectively.

If the first character is a ket and the last character is a bra, the term has the form

|y0y xx1| |y1y . . . xxn| |yny xx0|.

Pair up xx1|, . . . , xxn| with |y1y, . . . , |yny respectively and let c �
±n

i�1xxi | yiy. You get
c � |y0yxx0| � c � |y0y � xx0|.

Q: Finally, I should tell you that I asked Prof. Werner about the source of his definition
of kets. He did not remember the source.

A: Well, the definition matches the spirit of category theory. There, instead of dealing
with the elements of a structure, one deals with maps into (or out of) the structure.
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