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Abstract

When a computer scientist attempts to understand quantum computing,
he may stumble over the physics that seems to be a prerequisite. As a result,
the attempt may be abandoned. This little pedagogical essay is aimed to
help with this problem. We present the specific example of Grover’s search
algorithm, but we put computation first and postpone physics.

1 Introductory dialog

Quisani1: I expected to see both of you.

Author2: Let’s start. Andreas will be here shortly.

Q: How good is your physics?

A: Don’t ask. In my student years I was interested in many subjects but physics
wasn’t one of them. Andreas, on the other hand, has his Bachelor degree in
physics. Both of his parents were physicists.

Q: Do you know, say, relativity theory or, at least, special relativity theory?

1A former student of the second author.
2Just the second author in this section but both authors, speaking one at a time, in the later

sections.



A: As a school boy, I read popular expositions of relativity theory but could not
understand it. The more I read, the more confusing it seemed. In my working-
class suburb of an industrial Soviet city there was nobody to ask. Once a visiting
lecturer spoke about relativity theory. For a while, things seemed clear. Then
he mentioned a Gedankenexperiment where a spaceship leaves the planet Earth.
After traveling around for one year, the spaceship returns to Earth where 100
years passed. I asked him why it isn’t the other way round. We can imagine that
it is Earth that went for a voyage and so more time should have passed on the
spaceship. He answered something, but I did not understand a thing. A couple of
years later, already at a university, I came across a book on Riemannian geometry
with a chapter on special relativity [8, §IV]. It was simple and beautiful.

Q: What about quantum physics?

A: Unfortunately I knew nothing about it until a few years ago.

Q: I’d love to understand quantum computing. But I haven’t studied quantum
physics, and I forgot whatever physics I did study. Quantum computing seems
daunting to a computer scientist, like myself, because of all that physics. Is
physics necessary for quantum computing?

A: Yes and no. Let me try to explain this by analogy. Is engineering necessary for
to computer science?

Yes, to a large extent computer science deals with engineering artifacts, like
operating systems. More than once I saw how clever engineering circumvents
difficult mathematical problems. Without engineering, computer science is in-
complete. In my view, it is an integral part of a more complete discipline which is
computer science and engineering. Yet, one can make a considerable advance in
computer science with little exposure to engineering. Examples, starting from the
Church and Turing theses, are abundant.

Quantum computing is computing with quantum computers whose very ex-
istence depends first of all on quantum physics (and other disciplines including
engineering). Quantum physics is indispensible for quantum computing. Yet, one
can make a considerable advance in quantum computing with little knowledge of
quantum physics. One certainly can understand much of the existing literature on
quantum computing with little knowledge of quantum physics.

Q: I am a bit sceptical about your last point. I tried to do exactly that and failed.

A: To illustrate this point, we will explain to you Grover’s algorithm [5], the
second most famous quantum algorithm. We will presuppose no knowledge of
quantum physics.



2 A function inversion problem, or looking for a nee-
dle in a haystack

Oracle Search Problem Given access to a Boolean oracle
f : {0, 1}n → {0, 1}, solve the equation f x = 1.

To simplify the exposition, we restrict attention to the case where the equation
f x = 1 has a unique solution.

Example Given access to a huge phone directory, sorted by name, find the name
of a person by her phone number.

Let N = 2n. It seems obvious that, on average, any algorithm solving the
problem has to query the oracle ≥ 1

2 N times. Yet, Grover’s algorithm solves the
problem with high probability and only

⌊
(π/4)

√
N
⌋

queries. How does it do that?

A quantum algorithm is an algorithm for quantum hardware. Let’s separate
the concerns. First, let’s understand Grover’s algorithm itself, how it works and
how it gets away with relatively few queries. Then we’ll consider how an ideal
quantum computer executes the algorithm.

3 Preliminaries

Recall that Euclidean spaces are finite dimensional vector spaces over the field
R of real numbers endowed with an inner product structure. Finite-dimensional
Hilbert spaces are finite-dimensional vector spaces over the field C of complex
numbers endowed with an inner product structure. There are also infinite-dimensional
Hilbert spaces but we are not considering them here; our Hilbert spaces are by de-
fault finite-dimensional.

3.1 Bra-ket notation

Physicists use a clever braket notation introduced by Paul Adrien Maurice Dirac
in 1939 [3]. The inner product of vectors x, y of a given Hilbert space is denoted
〈x | y〉 and is viewed as an application of a linear functional 〈x|, called “bra-x”, to
a vector |y〉, called “ket-y”. You can write inside the ket symbol any convenient
description of the intended vector, e.g, |the first special vector〉.

As in Euclidean spaces, the length of a vector |x〉 is
√
〈x | x〉.



Q: Wait, I played only with inner product over R. Normally, I think of the
inner product of two vector ~x and ~y as |~x| · |~y| · cos θ where θ is the angle
between ~x and ~y, but I am aware of the axiomatic definition of inner product
over R. Is the inner product structure over C much different? Can 〈x | y〉 be
a complex number that is not real?

A: Over C, the inner product 〈x | y〉 can take any complex value. One prop-
erty is positive definiteness: 〈x | x〉 ≥ 0 and 〈x | x〉 = 0 if and only if x = 0.
Another property is conjugate symmetry: 〈y | x〉 is the complex conjugate of
〈x | y〉. In a special case when 〈x | y〉 is real, we have 〈y | x〉 = 〈x | y〉, as in real
Euclidean spaces.

The final property is linearity in one of the arguments. In mathematics, it is
typically linearity in the first argument. In physics, it is always linearity in
the second argument: 〈x | y + z〉 = 〈x | y〉+ 〈x | z〉 and 〈x | cy〉 = c〈x | y〉 for any
complex number c. If forced to choose, we’ll use the physicist version.

Finally, if θ is the angle between vectors |x〉, |y〉, then cos θ is the real part of
〈x | y〉
||x〉| · ||y〉|

.

3.2 Tensor product

Let H1,H2 be Hilbert spaces with fixed orthonormal bases |0〉, . . . , |m − 1〉 and
|0′〉, . . . , |(n − 1)′〉 respectively.

The tensor product H1 ⊗ H2 ofH1 andH2 is an (m × n)-dimensional Hilbert
space. Each pair |i〉, | j′〉 of basis vectors from H1,H2 respectively, gives rise to
a ket vector in H1 ⊗ H2 denoted |i〉 ⊗ | j′〉 or simply |i j′〉; the corresponding bra
vector, i.e., the corresponding linear functional is 〈i| ⊗ 〈 j′| or simply 〈i j′|. On these
m × n ket vectors, the inner product is given by the formula

〈i j′ | k`′〉 = 〈i | k〉 · 〈 j′ | `′〉 =

1 if (i, j) = (k, `),
0 otherwise,

so that the m × n ket vectors |i〉 ⊗ | j′〉 form an orthonormal basis ofH1 ⊗ H2, and
an arbitrary vector in H1 ⊗ H2 has the form

∑
ai j|i j′〉. The inner product extends

to the wholeH1 ⊗H2 by linearity:∑
i, j

ai j〈i j′|


∑

k,`

bk`|k`′〉

 =
∑

i, j

ai jbi j.



If |v1〉 =
∑

i ai|i〉 ∈ H1 and |v2〉 =
∑

j b j| j′〉 ∈ H2, define |v1〉 ⊗ |v2〉 =∑
i, j aib j|i j′〉. Vectors in H1 ⊗ H2 obtained this way are pure tensors. Not ev-

ery vector in H1 ⊗ H2 is a pure tensor unless m ≤ 1 or n ≤ 1. For example,
|00′〉 + |11′〉 is not a pure tensor. Indeed, if

|00′〉 + |11′〉 =
∑

ai|i〉 ⊗
∑

b j| j′〉 =
∑

aib j|i j′〉,

then a0b0 = a1b1 = 1 and therefore a0b1 , 0 but the representation |00′〉 + |11′〉 of
the vector shows that a0b1 = 0.

3.3 Standard bases

The definition of the tensor product does not require thatH1,H2 be disjoint; they
could even be equal.

Elements of the two-dimensional Hilbert space C2 are pairs (x0, x1) of complex
numbers. The ket vectors

|0〉 = (1, 0),
|1〉 = (0, 1).

form the standard orthonormal basis of C2. The standard orthonormal basis of
(C2)⊗2 = C2 ⊗ C2 comprises four vectors |00〉, |01〉, |10〉, |11〉. More generally,
the standard orthonormal basis of the tensor product (C2)⊗k of k copies of C2

comprises vectors |x〉 where x ranges over the set {0, 1}k of binary strings of length
k. Note that the dimension of Hilbert space (C2)⊗k is 2k.

The following trivial observation will be very useful below. To define a linear
operator on a vector space with a given basis, it suffices to define it on the basis
vectors. In particular, to define a linear operator on (C2)⊗k, it suffices to define it
on vectors |x〉 for every x ∈ {0, 1}k.

Q: Everything you’ve said so far makes sense if the scalars are real rather
than complex numbers.

A: This is true. In fact, Grover’s algorithm itself makes good sense and even
is easier to think about when the scalars are real. But quantum computers
work with complex numbers, and so we stick to complex scalars.



4 Grover’s algorithm

Let x range over {0, 1}n and b range over {0, 1}. If x = (x1, . . . , xn) ∈ {0, 1}n, let
|x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 ∈ (C2)⊗n. Then |x〉 ⊗ |b〉 ∈ (C2)⊗(n+1).

4.1 Classical to quantum oracle

In the Oracle Search Problem, we are given a Boolean oracle f : {0, 1}n → {0, 1}.
The oracle f gives rise to a reversible, i.e., bijective, transformation

F(x, b) = (x, b ⊕ f x) =

(x, b ⊕ 1) if f x = 1
(x, b) if f x = 0

of the set {0, 1}n+1. Here and below, ⊕ is addition modulo 2. By linearity, F gives
rise to a unique linear operator U on (C2)⊗(n+1) such that

U
(
|x ⊗ b〉

)
= |x〉 ⊗ |b ⊕ f x〉.

U is a unitary operator, i.e., it preserves the inner product. Therefore it preserves
the distances between vectors, it preserves the length of a vector, and it leaves the
zero vector in place.

Q: What is the point of all this transformation from f to F and then to U?
What is wrong with f to begin with?

A: The reason is physics. Quantum systems are transformed by unitary
operators. Although f gives rise to a linear transformation from (C2)⊗n to
C2, this transformation is not unitary.

Q: Of course! It can’t be unitary because it maps into a lower-dimensional
space.

A: Indeed, in general, if a linear transformation maps one orthonormal basis
to another, then it is unitary if and only if it is a bijection on the bases.

4.2 Hadamard operator H

The unit vectors
(
|0〉 + |1〉

)
/
√

2 and
(
|0〉 − |1〉

)
/
√

2 in C2 are known as |+〉 and |−〉
respectively. They constitute another orthonormal basis for C2 that is often useful.



The Hadamard operator H is the unitary transformation from the basis {|0〉, |1〉} to
the basis {|+〉, |−〉} such that H|0〉 = |+〉 and H|1〉 = |−〉. It is easy to check that
H|+〉 = |0〉 and H|−〉 = |1〉, so that H2 is the identity operator on C2.

Operator H ⊗ H on C2 ⊗ C2 applies H to each of the two qubits. For example,
H⊗2|0〉|1〉 = |+〉|−〉. Generally, an operator H⊗k on (C2)⊗k applies H to each of the
k qubits. If x = (x1, . . . , xk) ∈ {0, 1}k then H⊗k(|x1〉⊗· · ·⊗|xk〉

)
= H|x1〉⊗· · ·⊗H|xk〉.

4.3 Operator V

The bilinearity of ⊗ has a possibly surprising effect. Recall that F leaves the first
n bits unchanged and modifies only the last bit. Its linearization U thus acts as the
identity on the first n tensor factors and modifies only the last factor. Nevertheless,
in some contexts, U can also be regarded as modifying only the first n factors.
Since |−〉 =

(
|0〉 − |1〉

)
/
√

2, we have

U
(
|x〉 ⊗ |−〉

)
=

|x〉 ⊗
(
|1〉 − |0〉

)
/
√

2 if f x = 1
|x〉 ⊗

(
|0〉 − |1〉

)
/
√

2 if f x = 0

= |x〉 ⊗ (−1) f x|−〉 = (−1) f x|x〉 ⊗ |−〉.

Let V |x〉 = (−1) f x|x〉. Then

U
(
|x〉 ⊗ |−〉

)
=

(
V |x〉

)
⊗ |−〉.

To compute V |x〉, apply U to |x〉 ⊗ |−〉 and ignore the final |−〉.

4.4 A real plane of interest

Recall that x ranges over {0, 1}n and N = 2n. Let s be the unique solution of the
equation f x = 1. Consider unit vectors

|t〉 =

∑
x,s |x〉
√

N − 1
and |µ〉 =

∑
x |x〉
√

N
=

√
N − 1
√

N
|t〉 +

1
√

N
|s〉.

Q: Wait, that ket notation has been bothering me for a while. But now it
becomes really confusing. On the one hand, the notation |x〉 turns a bitstring
x into a vector |x〉. On the other hand, you keep using the ket notation with
things other than bitstrings inside. Earlier you used |+〉 and |−〉, and now you
are using |t〉 and |µ〉.



A: We agree that the notation may seem ambiguous. We follow the physics
tradition mentioned above: inside the ket, you can write anything that con-
veniently identifies the intended vector.

Q: Convenience is in the eye of the beholder.

Vector |t〉 is orthogonal to |s〉 because |x〉 is orthogonal to |s〉 for every x in {0, 1}n

which is different from s. Further, |µ〉 is the mean of all the vectors |x〉, and

V |µ〉 =

√
N − 1
√

N
|t〉−

1
√

N
|s〉. Let Π be the real plane spanned by |s〉 and |t〉. Notice

that |µ〉 makes a small angle θ with |t〉 toward |s〉.

O

|s〉

|t〉

|µ〉
θ

We have θ ≈ sin θ = cos(
π

2
− θ) = 〈s | µ〉 = 1/

√
N.

4.5 Reflections and rotations

Since V |s〉 = −|s〉 and V |x〉 = |x〉 for every x , s, V is the reflection of (C2)⊗n in
the hyperplane orthogonal to |s〉. On Π, V is a reflection in the line of |t〉.

Let W be the reflection of (C2)⊗n in the line spanned by the mean vector |µ〉,
i.e., W |µ〉 = |µ〉 and W |v〉 = −|v〉 for every vector |v〉 orthogonal to |µ〉. W is
unitary. In particular, on Π, W is the reflection in the line of |µ〉.



O

|s〉

|t〉

|µ〉

W |t〉

θ
θ

The unitary operator of particular interest to us is WV . WV |t〉 = W |t〉, and so
WV rotates |t〉 by 2θ around O. WV also rotates |µ〉 by 2θ:

O

|s〉

|t〉

|µ〉

V |µ〉

WV |µ〉

2θ

θ

θ

It follows that WV rotates the whole plane Π by 2θ around O.

4.6 Approximating the unique solution

(WV)k rotates Π by 2kθ, so that the angle between |t〉 and (WV)k|µ〉 is (2k+1)θ. We
would like to find an integer k such that (WV)k|µ〉 is closest to |s〉, i.e., (2k + 1)θ

is closest to π/2 and k is closest to
π

4
1
θ
−

1
2

. Recall that sin θ = 1/
√

N. Since
sin x < x for x > 0 and sin x is very close to x when x is close to zero, we have

π

4
1
θ

=
π

4
1

sin θ
sin θ
θ

=
π

4

√
N ·

sin θ
θ

<
π

4

√
N,



and the interval (
π

4
1
θ
,
π

4

√
N) is tiny for large values of N.

It is most probable (as N varies) that there are no integers in the interval and

therefore
⌊
(π/4)

√
N
⌋

is the integer closest to
π

4
1
θ
−

1
2

, i.e., (WV)b(π/4)
√

Nc|µ〉 is

closest to |s〉 among all vectors (WV)k|µ〉. If there is an integer in the interval,

then
⌊
(π/4)

√
N
⌋
− 1 is the integer closest to

π

4
1
θ
−

1
2

, but the angle between |s〉

and (WV)b(π/4)
√

Nc|µ〉 is very close to θ/2. So (WV)b(π/4)
√

Nc|µ〉 is always a good
approximation to |s〉.

4.7 A diagram of Grover’s algorithm

The operator WV works with the n qubits, but there is also the (n+1)st qubit which
is needed to query the oracle U. Let I be the identity operator on C2. The operator
(WV)⊗ I operates as WV on the first n qubits and as I on the (n+1)st qubit. Notice
that the mean vector |µ〉 is a pure tensor, namely,

|µ〉 =
1
√

N

∑
x

|x〉 =
1

2n/2

(
(|0〉 + |1〉) ⊗ · · · ⊗ (|0〉 + |1〉)

)
= |+〉n = H⊗n|0n〉.

The following diagram depicts Grover’s algorithm.

|0〉 /n H⊗n

U
W · · ·

|1〉 H · · ·

Repeat bπ4
√

Nc times

︸ ︷︷ ︸

Here the sign /n indicates a bundle of n wires. The upper line is the time line of
the bundle, and the lower line is the time line of the (n + 1)st qubit. In this diagram
(as well as in the diagrams below), time goes left to right.

The meter sign at the right end indicates measurement. You examine the final
state (WV)b(π/4)

√
Nc|µ〉 of the bundle and output the n-bit string s such that |s〉 is

approximated by the final state.



5 Discussion about Grover’s algorithm

Q: You said that Grover’s algorithm solves the Oracle Search Problem with only⌊
(π/4)

√
N
⌋

queries, and that seemed puzzling, even impossible. But the algorithm
employs a more informative oracle, be it U or V . A query |ψ〉 to V may involve
many strings x in {0, 1}n, i.e., many queries to the original oracle f , and the reply
V |ψ〉 involves information about f on all those queries x. E.g., the query |µ〉 =∑

x |x〉/
√

N involves all queries to f , and the reply V |µ〉 involves all values of f .
As a result, it does not seem so puzzling that the algorithm gets away with fewer
queries. A question arises whether Grover’s algorithm is optimal. Maybe one can
do even better.

A: The question has been addressed, first by Charles Bennet, Ethan Bernstein,
Gilles Brassard and Umesh Vazirani in 1997 [1] and more recently by Cătălin
Dohotaru and Peter Høyer in [4]. It turns out that the communication complexity
of Grover’s algorithm is optimal as far as the number of oracle calls is concerned.

Q: On another issue, consider that bundle of n qubits in the diagram of Grover’s
algorithm. The states of the bundle are given by vectors in (C2)⊗n which have
exponential dimension. The mean state |µ〉 is a pure vector, but there seems to be
no reason to expect that every (WV)k|µ〉 is a pure vector. How do you work with
exponential-size vectors?

A: That is why we need a quantum computer.

6 Enter quantum computer

6.1 State space of a quantum system

According to quantum theory, the state space of a quantum system Q is a Hilbert
spaceH . The states of Q are represented by nonzero vectors inH , with collinear
vectors representing the same state. Here collinearity of two vectors |ψ1〉 and |ψ2〉

means that |ψ2〉 = c|ψ1〉 for some nonzero complex number c.

For brevity, instead of “the state represented by vector |ψ〉”, we say “the state
|ψ〉.”

The simplest system that is genuinely quantum is known as a one-qubit system
or simply a qubit. Its state space is C2. There are numerous physical implementa-
tions of a qubit, but here we abstract from the implementation.



If a quantum system Q consists of disjoint3quantum systems Q1,Q2 then the
state space of Q is the tensor productH1⊗H2 of the state spaces of systems Q1,Q2

respectively.

It follows that the state space of a k-qubit quantum system is (C2)⊗k. Grover’s
algorithm deals only with such systems.

6.2 Quantum computer: a rough sketch

Think about some machine model of classical computing, possibly with an oracle.
The memory is split into numerous cells. In the beginning of a computation, the
memory is in some initial global state. The computation proceeds by applying
some basic operations to the memory and possibly oracle calls. At the end, the
output is read from special output cells of the final global state of the memory.

In a broad-brush outline, quantum computers typically operate in a similar
way. The role of computer memory is played by some quantum system Q. Usually
this quantum memory is a k-qubit system for some k. In the beginning, Q is in
some initial state. The computation proceeds by applying some unitary operations,
known as quantum gates, or possibly applying an oracle, a special sort of unitary
operator, to Q, and at the end a subsystem of Q is measured.

6.3 A universal gate set

No finite collection of gates allows us to synthesize precisely every unitary opera-
tor even on C2, because there are uncountably many such operators. But there are
finite gate sets B which are universal in the sense that, for any unitary operator A
on any (C2)⊗k, an arbitrarily close approximation can be synthesized.

Q: What does “can be synthesized” mean here?

A: A good question. By linearity, it suffices to restrict attention to how A
works on the basis vectors of (C2)⊗k.

We say that a unitary k-qubit operator A can be synthesized over B if there is
a composition A′ of B-gates which works as follows. Given (i) input qubits
|b1〉,. . . ,|bk〉 of A and (ii) optionally some auxiliary qubits |a1〉,. . . ,|a j〉, set to
|0〉 or |1〉, A′ outputs |b1〉,. . . ,|bk〉, A

(
|b1〉, . . . , |bk〉

)
and possibly some extra

qubits |g1〉,. . . ,|gl〉. The auxiliary qubits |a1〉,. . . ,|a j〉 are known as ancillas.
The extra |g1〉,. . . ,|gl〉 qubits sometimes are called the garbage qubits.

3For the cognoscenti: We assume here that the two physical systems are not identical. If they
were identical, we would need the symmetric or anti-symmetric part of the tensor product.



We will use a universal set {H,Toffoli} of only two gates acting on arbitrary
qubits [9]. Here H is the one-qubit Hadamard gate mentioned above, and Toffoli
is a three-qubit gate, named after Tommaso Toffoli who introduced it [10], and
known also as the double-controlled Not.

The Toffoli gate applies to three distinct qubits. Two of them work as controls
and the third one works as the target. By linearity, it suffices to define Toffoli on
the basis vectors |c1〉|c2〉|t〉 of C2 ⊗ C2 ⊗ C2 where |c1〉,|c2〉 are controls and |t〉 is
the target. If both controls |c1〉 and |c1〉 are |1〉 then the target |t〉 is flipped, i.e., the
new value is |t ⊕ 1〉 where, as before, ⊕ is addition modulo 2. If at least one of the
two controls is |0〉 then the target remains unchanged. In both cases, all qubits,
except the target, remain unchanged.

Q: Let me understand this. How does Toffoli work on (C2)⊗4 when the first
and fourth qubits are the controls and the second qubit is the target?

A: In this case, the result of applying Toffoli to state |b1〉|b2〉|b3〉|b4〉 is|b1〉|b2 ⊕ 1〉|b3〉|b4〉 if |b1〉 = |b4〉 = |1〉,
|b1〉|b2〉|b3〉|b4〉 if |b1〉 = |0〉 or |b4〉 = |0〉.

6.4 Some auxiliary quantum gates

We introduce a few auxiliary quantum gates that will play a role in Grover’s algo-
rithm, and we show how to synthesize them in our gate basis.

Gate X

Define the one-qubit operator X by the equations

X|0〉 = |1〉, and X|1〉 = |0〉.

Unsurprisingly this gate is also called Not because it interchanges the two “truth
values” |0〉 and |1〉. Using two ancillas, we can express X by means of Toffoli.

|1〉|1〉X|ψ〉 = Toffoli
(
|1〉|1〉|ψ〉

)
.

This equation is obvious when |ψ〉 is a standard basis vector but, by linearity, it
holds also for arbitrary |ψ〉.



Gate Z

Define Z = HXH. We have

Z|0〉 = HXH|0〉 = HX(|0〉 + |1〉)/
√

2 = H(|1〉 + |0〉)/
√

2 = |0〉,

Z|1〉 = HXH|1〉 = HX(|0〉 − |1〉)/
√

2 = H(|1〉 − |0〉)/
√

2 = −|1〉.

Double-controlled Z

The following diagram illustrates the synthesis of double-controlled Z.

•

•

H H

The diagram represents a little 3-qubit algorithm. Each row is the time line of one
qubit; as usual, time flows left to right. Each column is an application of a gate.
The second gate is Toffoli; that is how it is usually drawn.

First, H is executed on the third qubit. Second Toffoli is executed, with the
first two qubits as the two controls and the third qubit the target. Finally, again
H is executed on the third qubit. To prove that the diagram works as intended,
consider a basis vector |c1〉|c2〉|t〉 in (C2)⊗3. If at least one of the control qubits is
|0〉 then the Toffoli gate does nothing, and H2 is applied to the target. But H2 is
the identity operator. Now suppose that both control qubits are |1〉. The HXH is
applied to the target. But HXH = Z.

Q: In principle you should be able to control any unitary operator U.

A: Yes, if U works on r qubits then the k-controlled version ckU of U works
on (k+r)-qubit basis vectors as expected. If all k controls are |1〉 then execute
U on the remaining r qubits and leave all other qubits unchanged. If at least
one control is |0〉 then do nothing.

6.5 Multiply controlled Z

We illustrate the synthesis of c5Z.



a1 •

a2 • •

a3 • •

c1 • •

c2 • •

c3 • •

c4 • •

c5 •

t Z

The symbols a1, . . . , t on the left do not belong to the diagram; they just label the
lines of the diagram. The diagram itself represents a 9-qubit algorithm. Again,
each line is the time line of one qubit, and time flows left to right. The first three
qubits, a1, a2, a3, are ancillas. It is presumed that originally they all are in state
(represented by the vector) |0〉. The next 5 qubits are control qubits of the desired
operator c5Z, and the last qubit is the target of the desired algorithm. The columns
represent gates; we treat c2Z as an auxiliary gate.

To verify the correctness of the algorithm, consider a basis vector

|a1〉|a2〉|a3〉|c1〉|c2〉|c3〉|c4〉|c5〉|t〉.

First assume |c j〉=|1〉 for j = 1, . . . , 5. The first three gates set all ancillas to |1〉.
The fourth gate executes Z on the target. The last three gates reset the ancillas
back to |0〉. Now suppose that some |c j〉=|0〉. Several cases arise depending on
the value of j. If j = 5 then the fourth gate would not change the target qubit. If
j = 4, then the first ancilla will remain in state |0〉, and so the state of the target
qubit will not change. By now, it should obvious how to finish the proof.

6.6 The synthesis of U

First transform the given Boolean oracle f : {0, 1}n → {0, 1} into a Boolean circuit
C which computes the reversible function F(x, b) = (x, b⊕ f x), and then transform
C to the desired quantum oracle U.

There are various techniques in the literature which help to accomplish these
tasks. Much depends on how f is given. If f is given by a Boolean circuit, rewrite



the circuit in such a way that the only gates used are negation and conjunction.
Then treat the boolean variables as qubits. To this end, employ ancillas as fol-
lows. Instead of ¬b use X|b〉, i.e., use Toffoli

(
|1〉|1〉|b〉

)
. Instead of a ∧ b use

Toffoli
(
|a〉|b〉|0〉

)
.

6.7 The synthesis of W

It suffices to compute the operator −W. If
⌊
(π/4)

√
N
⌋

is odd then the output vector
of Grover’s algorithm acquires a factor −1. But that factor makes no difference.
Recall that collinear vectors represent the same state. And what is measured at the
end is the state and not a representation of it.

The operator −W multiplies the initial vector |µ〉 by −1 and leaves every vector
|v〉 orthogonal to |µ〉 unchanged. It turns out that −W is exactly the operator

O = H⊗n · X⊗n · cn−1Z · X⊗n · H⊗n.

It suffices to prove that O multiplies |µ〉 by −1 and leaves unchanged every vector
orthogonal to |µ〉.

Recall that operator cn−1Z multiplies |1n〉 by −1 and leaves every other basis
vector unchanged. Therefore it leaves every vector orthogonal to |1n〉 unchanged.
It follows that operator X⊗n·cn−1Z·X⊗n multiplies |0n〉 by−1 and leaves every vector
orthogonal to |0n〉 unchanged. Unitary operator H⊗n moves |0n〉 to |µ〉. Notice that
(H⊗n)2 is the identity operator, and so H⊗n is its own inverse. Now it is easy to see
that O multiplies |µ〉 by −1 and leaves every vector orthogonal to |µ〉 unchanged.
Indeed H⊗n transforms |µ〉 to |0n〉, then X⊗n · cn−1Z · X⊗n multiplies |0n〉 by −1, and
then H⊗n transforms −|0n〉 to −|µ〉. If |v〉 is orthogonal to |µ〉 then H⊗n transforms
|v〉 to a vector |w〉 orthogonal to |0n〉, then X⊗n · cn−1Z · X⊗n leaves |w〉 unchanged,
and then H⊗n transforms |w〉 back to |v〉. Thus O leaves unchanged every vector
orthogonal to |µ〉.

It remains to notice that every factor in O can be synthesized, and therefore O
itself can be synthesized.

6.8 Measurement

The final step of Grover’s algorithm is the so-called “measurement in the standard
basis” of the n-qubit system in state (WV)b(π/4)

√
Nc|µ〉. A quantum computer is

supposed to be able to perform such a measurement feasibly in any state

|ψ〉 =
∑

x∈{0,1}n
αx |x〉



of the n-qubit system. The result of the measurement is one of the n-bit binary
strings x, and the post-measurement state of the system is |x〉. According to quan-
tum mechanics, the probability of obtaining string x is |αx|

2. In particular, if |ψ〉
is very close to one of the basis vectors |y〉, then αy is close to 1 while all other
coefficients αx are close to 0. In such a case, the result of the measurement will
very probably be y.

In the case |ψ〉 = (WV)b(π/4)
√

Nc|µ〉, we can check whether the result x of the
measurement satisfies the equation f x = 1. The probability |αs|

2 that the result
is s is close to 1 because |ψ〉 is so close to |s〉. So it is very probable that the
measurement will result in s. In the unfortunate and rare case, of probability
ε = 1 − |αs|

2, that the measurement results in some x , s, execute Grover’s
algorithm again and, if needed, again. The probability εk that you fail k times in a
row decreases exponentially in k.

7 Final discussion

Q: This is not as simple as you guys pretend. A lot is expected from the quantum
computer that executes Grover’s algorithm.

1. Initialize input states, including ancillas, at least to the prescribed states in
the standard basis.

2. Apply Hadamard and Toffoli gates to any specified qubits.

3. Measure the final state in the standard basis.

4. Count (so as to be able to iterate the operator WV the right number of times).

5. Preprocess the given Boolean oracle f to produce the appropriate quantum
oracle U.

A: Counting can be done classically. A quantum computer comes with a classical
controller which can count iterations. As far as the measurement is concerned,
one can show that the desired measurement can be performed by measuring every
one of the n relevant qubits separately in its own standard basis {|0〉, |1〉}, with the
result being 0 or 1.

Q: It is the f -to-U marvel that bothers me most. You have never returned to the
original example of the phone directory. How do you turn this thick book into a
quantum oracle?



A: The phone book is a nice metaphor. Real uses of Grover’s algorithm might
involve “virtual phone books.” Here is one example [2].

Suppose that some gangsters use a standard encoding algorithm E with 56-bit
keys. You know the algorithm E but not the secret key s that they use. You
happened to intercept a matching pair of a clear text T and the encoded text
T ′ = Es(T ). Your goal is to find the key s. This problem can be viewed as a
phone directory problem where every possible key x is a name and Ex(T ) is corre-
sponding phone number. Given the “phone number” T ′, find the “name” s in the
“phone directory.”

Q: I get it. For fixed T and T ′, the Boolean oracle

f (x) =

1 if Ex(T ) = T ′

0 otherwise

is given by a reasonable size program which, I trust, can be feasibly transformed
into a Boolean circuit and then into the desired quantum oracle U.

A: Yes.
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