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Abstract. No-go theorems prove that, under reasonable assump-
tions, classical hidden-variable theories cannot reproduce the pre-
dictions of quantum mechanics. Traditional no-go theorems proved
that hidden-variable theories cannot predict correctly the values
of observables. Recent expectation no-go theorems prove that
hidden-variable theories cannot predict the expectations of observ-
ables. We prove the strongest expectation-focused no-go theorem
to date. It is optimal in the sense that the natural weakenings of
the assumptions and the natural strengthenings of the conclusion
make the theorem fail. The literature on expectation no-go the-
orems strongly suggests that the expectation-focused approach is
more general than the value-focused one. We establish that the
expectation approach is not more general.

1. Introduction

Hidden-variable theories allege that a state of a quantum system,
even if it is pure and thus contains as much information as quantum
mechanics permits, actually describes an ensemble of systems with dis-
tinct values of some hidden variables. Once the values of these variables
are specified, the system becomes determinate or at least more determi-
nate than quantum mechanics says. Thus the randomness in quantum
predictions results, entirely or partially, from the randomness involved
in selecting a member of the ensemble. No-hidden-variable theorems,
in short no-go theorems, assert that, under reasonable hypotheses, no
hidden-variable interpretation can reproduce the predictions of quan-
tum mechanics.

The history of such no-go theorems goes back to John von Neumann’s
1932 “Mathematische Grundlagen der Quantenmechanik” [18]. In this
highly influential book, von Neumann gave a no-go argument, though
he did not formulate it as a theorem. Von Neumann attempted to prove
a no-go theorem, but made an error. In 1935, Grete Hermann spotted
the error in the argument [12], but — as Mermin says [14] — she seems
to have been entirely ignored. The error went virtually unnoticed until
John Bell’s 1966 paper [2] where he pointed out the error and proved
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the first geniune no-go theorem. (The 1966 paper was written earlier,
though published later, than Bell’s 1964 paper [1].)

Independently of Bell, Simon Kochen and Ernst Specker published
in 1967 their no-go theorem [13]. Their paper attracted the attention of
philosophers, possibly because the authors were logicians and wrote in
a way that appealed to philosophers, who then introduced the notion
of contextuality. Here a context is a set of compatible observables,
i.e. mutually commuting observables. Quantum theory is contextual in
the sense that the value of an observable O measured as a part of one
context may differ from the value of O measured as a part of another
context. Kochen and Specker showed that a noncontextual hidden-
variable theory cannot match the predictions of quantum mechanics
for Hilbert spaces of dimension ≥ 3. And of course classical theory is
manifestly noncontextual; in fact, classically the value of an observable
is the same whether it is measured all by itself or in company of any
other observables.

In his 1993 paper [14], Mermin gave a lucid overview of the work
of Bell and of Kochen-Specker, with useful simplifications and histor-
ical information. The section on von Neumann’s error is called “von
Neumann’s silly assumption.” Lately the story of that error has been
challenged. According to the revisionists, von Neumann was misun-
derstood, and his implicit claim was more modest than a full-blown
no-go theorem. Jeffrey Bub argues that von Neumann proved that
quantum probabilities cannot be recovered from a hidden-variable the-
ory of deterministic states [4]. Dennis Dieks argues that von Neumann
proved that hidden-variable schemes violate the principle that physical
quantities are representable by operators in a Hilbert space [8]. In a re-
cent update of his 1993 paper [15], Mermin writes that he and Rüdiger
Schack are preparing a reply to the revisionists. We are not going to
dig deeper into the controversy here as it is tangential to the main issue
of this paper.

The no-go theorems of Bell and of Kochen-Specker establish that,
under suitable assumptions, hidden-variable theories cannot reproduce
the predictions of quantum mechanics concerning the possible values
obtained by measuring observables. There is no need to consider
the probabilities of possible results or the expectation values of mea-
surements; the measured values alone provide a discrepancy between
hidden-variable theories and quantum theory. The hypotheses that are
used to prove these theorems concern the measurements of observables
in quantum states.
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This value-focused approach leaves open the possibility of a hidden-
variable theory that successfully predicts the expectations of observ-
ables. An alternative, expectation-focused approach was pioneered in
2008 by Spekkens [17]. In the new approach, the discrepancy between
hidden-variable theories and quantum mechanics appears in the pre-
dictions of the expected values of measurements. There is no need to
consider the actual values obtained by measurements or the probability
distributions over these values. The hypotheses that are used to de-
duce these results concern the measurement of effects, i.e. the elements
of positive operator-valued measurements (POVMs). Effects are repre-
sented by Hermitian operators with spectrum on the real interval [0, 1].
They are regarded as representing yes-or-no questions, the probability
of “yes” for effect E in state |ψ〉 being 〈ψ|E|ψ〉.

Earlier, in 2005, Spekkens proposed an operational definition of con-
textuality intended to generalize the traditional notion [16]. In partic-
ular, the definition of operational contextuality applies to state prepa-
rations and all other experimental procedures, not just projective mea-
surements. It is this contextuality-centered research that led Spekkens
to his expectation no-go theorem.

Spekkens’s expectation no-go theorem is restricted to finite-
dimensional systems. In 2008–2009, Joseph Emerson and Christopher
Ferrie strengthened Spekkens’s theorem [9, 10] and promoted frame
representations of quantum mechanics. Their expectation no-go theo-
rems are also restricted to finite-dimensional systems. In 2010, the third
paper of Emerson and Ferrie on the subject, coauthored by Ryan Mor-
ris, generalized their results to infinite dimensional systems by means
of a novel and informative proof [11].

The literature on the expectation approach [17, 9, 10, 11] makes
the following two claims rooted in Spekkens’s generalization of con-
textuality which applies not only to measurements but also to state
preparations.

Generality: The expectation approach is more general than the
value approach.

Symmetry: The expectation approach is symmetric: it is even-
handed in its treatment of state preparations and measure-
ments.

The fact that operational contextuality applies to state preparations
and measurements does not by itself imply the symmetry claim, but it
invites it. And indeed all no-go theorems in the expectation-approach
literature are even-handed in their treatment of state preparations and
measurements.
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The bold philosophical character of Spekkens’s papers attracted our
attention. We started with repairing mathematical flaws in the liter-
ature on expectation no-go theorems [5, 6]. In the process, we looked
more closely at the generality claim. The operational definition of con-
textuality seems to ignore the commutation relation on observables
which plays such an important role in traditional contextuality. At the
end, as we show below, neither claim survived logical scrutiny.

In §2 of this paper, we formalize the notion of a hidden-variable
theory predicting the expectations of effects. Contrary to preceding
papers, we require only that the theory predicts the expectations of
rank-1 projections, rather than the expectations of arbitrary effects.
This leads to an expectation no-go theorem that is stronger than the
earlier theorems in the literature. In fact, our no-go theorem is optimal
in the sense that the natural weakenings of the assumptions and the
natural strengthenings of the conclusion make the theorem fail.

The no-go theorem is proved in §3. It was partially motivated by
our skepticism of the generality claim. One problem in comparing
the two approaches is that they use different sorts of measurements.
In the value approach, Hermitian operators serve as observables, and
measuring one of them produces a number in its spectrum. In the
expectation approach, certain Hermitian operators serve as effects, and
measuring one of them produces 0 or 1, even if the spectrum consists
entirely of other points. The only Hermitian operators for which these
two uses coincide are projectors. We address this problem by weaking
the hypotheses of the Ferrie-Morris-Emerson no-go theorem [11] so that
they apply only to projectors, in fact to rank-1 projectors, rather than
to arbitrary effects.

Our no-go theorem is not even-handed in its treatment of state prepa-
rations and measurements. Breaking the symmetry allowed us to prove
a stronger theorem. In §4, we show that the expectation approach is
not intrinsically symmetric.

In §5, toward comparing the expectation and value approaches, we
formalize the value approach and prove a value-focused no-go theorem.

Finally, in §6, we point out that, while the operational contextuality
is more general than the traditional one in the sense that it applies to
state preparations and not only measurements, it is not more general
in the sense of being implied by the traditional contextuality (as in the
concept of mammal being more general than that of dog). Then we
compare the expectation and value approaches. We argue that, while
the expectation-focused approach has its advantages (in particular it
works for two-dimensional Hilbert spaces), it is not more general than
the value-focused one.
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2. Expectation representations

In this section we formalize the notion of hidden-variable theories
predicting the expectations of effects.

Let H be a Hilbert space, the state space of a quantum system.
In this section, operators are by default linear operators on H, and
quantum states are density operators on H. Thus our quantum states
are in general mixed. The reason is that mixed states have physical
meaning, and so it is desirable to include them in the theory.

We need some auxiliary definitions. As usual, a convex linear com-
bination of vectors ~v1, . . . , ~vn in any vector space over the field C of
complex numbers has the form c1~v1 + · · · + cn~vn where the scalars ci
are nonnegative real numbers and c1 + · · ·+ cn = 1. Given a collection
O of linear operators on H, a vector space V over C, and a function
f : O → V , we say that f is convex linear if it satisfies the following
condition. For any A0, . . . , An ∈ O, if A0 is a convex linear combination
c1A1 + · · ·+ cnAn of A1, . . . , An then f(A0) = c1f(A1) + · · ·+ cnf(An).
We say that f is weakly convex linear if it satisfies the same condition
for commuting operators A1, . . . , An.

A positive self-adjoint operator E is an effect if the difference I −E
between the identity operator I and E is positive as well. Let E be a
collection of effects on H, and D a collection of density operators on
H. The following definition describes hidden-variable theories over H
predicting the expectations of effects E ∈ E in states ρ ∈ D.

Definition 2.1. An expectation representation for H, E ,D, is a triple
(Λ, F, µ) where

• Λ is a measurable space,
• F is a weakly convex linear map which assigns to each effect
E ∈ E a measurable function FE : Λ→ [0, 1],
• µ is a convex linear map which assigns to each state ρ ∈ D a

probability measure µρ on Λ

such that ∫
Λ

FE dµρ = Tr(Eρ)

for all effects E ∈ E and all states ρ ∈ D.

The intention behind Definition 2.1 is as follows.

• Λ is the range of a hidden variable λ. (If there are several hidden
variables then we can view the tuple of all of them as a single
variable.)
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• FE(λ) is the expectation of E when the hidden variable takes
the value λ. (Even when λ is fixed, there is still room for ran-
domness in the values of effects.)
• If Λ is finite then µρ(λ) is the probability that the hid-

den variable takes value λ when the state is ρ; accordingly∑
λ FE(λ)µρ(λ) is the overall expectation of E at ρ. In gen-

eral, µρ is a probability measure on Λ, and
∫

Λ
FE dµρ is the

overall expectation of E at ρ.
• The equation

∫
Λ
FE dµρ = Tr(Eρ) means that the overall expec-

tation from the hidden variable theory matches the prediction
of quantum theory.

A natural question arises why µ is required to be convex linear in ρ.
If you are a hidden-variable theorist, it is most natural for you to think
of a mixed state as a classical probabilistic combination of component
pure states. This leads you to the convex linearity of µ. For example,
if ρ =

∑k
i=1 piρi where pi’s are nonnegative reals and

∑
pi = 1 then, by

the rules of probability theory, µρ(S) =
∑
piµρi(S) for any measurable

S ⊆ Λ. Note, however, that you cannot start with any wild probability
distribution µ on pure states and then extend it to mixed states by
convex linearity. There is an important constraint on µ even on pure
states. The same mixed state ρ may have different representations as a
convex combination of pure states; all such representations must lead
to the same probability measure µρ.

Motivated by Spekkens’s idea of the even-handed treatment of prepa-
rations and measurements, the earlier literature on expectation no-go
theorems [17, 9, 10, 11] required F to be convex linear on all effects.
If an effect E0 is a linear combination c1E1 + · · ·+ cnEn of commuting
operators E1, . . . , En, all these operators E0, . . . , En can be measured
simultaneously which justifies F (E0) = c1F (E1) + · · · + cnF (En). If
these operators don’t commmute, then this equality does not seem
physically justified to us. That is why we require only weak convex
linearity of F .

3. Expectation no-go theorem

In this section, we prove our optimal expectation-focused no-go the-
orem.

For any particular effect E on any Hilbert space H, there is an ex-
pectation representation for H, the singleton set {E} and all density
operators on H. Indeed, let Λ = {0, 1}, FE(λ) = λ, µρ(1) = Tr(Eρ),
and µρ(0) = 1−Tr(Eρ); then

∫
Λ
FE dµρ = Tr(Eρ) for the fixed E and



OPTIMAL NO-GO THEOREM 7

all states ρ. But the following theorem shows that we cannot do the
same for all effects simultaneously, not even for rank-1 projectors.

Theorem 1 (Expectation no-go theorem). If the dimension of the
Hilbert space H is at least 2 then there is no expectation representation
for H, all rank-1 projectors E on H, and all density operators ρ on H.

The earlier expectation-focused no-go theorems [17, 9, 10, 11] as-
sumed that F is convex linear and defined on all effects. We sharpen
these theorems by assuming only that F is defined on rank-1 projectors
and therefore vacuously convex linear. A rank-1 projector is never a
convex linear combination of other rank-1 projectors.

Of course, we cannot expect any sort of no-go result in lower dimen-
sions, because quantum theory in Hilbert spaces of dimensions 0 and
1 is trivial and therefore classical. Theorem 1 fails if the condition of
convex linearity of µ in Definition 2.1 is omitted; see Section 4.

The rest of this section is devoted to the proof of Theorem 1. We
will assume the existence of an expectation representation and derive
various consequences which will lead us to a contradiction.

We mentioned above that the third paper [11] of Ferrie and Emer-
son, coauthored by Ryan Morris, generalized their results to infinite
dimensional systems. We achieve, in the following proposition, a simi-
lar generalization in a simpler way.

Proposition 3.1 (Bootstrapping). Let H be a closed subspace of a
Hilbert space H′. Any expectation representation for H′, all rank-1
projectors on H′ and all density operators on H′ gives rise to an expec-
tation representation for H, all rank-1 projectors on H and all density
operators on H.

Proof. We construct the desired expectation representation (Λ, F, µ) for
H from a given representation (Λ′, F ′, µ′) for the larger Hilbert space
H′. To begin, we set Λ = Λ′.

To define F and µ, we use the inclusion map i : H → H′, sending
each element of H to itself considered as an element of H′, and we use
its adjoint p : H′ → H, which is the orthogonal projector of H′ onto
H. Any state ρ over H, gives rise to a state ρ̄ = i ◦ ρ ◦ p over H′. Note
that this expansion is very natural: If ρ corresponds to a pure state
|ψ〉 ∈ H, i.e., if ρ = |ψ〉〈ψ|, then ρ̄ corresponds to the same |ψ〉 ∈ H′.
If, on the other hand, ρ is a mixture of states ρi, then ρ̄ is the mixture,
with the same coefficients, of the ρi. Define µρ = µ′ρ̄.

Next we define F . For any rank-1 projector E in H, Ē = i ◦E ◦ p is
a rank-1 projector in H′, and so we define FE = F ′

Ē
. If E projects to
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the one-dimensional subspace spanned by |ψ〉 ∈ H, then Ē projects to
the same subspace, now considered as a subspace of H′.

This completes the definition of (Λ, F, µ). Most of the requirements
in Definition 2.1 are trivial to verify. For the last requirement, the
agreement between the expectation computed as a trace in quantum
mechanics and the expectation computed as an integral in the expec-
tation representation, it is useful to notice first that p◦ i is the identity
operator on H. We can then compute, for any state ρ and any rank-1
projector E on H,∫

Λ

FE dµρ =

∫
Λ

F ′Ē dµ
′
ρ̄ = Tr(Ēρ̄) = Tr(i ◦ E ◦ p ◦ i ◦ ρ ◦ p)

= Tr(i ◦ E ◦ ρ ◦ p) = Tr(E ◦ ρ ◦ p ◦ i) = Tr(Eρ),

as required. �

By virtue of the Bootstrapping Proposition, we may assume without
loss of generality thatH is finite dimensional. (We could in fact assume
that H is two-dimensional, but this more restrictive assumption would
not make the rest of the proof any simpler.)

Suppose, toward a contradiction, that we have an expectation rep-
resentation (Λ, F, µ) for a finite-dimensional Hilbert space H and the
rank-1 projectors on H. In the rest of this section, operators are by
default linear operators on H. Let S be the vector space of self-adjoint
operators.

Lemma 3.1. The map µ extends to a linear map on S, which we also
denote µ, such that, for every A ∈ S, µA is a bounded, signed, real-
valued measure on Λ with the property that

∫
Λ
FE dµA = Tr(EA) for

every rank-1 projector E on H.

Proof. Every self-adjoint operator A is the difference A+ − A− of
two positive operators, where A+ has the same positive eigenvalues
and corresponding eigenspaces as A but is identically zero on all the
eigenspaces corresponding to non-positive eigenvalues. −A− similarly
matches the negative eigenvalues and eigenspaces of A; we reverse its
sign to get the positive operator A−. It follows that positive operators
span S. Every positive operator of trace 1 is a state; as before we
identify states with density operators. It follows that the states span
S. So it suffices to extend µ to linear combinations of states.

If A =
∑

i aiρi, it is natural to extend µ thus: µA =
∑

i aiµρi . If this
definition is unambiguous, then we have∫

Λ

FE dµA =
∑

ai

∫
Λ

FE dµρi =
∑

aiTr(Eρi) = Tr(EA),
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because the integral and the trace are linear.
To check that this extension is well defined, consider a self-adjoint

operator A expressed in two distinct ways as a linear combination
of states. Because we can pad our linear combinations with zero-
coefficient summands, we may assume without loss of generality that
our two linear combinations of states are linear combinations of the
same states. So we have∑

aiρi −
∑

biρi = A =
∑

ciρi −
∑

diρi

for some coefficients ai, bi, ci, di ≥ 0. Therefore∑
aiρi +

∑
diρi =

∑
biρi +

∑
ciρi

Because all ρi’s have trace 1, it follows that
∑

i ai +
∑

i di =
∑

i bi +∑
i ci. Since the original linear combinations are distinct, not all co-

efficients ai, bi, ci, di are zero; hence the number t =
∑

i ai +
∑

i di =∑
i bi +

∑
i ci > 0. We have∑ ai

t
ρi +

∑ di
t
ρi =

∑ bi
t
ρi +

∑ ci
t
ρi,

where the left are right parts are positive self-adjoint operators of trace
1 and thus states. By the convex linearity of µ on states,∑ ai

t
µρi +

∑ di
t
µρi =

∑ bi
t
µρi +

∑ ci
t
µρi

which gives the desired∑
aiµρi −

∑
biµρi =

∑
ciµρi −

∑
diµρi . �

Let F be the vector space of bounded measurable real-valued func-
tions f on Λ.

Corollary 3.1. For every f ∈ F , the map A 7→
∫

Λ
fdµA is a linear

functional on S.

Proof. Use the linearity of µ and of the integral. �

Lemma 3.2. [Matching] Every f ∈ F is matched by some self-adjoint
operator [f ] in the sense that Tr([f ]A) =

∫
Λ
f dµA for all A ∈ S, i.e.,

that the functionals A 7→
∫

Λ
fdµA and A 7→ Tr([f ]A) on S coincide.

Furthermore, the operator [f ] is determined uniquely.

The matching lemma is the key idea of the proof of the theorem.
After elaborating on the nature of the map f 7→ [f ], we will show that
the structure of F is too rich to be matched by that of S.
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Proof. Consider, for any B ∈ S, the linear functional B̄ on S defined
by B̄(A) = Tr(BA). It suffices to show that every linear functional on
S is B̄ for a unique B ∈ S. Indeed, then

∫
Λ
f dµA = B̄(A) for a unique

B, which then serves as [f ].
The transformation T : B → B̄ is linear. Since S and its dual space

S∗ have the same dimension, it suffices to show that Kernel(T ) = 0.
Suppose that B ∈ Kernel(T ). Then Tr(BA) = 0 for every A ∈ S. In
particular Tr(BB†) = 0. But then B = 0. �

Lemma 3.3. If B is self-adjoint operator such that Tr(Bρ) =
∫

Λ
f dµρ

for all states ρ then B = [f ].

Proof. By the linearity of the integral and trace, Tr(BA) =
∫

Λ
f dµA

for all A ∈ S. By the Matching Lemma, B = [f ]. �

Corollary 3.2.

(1) [1] = I where 1 is the constant function with value 1 and I is
the identity operator.

(2) [FE] = E for every rank-1 projector E.

Proof.

(1) For every state ρ, we have Tr(Iρ) = 1 =
∫

Λ
1 dµρ.

(2) By the definition of expectation representation, Tr(Eρ) =∫
Λ
FE dµρ for all states ρ. �

We consider the standard partial orders on F and on S. The func-
tions in F are ordered pointwise. The operators in S are ordered as
follows: X ≤ Y if Y −X is positive.

Lemma 3.4.

(1) The transformation f 7→ [f ] from F to S is linear.
(2) The linear transformation f 7→ [f ] is monotone: if f ≤ g point-

wise in F then [f ] ≤ [g], i.e. the operator [g]− [f ] is positive.

Proof.

(1) Tr([af + bg] ·A) =
∫

Λ
(af + bg) dµA = a

∫
Λ
f dµA + b

∫
Λ
g dµA =

aTr([f ] · A) + bTr([g] · A).
(2) It suffices to suppose that a function h ∈ F is nonnegative and

prove that the operator [h] is positive, i.e. that 〈ψ|[h]|ψ〉 ≥ 0
for all |ψ〉 ∈ H. The desired inequality is trivial if |ψ〉 = 0, so
let |ψ〉 6= 0. Normalizing |ψ〉, we may assume that its length is
1. Then |ψ〉〈ψ| is a state and therefore µ|ψ〉〈ψ| is a probability
measure. In view of the definition of [h] and the positivity of h,

〈ψ|[h]|ψ〉 = Tr([h]|ψ〉〈ψ|) =

∫
Λ

h dµ|ψ〉〈ψ| ≥ 0. �
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Now we are ready to complete the proof of Theorem 1. We show that
the structure of F given by the pointwise partial order and addition is
too rich to be matched by the corresponding structure of S.

For f, g ∈ F , let (f ∧ g)(λ) = min{f(λ), g(λ)}, so that (f + g −
(f ∧ g))(λ) = max{f(λ), g(λ)}. We restrict attention to functions in
F with values in the real interval [0, 1]; recall that every FE is such a
function. We have

(1) f + g − (f ∧ g) ≤ 1.

Given any two rank-1 projectors A,B of H, let f = FA, g = FB and
H = [f ∧ g]. By equation (1) and claim 2 of Lemma 3.4,

(2) H ≤ A, H ≤ B, and A+B −H ≤ I.

Fix orthonormal vectors |0〉 and |1〉. As usual, let |+〉 = (|0〉 +
|1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2. Use equation (2) with A = |0〉〈0|

and B = |+〉〈+|. (Our choice of vectors |0〉 and |+〉 is convenient
for the following calculation but any two non-orthogonal unit vectors
would also work.) Since H and A − H are positive and A|1〉 = 0, we
obtain

0 ≤ 〈1|H|1〉
0 ≤ 〈1|(A−H)|1〉 = 〈1|A|1〉 − 〈1|H|1〉 = −〈1|H|1〉

so that 〈1|H|1〉 = 0 and therefore, since H is positive, H|1〉 = 0.
Similarly, since H and B − H are positive and B|−〉 = 0, we obtain
H|−〉 = 0. Being linear, H is identically zero on the subspace of H
spanned by |1〉 and |−〉. Hence H|0〉 = 0. By (2),

0 ≤ 〈0|(I−A−B+H)|0〉 = 〈0|0〉−〈0|A|0〉−〈0|B|0〉 = 1−1− 1√
2

=
−1√

2
.

This contradiction completes the proof of the theorem.

4. On the symmetry of state preparations and
measurements

In view of the idea of symmetry or even-handedness suggested by
Spekkens [17], one might ask whether there is a dual version of The-
orem 1, that is, a version that requires convex-linearity for effects but
looks only at pure states and therefore does not require any convex-
linearity for states.

The answer is no. With such requirements, for any H there is a
trivial expectation representation for H, all effects on H and all pure
states on H, so there cannot be a no-go theorem.
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The example can be concisely described as taking the quantum state
itself as the “hidden” variable. In more detail, fix a Hilbert state H
and consider an expectation representation (Λ, F, µ) where

• Λ is the set {|ψ〉〈ψ| : ψ ∈ H} of all pure states on H.
• F assigns to each effect E on H the measurable function
FE(|ψ〉〈ψ|) = 〈ψ|E|ψ〉.
• µ assigns to each pure state ρ = |ψ〉〈ψ| the probability measure

on Λ concentrated at the point |ψ〉〈ψ|.
µ is vacuously convex-linear, and

∫
Λ
FE dµρ = Tr(Eρ). Notice that the

map F is convex linear (in fact, linear) as a function of E.
It may seem that the map µ can be extended to mixed states ρ =∑
pi|ψi〉〈ψi| by convex linearity: µρ =

∑
piµ|ψi〉〈ψi|. But the same

mixed state, unless it is pure, has different representations as a convex
combination of pure states. As a result a single ρ might be assigned
different measures µρ by convex linearity. Theorem 1 shows that such
a convex linear extension of µ is impossible even if we restrict attention
to effects that are rank-1 projectors.

This example also shows that Theorem 1 becomes false if the convex
linearity requirement in Definition 2.1 is dropped.

5. The value approach

Before we compare the expectation and value approaches, we need
to define precisely what is expected of a hidden-variable theory in order
for it to predict the correct values for observables. In this section, we
give the necessary definition, and we use it to state and prove a general
value-focused no-go theorem, based on the result of Kochen-Specker
[13].

Definition 5.1 (Value maps). Let H be a Hilbert space and O a set
of observables, i.e., self-adjoint operators on H. A value map v for O
assigns to each A ∈ O a number v(A) in the spectrum σ(A) of A in such
a way that (v(A1), . . . , v(An)) is in the joint spectrum σ(A1, . . . , An) of
(A1, . . . , An) whenever A1, . . . , An are pairwise commuting.

If H is finite-dimensional then pairwise commuting operators
A1, . . . , An are simultaneously diagonalizable, H admits an orthonor-
mal basis of common eigenvectors of all the Ai’s, and the joint spectrum
σ(A1, . . . , An) consists of the tuples ν = (ν1, . . . , νn) ∈ Rn that occur
as the eigenvalues for such common eigenvectors. In general, even for
infinite-dimensional H, a point ν ∈ Rn belongs to σ(A1, . . . , An) if and
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only if for every ε ≥ 0 there is a unit vector |ψ〉 ∈ H (an approxi-
mate simultaneous eigenvector) such that ‖Ai|ψ〉 − νi|ψ〉‖ < ε for all
i = 1, . . . , n; see [3, Section 6.5].

The part of Definition 5.1 about pairwise commuting operators says
exactly that, if one measures the observables A1, . . . , An simultane-
ously, which is possible because they commute, then the values one
obtains should be among the possibilities permitted by quantum me-
chanics, namely the n-tuples in the joint spectrum of the operators.

On the other hand, for observables that do not commute, quantum
mechanics does not allow them to be simultaneously exactly measured,
does not describe possible simultaneous values, and thus does not im-
pose restrictions on value maps.

Traditionally, in the value-focused approach, states are pure and
represented by unit vectors. We follow the tradition in this section
as it suits our purpose here. We define value-focused hidden-variable
theories.

Definition 5.2. A value representation T for a Hilbert space H and a
set O of observables on H assigns to each state |ψ〉 ∈ H a non-empty
set T|ψ〉 of value maps for O in such a way that, for every A ∈ O, the
set {v(A) : v ∈ T|ψ〉} is exactly the set of possible values of A in state
|ψ〉 allowed by quantum mechanics.

A value representation treats a quantum state |ψ〉 as an ensemble
Tψ of individual systems v, each of which has definite values v(A) for
observables A ∈ O. In the case where H is finite-dimensional, for each
observable A, the {v(A) : v ∈ T|ψ〉} comprises the eigenvalues λ of A
such that the projection of |ψ〉 onto the eigenspace of λ is nonzero.

Proposition 5.1 (Kochen-Specker). In a Hilbert space of dimension
3 there is a finite set O of rank-1 projectors for which no value map
exists.

Proof. The constructions given by Kochen and Specker [13] provide the
desired O. More precisely, the proof of their Theorem 1 uses a Boolean
algebra generated by a finite set of one-dimensional subspaces of H,
and it shows that the projectors to those subspaces constitute an O of
the required sort. �

Proposition 5.2. Let H be a Hilbert space of dimension d ≥ 3.

(1) If d is infinite then there is a finite set O of infinite-rank pro-
jectors of H for which no value map exists.

(2) If d is finite then there is a finite set O of rank-1 projectors of
H for which no value map exists.
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Proof. If two Hilbert spaces are isomorphic and if one of them has a
finite set O of projectors with no value map, then the other also has a
similar set; just conjugate the projectors in O by any isomorphism be-
tween the two spaces. Thus, the existence of the desired set O depends
only on the dimension of H, not on the specific space.

To prove (1), let K,L be Hilbert spaces with dim(K) = 3 and
dim(L) = d. The tensor product K ⊗ L has the same dimension as
H and so it can be identified with H. By the previous proposition,
there is a set O1 of rank-1 projectors in K with no value map for O1.
Define

O = {P ⊗ IL : P ∈ O1},

where IL is the identity operator on L. The set O of infinite-rank
projectors has the algebraic structure of O1, so that there is no value
map for O.

To prove (2), we use induction on d ≥ 3. The previous proposition
provides the basis of induction. To handle the induction step, consider
finite-dimensional Hilbert spaces H ⊆ H′ where dim(H′) = dim(H)+1
and suppose that H has a finite set of rank-1 projectors for which no
value map exists. We construct a finite set of rank-1 projectors in H′
for which no value map exists.

Let |ψ〉 be any unit vector in H′, and observe that its orthogonal
complement, |ψ〉⊥, is a subspace of H′ of the same dimension as H.
By the assumption, this subspace |ψ〉⊥ has a finite set O of rank-1
projectors for which no value map exists. Each element P ∈ O can be
regarded as a rank-1 projector of H′: if P = |ϕ〉〈ϕ| in |ψ〉⊥, interpret
the same formula |ϕ〉〈ϕ| in H′.

Let O1 consist of all the projectors from O, interpreted as projectors
of H′, together with one additional rank-1 projector, namely |ψ〉〈ψ|.
What can a value map v for O1 look like? It must send |ψ〉〈ψ| to one
of its eigenvalues, 0 or 1.

Suppose first that v(|ψ〉〈ψ|) = 0. Then, using the fact that |ψ〉〈ψ|
commutes with all the other elements of O1, we easily compute that
what v does to those other elements amounts to a value map for O.
But Owas chosen so that it has no value map, and so we cannot have
v(|ψ〉〈ψ|) = 0. Therefore v(|ψ〉〈ψ|) = 1. (It follows that v maps the
projectors associated to all the other elements of O′ to zero, but we
shall not need this fact.)

We have thus shown that any value map for the finite set O1 must
send |ψ〉〈ψ| to 1. Repeat the argument for another unit vector |ψ′〉
that is orthogonal to |ψ〉. There is a finite set O2 of rank-1 projectors
such that any value map for O2 must send |ψ′〉〈ψ′| to 1. No value map
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can send both |ψ〉〈ψ| and |ψ′〉〈ψ′| to 1,because their joint spectrum
consists of only (1, 0) and (0, 1). Therefore, there can be no value map
for the union O1 ∪ O2, which thus serves as the O′ required by the
theorem. �

The assumption in part (2) that d is finite cannot be omitted. If d is
infinite, then the set of all finite-rank projectors admits a value map,
namely the constant zero function. This works because the definition
of “value map” imposes constraints on only finitely many observables
at a time.

Theorem 2. Let H be a Hilbert space of dimension d ≥ 3. There is no
value representation for H and the set of all projectors on H. If d is
finite then there is no value representation for H and the set of rank-1
projectors on H.

6. Comparing the two approaches

The operational contextuality of Spekkens is more general than the
traditional contextuality of Kochen-Specker in the sense that it applies
not only to measurements but also to state preparations. This does
not mean that if a no-go theorem rules out operationally noncontex-
tual hidden-variable theories then it rules out tradionally noncontextual
hidden-variable theories. Strengthening the hypothesis weakens the
theorem. In fact, the opposite implication would be true if Spekkens
just augmented the traditional measurement noncontextuality with a
state-preparation noncontextuality.

But Spekkens didn’t simply add state-preparation noncontextuality
to the traditional measurement noncontextuality. The operational ver-
sion of measurement contextuality differs substantially from the tradi-
tional version. The traditional contextuality deals with the traditional
measurements of observables producing eigenvalues and is subject to
the quantum-theoretic restriction on the values of observables: If one
measures simultaneously a tuple of commuting observables in a given
state, the tuple of observed values is in the joint spectrum of these
observables. The operational contextuality deals with the measure-
ments of effects where the observed values need not be in the spectrum
and thus the spectrum restriction need not hold. As a result, the two
versions of contextuality are incompatible: neither implies the other. 1

1By the way, we find that title claim “Negativity and contextuality are equiva-
lent notions of nonclassicality” of [17] unsubstantiated. Spekkens observes that the
notions of “noncontextual ontological model” and “nonnegative quasi-probability
representation” are equivalent. His definition of “ontological model” includes a
nonnegativity requirement (because it uses positive functions to model preparation
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In the rest of this section, we compare the expectation-focused and
value-focused approaches. It suffices for our purposes to restrict at-
tention to the case where the Hilbert space H in question is finite-
dimensional. We argue that the expectation-focused approach is not
more general than the value-focused one. But certain links between
the two approaches are undeniable.

Consider an expectation representation T = (Λ, F, µ) for a Hilbert
space H, the projectors on H such that every FP (λ) ∈ {0, 1}, and
all pure states on H. According to §4, such restricted expectation
representations exist.

T gives rise to a probabilistic value representation of sorts. For any
λ ∈ Λ, the map P 7→ FP (λ) assigns to a projector P an eigenvalue
of P , just as a standard value representation v would assign to an
observable A an eigenvalue v(A) of A. We do not, however, impose
on the map P 7→ FP (λ) the joint-spectrum requirement for commuting
projectors. Also, for any pure state ρ, projector P and eigenvalue a of
P , the probabilities µρ{λ : FP (λ) = a} are determined correctly by the
expectation Tr(Pρ) because FP (λ) has only the two possible values
0 and 1 and because µρ{λ : FP (λ) = 1} =

∫
Λ
Fλ(P )dµρ = Tr(Pρ).

Moreover, F admits an extension to arbitrary observables A so that for
any pure state ρ, observable A and eigenvalue a of A, the probabilities
µρ{λ : FA(λ) = a} are correctly determined as well.

Notice, however, that this construction crucially depends on the fact
that the joint-spectrum requirement is not imposed. This requirement
is key in Kochen-Specker’s contextuality proof, and it is absent in the
expectation-focused approach.

The claim that the expectation-focused approach is more general
than the value-focused one seems false. Certainly, there is no obvi-
ous way to prove Theorem 2 by means of the machinery developed to
prove Theorem 1. But disproving the claim is difficult. In fact, the

procedures and measurement procedures), and his definition of “quasi-probability
representation” implicitly includes a noncontextuality requirement (because it as-
signs functions directly to density operators and to POVMs, not to measurement
procedures and preparation procedures). What he shows, therefore, is that adding
noncontextuality to certain assumptions that already include nonnegativity pro-
duces the same notion as adding nonnegativity to other assumptions that already
include noncontextuality. That does not make nonnegativity and noncontextual-
ity equivalent. As an analogy, consider the algebraic notion of “field”. It can
be obtained by adding commutativity to the notion of “division ring”, and it can
also be obtained by adding the existence of inverses (for all nonzero elements) to
the notion of “integral domain”. But the fact that “commutative division ring”
is equivalent to “integral domain with inverses for all nonzero elements” does not
make commutativity equivalent to the existence of inverses.
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exact meaning of the claim is not clear. Theorem 2 does follow from
Theorem 1 because any theorem follows from any proposition.

In principle, there are some ways to attack the claim. For example,
one may try to construct a counter-factual physical world where the
expectation no-go theorem holds but the value no-go theorem fails.
This seems to be a thankless task. The burden of proof should be on
those making the claim in the first place.

There is, however, one special case, that of dimension 2. Theorem 1
assumes dim(H) ≥ 2 while Theorem 2 assumes dim(H) ≥ 3. So what
about dimension 2?

Bell has given a hidden-variable theory for a two-dimensional Hilbert
space in [2, §2], and so did Kochen and Specker in [13, §6]. Bell’s theory
was simplified by Mermin [14]. Building on this, we construct a value
representation for C2, all observables on C2, and all pure states in C2.
As usual C2 is the Hilbert space of two-component vectors over the
field C of complex numbers.

Theorem 3. There exists a value representation for C2 and all observ-
ables on C2.

In contrast, all expectation no-go theorems in the literature as well
as Theorem 1 apply to the case of dimension 2. This is an important
advantage of the expectation approach.

Proof of Theorem 3. Linear operators on C2 are given by 2×2 matrices
over C. Let ~σ be the 3-component “vector” whose entries are the Pauli
matrices σx = ( 0 1

1 0 ) , σy = ( 0 −i
i 0 ) , σz = ( 1 0

0 −1 ). Any observable A on C2

has the form a0I+(~a ·~σ) where a0 ∈ R and ~a ∈ R3, and the eigenvalues

of A are a0±‖~a‖. Two observables a0I +~a · ~σ and b0I +~b · ~σ commute

if and only if ~a = 0 or ~b = 0 or else ~a 6= 0,~b 6= 0 and ~a,~b are collinear,

i.e., c~a = ~b for some real coefficient c 6= 0. If the coefficient c > 0

then ~a,~b are parallel, and if c < 0 then they are antiparallel. A map v
that assigns to each observable A an eigenvalue of A is a value map if
and only if the following two conditions hold for any two observables

A = a0 + ~a · ~σ, B = b0 +~b · ~σ with nonzero vectors ~a,~b:

(1) if ~a,~b are parallel then either v(A) = a0 + ‖~a‖, v(B) = b0 + ‖~b‖
or v(A) = a0 − ‖~a‖, v(B) = b0 − ‖~b‖,

(2) if ~a,~b are antiparallel then either v(A) = a0 + ‖~a‖, v(B) =

b0 − ‖~b‖ or v(A) = a0 − ‖~a‖, v(B) = b0 + ‖~b‖.
Let S be the unit sphere in R3. If ~n = (nx, ny, nz) ∈ S, then the dot

product ~n · ~σ is a Hermitian operator with eigenvalues ±1. Further,
every state vector (i.e. every unit vector) in C2 is an eigenvector, for
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eigenvalue +1, of ~n · ~σ for a unique ~n ∈ S; we use the notation |~n〉 for
this eigenvector. If C2 represents the states of a spin-1

2
particle, then

the operator 1
2
~n · ~σ represents the spin component in the direction ~n,

and so |~n〉 represents the state in which the spin is definitely aligned
in the direction ~n.

The desired value representation T assigns to each state |~n〉 a set
T|~n〉 of value maps

(3) v|~n〉(A, ~m) =

{
a0 + ‖~a‖ if (~m+ ~n) · ~a ≥ 0

a0 − ‖~a‖ if (~m+ ~n) · ~a < 0.

where ~m ranges over the punctured sphere S−{−|~n〉} and A = a0I+~a·~σ
ranges over the observables on C2.

We need only check that, for any observable A = a0 + ~a · ~σ and any
state |~n〉, the set {v|~n〉(A, ~m) : ~m ∈ S − {−~n}} comprises exactly the
eigenvalues of A obtainable by measuring A in |~n〉. This is obvious if
~a = 0 so that A has a unique eigenvalue. Suppose that ~a 6= 0. By
definition, |~n〉 is an eigenvector for a ~a · ~σ if and only if ~n is collinear
with ~a. Three cases arise.

Case 1: ~a = ‖~a‖ · ~n. By definition, |~n〉 is an eigenvalue of ~n · ~σ for
eigenvalue +1, so that

A|~n〉 = a0|~n〉+ (~a · ~σ)|~n〉 = a0|~n〉+ ‖~a‖(~n · ~σ)|~n〉 = (a0 + ‖~a‖)|~n〉.
Thus |~n〉 is an eigenvector of A for eigenvalue a0+‖~a‖; any measurement
of A in |~n〉 returns a0 + ‖~a‖. It suffices to show that (~m + ~n) · ~a =
~m · ~a+ ‖~a‖ is nonnegative for all ~m in the sphere S, which is obvious.

Case 2: ~a = −‖~a‖ · ~n. Since

A|~n〉 = a0|~n〉+ (~a · ~σ)|~n〉 = a0|~n〉 − ‖~a‖(~n · ~σ)|~n〉 = (a0 − ‖~a‖)|~n〉,
|~n〉 is an eigenvalue of A for eigenvalue a0−‖~a‖, and any measurement
of A in |~n〉 returns a0−‖~a‖. We need to show that (~m+~n)·~a = ~m·~a−‖~a‖
is negative for all ~m in the punctured sphere S−{~n}, which is obvious.

Case 3: ~a is not collinear with ~n. In this case, |~n〉 is not an eigenvector
of A, and therefore both eigenvalues can be obtainded by measuring
A in |~n〉. It suffices to show that (~m + ~n) · ~a is positive for some
~m ∈ S − {~n} and negative for some other ~m ∈ S − {~n}. It is positive
when ~m = ~a/‖~a‖, and it is negative when ~m = −~a/‖~a‖. �

Bell and Mermin had in mind a somewhat different hidden-variable
theory.

Proposition 6.1. There exists a hidden variable theory for C2 which
correctly predicts the expectation of any given observable in any given
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pure state, as well as the probability that measuring a given observable
in a given pure state results in a given eigenvalue.

For the reader’s convenience, we present Mermin’s argument, some-
what simplified.

Proof. We use notation introduced in the proof of Theorem 3. The
hidden variable ~m ranges over the unit sphere S in R3 endowed with
the uniform probability distribution. Any state |~n〉 is treated as an
ensemble v|~n〉 in (3) except that now ~m ranges over all of S, and in
particular v|~n〉(A,−~n) = a0 + ‖~a‖.

Given an observable A and a state |~n〉, we show (i) the average∫
S v|~n〉(A, ~m) d~m is equal to the expectation 〈~n|A|~n〉 and (ii) for every

eigenvalue α of A, the probability that v|~n〉(A, ~m) = α is the probability
that measuring A in |~n〉 gives α.

Since A has only two eigenvalues, its expectation in a given state
determines their probabilities in that state; so (ii) follows from (i).

To prove (i), we may assume that a0 = 0, because a general a0 would
just be added to both sides of the equation. Thanks to the rotational
symmetry of the situation (where rotations are applied to ~a, ~n and ~m),
we may assume that the vector ~a points in the z-direction. Finally, by
scaling, we may assume that ~a = (0, 0, 1). So our task is to prove that
the average over ~m of the values assigned to σz is nz.

We have v|~n〉(σz, ~m) = ±1 where the sign is chosen to agree with
that of mz +nz. This mz +nz is the z-coordinate of a random point on
the unit sphere centered at ~n. So the question reduces to determining
what fraction of this sphere lies above the x-y plane. This plane cuts
this unit sphere horizontally at a level nz below the sphere’s center.
We invoke the theorem of Archimedes that a plane, cutting a sphere,
divides the sphere’s surface area in the same ratio that it divides the
diameter perpendicular to the plane. So, by this theorem, our plane
divides the sphere’s area in the ratio of 1 + nz (above the plane) to
1− nz (below the plane). That is, the value assigned to σz is +1 with
probability (1 + nz)/2 and −1 with probability (1 − nz)/2. Thus, the
average value of σz is nz, as required. �

What happens if we try to fit the hidden-variable theory in the proof
of Proposition 6.1 into the form (Λ, F, µ) of an expectation representa-
tion? A natural choice for Λ is the ball {~m+ ~n : ~m,~n ∈ S} of radius 2
centered at the origin of R3. F assigns to every observable A = a0+~a·~σ
the measurable function FA(~m+~n) equal a0 +‖~a‖ if (~m+~n) ·~a ≥ 0 and
equal a0−‖~a‖ otherwise. Finally, µ assigns to each pure state |~n〉〈~n| the
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uniform distribution on the two-dimensional surface of a unit sphere
centered at ~n, because we are choosing ~m randomly while ~n is fixed.

If we restrict attention to projectors (rather than arbitrary observ-
ables) then our (Λ, F, µ) is a genuine expectation representation for C2,
all projectors on C2 and all pure states on C2. (The proof of this fact
uses that no projector is a nontrivial convex combination of others.)
It is tempting to extend the expectation representation to all density
operators by convex linearity. By Theorem 1, no such extension exists.
Here is an example showing what goes wrong.

Consider the four pure states corresponding to spin in the directions
of the positive x, negative x, positive z, and negative z axes. The
corresponding density operators are the projectors

I + σx
2

,
I − σx

2
,

I + σz
2

,
I − σz

2
,

respectively. Averaging the first two with equal weights, we get 1
2
I;

averaging the last two gives the same result. Since µ is supposed to
be convex linear, any extension would have to assign to the density
operator 1

2
I the average of the probability measures assigned to the

pure states with spins in the ±x directions and also the average of
the probability measures assigned to pure states with spins in the ±z
directions. But these two averages are visibly very different. The first
is uniform on the union of two unit spheres tangent to the y-z-plane at
the origin, while the second is uniform on the union of two unit spheres
tangent to the x-y-plane at the origin.
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