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Abstract

This is a gentle introduction to the Rectilinear Steiner Problem. The
interest in the Rectilinear Steiner Problem is related to the Very Large-Scale
Integration (VLSI) technology that combines thousands of transistors into a
single chip. Our note is based on the pioneering paper of Maurice Hanan.
The main result of Hanan is an algorithm reducing any solution to a solution
within a so-called Hanan grid. We simplify Hanan’s algorithm.

1 Introduction
In combinatorics, vertices of a graph are abstract entities, and edges are unordered
pairs of vertices. In applications, the nature of vertices may be important, and
edges may be more informative.

In the case of interest to us here, graphs are geometric objects residing on
a plane with a fixed cartesian coordinate system. The vertices of such a graph
are points on the plane, and there are only finitely many of them; an edge is a
continuous line connecting two vertices and composed of finitely many horizontal
and vertical segments. No two edges cross; a point that belongs to distinct edges is
an end point of each of them. The total length of the edges of a geometric graph is
the cost of the graph. In the sequel, graphs are by default such geometric graphs.

For any set P of points on the plane, the Rectilinear Steiner Problem for P, in
short RSP(P), is to find a minimal-cost connected graph whose vertices include
P. We say that a graph G is a candidate solution or simple a solution for RSP(P)
if G is connected and includes all points of P as vertices; the P vertices are the
terminals of G, and the remaining vertices are auxiliary. A solution of minimal
cost is a minimal solution for RSP(P).

Note that auxiliary vertices of degree 2 are optional in the following sense. For
any RSP(P) and any solution G for RSP(P), removing a degree 2 auxiliary vertex
(and combining the incident edges into one) or putting a degree 2 auxiliary vertex
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onto an existing edge (and thus breaking it into two incident edges) produces
another solution for RSP(P) of the same cost.

The interest in the Rectilinear Steiner Problem is related to the Very Large-
Scale Integration (VLSI) technology that combines thousands of transistors into a
single chip. The wires on a chip run horizontally or vertically.

Maurice Hanan wrote an influential pioneering work on the Rectilinear Steiner
Problem [1]. The Hanan grid or just grid of a point set P on the plane comprises
points (a, b) such that the vertical line x = a and the horizontal line y = b each
hosts at least one point of P. Hanan’s main theorem asserts that, for any RSP(P),
there is a minimal solution with all vertices on the grid. The proof of the theorem
is more informative. It provides an algorithm supporting the following theorem.

Theorem 1 (Grid Theorem). For any RSP(P), every solution with at least one
vertex or edge corner off the Hanan grid for P can be transformed to a smaller-
or-equal cost solution with all vertices and edge corners on the grid.

Since there are only finitely many solutions with all vertices and edge corners
on the grid, the Grid Theorem implies the existence of a minimal solution for any
RSP(P). Another obvious consequence of the Grid Theorem is that, for any solu-
tion for RSP(P) that bulges out of the enclosing axis-aligned rectangle of P, there
is a smaller-or-equal cost solution within the rectangle. In fact, by Corollary 6
below, there is always a smaller-cost solution within the rectangle.

This paper is a gentle introduction to the Rectilinear Steiner Problem based on
Hanan’s paper. We simplify Hanan’s algorithm for the Grid Theorem and make
various additional improvements.

It will be convenient to use geographical language: the x-axis goes west to
east, the y-axis goes south to north, x-coordinates are longitudes, y-coordinates
are latitudes, lines parallel to the x-axis are parallels, lines parallel to the y-axis
are meridians.

2 Junctions vs. true terminals
As in graph theory, our trees are acyclic connected graphs. The vertices of a tree
are often called nodes.

There is a simple transformation of any non-tree solution G1 to a smaller-
cost tree solution. Remove one edge of a cycle in G1; the remaining graph G2 is
connected. If G2 still has a cycle, remove one cycle edge in G2; the remaining
graph G3 is connected. And so on. Since the number of edges in G1 is finite, the
process terminates and produces a tree solution.

According to Hanan [1], in every minimal-cost solution for any RSP(P) with
t ≥ 2 terminals, the number of auxiliary vertices of degree ≥ 3 is ≤ t − 2 [1].



In fact, a stronger claim is valid for every tree solution for RSP(P). For brevity,
auxiliary vertices of degree ≥ 3 will be called junctions, and terminals of degree
1 will be called true terminals.

Theorem 2. In every tree solution for any RSP(P) with t ≥ 2 true terminals, the
number of junctions is ≤ t − 2.

We will use the standard (and easy to prove) fact that every tree with N nodes
has exactly N − 1 edges.

Proof. First we prove the theorem in a special case where every terminal is a true
terminal and there are no degree 2 vertices. Let n be the number of nodes in our
tree solution. Then the tree has altogether n + t nodes and n + t − 1 edges. Each
terminal has one edge adjacent to it and each junction has at least three, so there
are ≥ t+3n ends-of-edges. That’s twice the number of edges, so 2(n+t−1) ≥ t+3n.
Transposing some terms in this inequality gives t − 2 ≥ n, as required.

Now we prove the theorem in the general case. Given a tree solution S for
RSP(P) with n junctions and t ≥ 2 true terminals, let P0 = {p ∈ P : Degree(p) =

1}. Treat the non-true terminals of S as auxiliary nodes, and remove all degree 2
nodes from S . This transforms S into a tree solution for RSP(P0), with n0 ≥ n
junctions and the same number t of true terminals. By the special case of the
theorem, n ≤ n0 ≤ t − 2. �

3 The case of three terminals
In the case of three terminals, the Rectilinear Steiner Problem is rather simple
and instructive. Our exposition follows Hanan’s but we provide all the proofs.
This section will not be used in the sequel. If x1, x2, x3 are real numbers with
x1 ≤ x2 ≤ x3, the median Med {{ x1, x2, x3 }} of the multiset {{ x1, x2, x3 }} is x2.

Lemma 3. min
x

3∑
i=1

|xi − x| = max xi −min xi, and the minimum is attained if and

only x = Med {{ x1, x2, x3 }} .

Proof. Without loss of generality, x1 ≤ x2 ≤ x3 so that x1 = min xi, x2 =

Med {{ x1, x2, x3 }} and x3 = max xi. Then∑
|xi − x| = |x2 − x| + (|x3 − x| + |x − x1|)

≥ |x2 − x| + (x3 − x1),

and the minimum x3 − x1 is attained if and only x = x2. �



For points p1 = (x1, y1) and p2 = (x2, y2) on the plane, the rectilinear distance
d(p1, p2) between p1 and p2 is |x1 − x2| + |y1 − y2|. The rectilinear distance is also
known as Manhattan or L1 distance.

Lemma 4. Let p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3) and q = (x, y) be arbitrary
points on the plane. Then

min
q

3∑
i=1

d(pi, q) = (max xi −min xi) + (max yi −min yi})

and the minimum is attained if and only if q = (Med {{ x1, x2, x3 }} ,Med {{ y1, y2, y3 }} ).

Proof.

min
q

3∑
i=1

d(pi, q) = min
q

( 3∑
i=1

|xi − x| +
3∑

i=1

|yi − y|
)

= min
x

3∑
i=1

|xi − x| + min
y

3∑
i=1

|yi − y|.

The claim follows by applying the previous lemma twice. �

Theorem 5. Let p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3) be distinct points and
q0 = (x0, y0) = (Med {{ x1, x2, x3 }} ,Med {{ y1, y2, y3 }} ). Ignoring vertices of degree 2,
RSP{p1, p2, p3} has a unique minimal solution G, and Cost(G) =

∑3
i=1 d(pi, q0),

and either G has no junctions or it has a single junction q0.

Proof. Let c =
∑3

i=1 d(pi, q0). In any solution G for RSP{p1, p2, p3}, there is a path
connecting a westmost terminal with an eastmost one. The path goes from longi-
tude min{x1, x2, x3} to longitude max{x1, x2, x3}. Accordingly, the total length of
the horizontal edge segments of the path is ≥ max{x1, x2, x3} − min{x1, x2, x3}.
Similarly G has a path with the total length of the vertical edge segments ≥
max{y1, y2, y3} − min{y1, y2, y3}. By Lemma 4, Cost(G) ≥ c. So any solution
of cost c is minimal.

To construct the desired minimal solution, we consider two cases. If q coin-
cides with one of the terminals, say q = p2, then the desired minimal solution has
two edges, an edge between p1 and p2 of length d(p1, p2) and an edge between
p2 and p3 of length d(p2, p3). Otherwise, the desired minimal solution has three
edges, between q and terminals p1, p2, p3 of lengths d(p1, q), d(p2, q), d(p3, q) re-
spectively. In either case, the cost is c.

It remains to prove the uniqueness claim. The fact that G has at most one
junction follows from Theorem 2. The fact that the junction, if present, should be
q0 follows from the previous lemma. �



4 Proof of Grid Theorem
In this section we prove the Grid Theorem formulated in the introduction. In the
process we construct a simplified algorithm that transforms a given solution for
RSP(P) into a smaller-or-equal cost solution within the grid.

Recall that degree-2 vertices are optional. In this proof, all corner points of a
graph — and only corner points — will be treated as degree-2 vertices. It follows
that every edge is horizontal or vertical.

For any solution G, call a parallel or meridian G-wrong if it hosts an edge of
G but no terminals. Define the deficit of G to be the total number of G-wrong
parallels and meridians.

We prove the theorem by induction on the deficit. So let G be a positive-deficit
solution for RSP(P). It suffices to transform G into a smaller-deficit solution G′

of smaller or equal cost.
By the parallel/meridian symmetry, without loss of generality we may assume

that there is a G-wrong meridian. For any G-wrong meridian V , let w(V) and e(V)
be the numbers of edges connecting vertices on V with vertices to the west or east
of G respectively. By the west/east symmetry, without loss of generality we may
assume that there is a G-wrong meridian V with w(V) ≤ e(V).

Let V ′ the westmost meridian east of V that hosts a vertex of G. Move V
eastward until it merges with V ′. The merged meridian needs to be cleaned up.
Do this in two stages.

Stage 1. For any two vertices v ∈ V and v′ ∈ V ′ of the same latitude, merge v with
v′. If v′ is terminal then the merged vertex is terminal as well. If v′ is auxiliary and
the merging results in a vertex of degree 2 that isn’t a corner, delete the merged
vertex (and combine the two incident edges into one).

Stage 2. List south to north the vertices of the merged meridian resulting from
stage 1: p1, p2, . . . If pi and pi+1 are connected by a portion e of a vertical edge
that used to reside on V as well as by a portion e′ of an edge residing on V ′, merge
e and e′.

The result is a solution G′ for RSP(P). The deficit of G′ is smaller by at least
1 than that of G because we’ve eliminated the G-wrong meridian V . There could
also have been a G-wrong parallel hosting a single edge of G, namely a horizontal
edge between V and V ′ which would disappear when its ends are brought together.
Such a parallel would be eliminated as well.

The total length of horizontal edges of G′ is less than or equal to that of G
depending on whether w(V) < e(V) or w(V) = e(V). The total length of vertical
edges of G′ is less than or equal to that of G depending on whether any portions
of vertical edges were merged or not. Thus Cost(G′) ≤ Cost(G). This concludes
the proof of the Grid Theorem.



Corollary 6. For any RSP(P), every solution for RSP(P) that bulges out of the
enclosing rectangle of P can be transformed to a smaller-cost solution within the
rectangle.

Proof. The proof is that of the Grid Theorem except a parallel (resp. meridian)
is declared G-wrong if it is north or south (resp. west or east) of the enclosing
rectangle. Again, without loss of generality there is a G-wrong meridian. By the
west/east symmetry, there is a G-wrong meridian west of the enclosing rectangle.
If V is the westmost meridian, we have w(V) = 0 < e(V). Accordingly moving
V eastward results in smaller total length of horizontal edges and therefore in a
smaller cost. �
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