
Semantics-to-syntax analyses of

algorithms

Yuri Gurevich

Microsoft Research, Redmond, WA, USA

The real question at issue is “What are the possible processes which can be
carried out in computing a number?”

Turing

Give me a fulcrum, and I shall move the world.

Archimedes

Abstract. Alan Turing pioneered semantics-to-syntax analysis of algo-
rithms. It is a kind of analysis where you start with a large semantically
defined species of algorithms, and you finish up with a syntactic artifact,
typically a computation model, that characterizes the species. The task
of analyzing a large species of algorithms seems daunting if not impossi-
ble. As in quicksand, one needs a rescue point, a fulcrum. In computation
analysis, a fulcrum is a particular viewpoint on computation that clari-
fies and simplifies things to the point that analysis become possible. We
review from that point of view Turing’s analysis of human-executable
computation, Kolmogorov’s analysis of sequential bit-level computation,
Gandy’s analysis of a species of machine computation, and our own anal-
ysis of sequential computation.

1 Introduction

This article is a much revised and extended version of our Founda-
tional Analyses of Computation [17].

1.1 Terminology

Species of algorithms For the sake of brevity we introduce the
term species of algorithms to mean a class of algorithms given by
semantical constraints. We are primarily interested in large species
like sequential algorithms or analog algorithms.

Q1: Contrary to biological species, yours are not necessarily
disjoint. In fact, one of your species may include another as
a subspecies.

A: This is true. For example, the species of sequential-time
algorithms, that execute step after step, includes the species
of sequential algorithms, with steps of bounded complexity.

Q: The semantic-constraint requirement seems vague.

A: It is vague. It’s purpose is just to distinguish the analyses
of algorithms that we focus upon here from other analyses of
algorithms in the literature.

Analyses of algorithms We are interested in the semantics-to-
syntax analyses of algorithms like that of Turing. You study a species
of algorithms. The original definition of the species may have been
vague, and you try to explicate it which may narrow the species
in the process. And you finish up with a syntactic artifact, like a
particular kind of machines that execute all and only the algorithms
of the (possibly narrowed) species in consideration.

Q: Did Turing’s analysis cover all algorithms or only those of
a particular species.

A: There are limitations on algorithms covered by Turing’s
analysis, and we address some of them in §2.

Q: In computer science, they teach the analysis of algorithms.
I guess that isn’t semantics-to-syntax analysis.

A: The analysis of algorithms in such a course is normally the
analysis of known algorithms, say known sorting algorithms
or known string algorithms. A significant part of that is re-
source analysis: estimate how much time or space or some
other resource is used by an algorithm. It all is important
and useful, but it isn’t a semantics-to-syntax analysis.

Algorithms and computations By default, in this paper, compu-
tations are algorithmic. This is the traditional meaning of the term

1 Q is our inquisitive friend Quisani, and A is the author.

computation in logic and computer science. However, a wider mean-
ing of the term is not uncommon these days. For an interesting and
somewhat extreme example see [29] where computations are viewed
as “processes generating knowledge.”

The concepts of algorithms and computations are closely re-
lated. Whatever algorithms are syntactically, semantically they spec-
ify computations. For our purposes, the analysis of algorithms and
the analysis of computation are one and the same.

Q: One algorithm may produce many different computations.

A: That is why we defined species as collections of algorithms
rather than computations.

Algorithms and computable functions In mathematical logic,
theory of algorithms is primarily the theory of recursive functions.
But there may be much more to an algorithm than its input-output
behavior. In general algorithms perform tasks, and computing func-
tions is a rather special class of tasks. Note in this connection that,
for some useful algorithms, non-termination is a blessing, rather than
a curse. Consider for example an algorithm that opens and closes the
gates of a railroad crossing.

Sequential algorithms

Q: You made a distinction between sequential and sequential-
time computations. Give me an example of a sequential-time
algorithm that isn’t sequential.

A: Consider the problem of evaluating a finite logic circuit in
the form of a tree. Each leaf is assigned 0 or 1, and each inter-
nal node is endowed with a Boolean operation to be applied
to the Boolean values of the children nodes. Define the height
of a leaf to be 0, and the height of an internal node to be 1
plus the maximum of the heights of its children. At step 1,
the nodes of height 1 fire (i.e. apply their Boolean operations).
At step 2, the nodes of height 2 fire. And so on, until the top
node fires and produces the final Boolean value.

Q: So the nodes of any given height fire in parallel. Presumably
sequential algorithms don’t do parallel operations.

A: Well, bounded parallelism is permissible in sequential algo-
rithms. For example, a typical Turing machine can do up to
three operations in parallel: change the control state, modify
the active-cell symbol, and move the tape.

Q: It seems that sequential algorithms are sequential-time al-
gorithms with bounded parallelism.

A: No, things are a bit more complicated. A sequential-time al-
gorithm may be interactive, even intra-step interactive, while
it is usually assumed that a sequential algorithm does not in-
teract with its environment, certainly not while performing a
step.

Q: I find the term sequential algorithm not very cogent.

A: The term is not cogent but traditional. Elsewhere we used
alternative terms: small step algorithms [1], classical algo-
rithms [9], classical sequential algorithms [16]. The term se-
quential time was coined in [15].

Q: You mentioned that the steps of a sequential algorithm are
of bounded complexity. What do you mean?

A: We will confront this question in §5.

Q: I presume a sequential algorithm can be nondeterministic.

A: Many authors agree with you, but we think that true
sequential algorithms are deterministic, and so did Turing:
“When such a machine reaches one of these ambiguous con-
figurations, it cannot go on until some arbitrary choice has
been made by an external operator.” Nondeterminism in-
volves intra-step interaction [15, §9], because an external in-
tervention is needed to resolve nondeterminism; otherwise the
algorithm hangs helplessly. In this connection, recall Yogi
Berra’s famous nondeterministic algorithm: “When you come
to a fork in the road, take it!”

Q: Then why do many authors allow sequential algorithms to
be nondeterministic.

A: Because, for many purposes, it is convenient to hide the
nondeterminism resolving mechanism.

Q: I guess you’ll be talking plenty about interaction in the rest
of the paper.

A: No, not in this paper. But we analyzed interactive algo-
rithms elsewhere [3, 5].

1.2 What’s in the paper?

We review selected semantics-to-syntax analyses of species of algo-
rithms in the literature. In each case, we try to identify the species
and explicate the fulcrum that made the analysis possible.

Q: The fulcrum? The literal meaning of the word is the support
point about which a lever turns, as in the Archimedes’s “Give
me a fulcrum, and I shall move the world.” But that isn’t what
you mean.

A: We use the term as a metaphor. Suppose that you study
a large species of algorithms, and you ask yourself whether
there are syntactic means to describe the species. The problem
seems overwhelming, impossible to solve. There are so many
vastly different algorithms there. You don’t even know where
to start. Yet you persist and continue to think about the
problem. Now imagine that one day an idea occurs to you
to look at the problem differently, from another angle so to
speak. And suddenly the problem looks more feasible though
not necessarily easy. It is that idea that we metaphorically
call a fulcrum.

Q: Your metaphorical use of the term seems by no means
restricted to the semantics-to-syntax analysis of algorithms.

A: That’s right. Here’s an example from another domain. In
the 1960s people tried various ways to organize large quanti-
ties of data. There are so many different kinds of data, and
they seem to require different presentations. But eventually it
occurred to Edgar Frank Codd to view a database as a rela-
tional structure of mathematical logic [7]. Relational database
theory was born. The rest is history.

In §2, we review Alan Turing’s celebrated analysis of computation
in his 1936 paper [25].

Q: Was it the first semantics-to-syntax analysis?

A: No, Alonzo Church’s analysis [6] preceded that of Turing.
There was also analysis of recursion that culminated with
Kurt Gödel’s definition of recursive numerical2 functions [18].
These classical analyses are richly covered in the logic litera-
ture, and Turing’s analysis is the deepest and by far the most
convincing.

In §3, we discuss Andrey Kolmogorov’s analysis of computation of
the 1950s [19, 20].

Q: We spoke about Kolmogorov machines earlier [13]. They
compute the same numerical functions as Turing machines
do, and there had been other computation models of that
kind introduced roughly at the same time or earlier. In par-
ticular, Emil Post introduced his machines already in 1936
[23]. Kolmogorov’s compatriot Andrey Markov worked on his
normal algorithms in the early 1950s [22]. Why do you single
out Kolmogorov’s analysis?

A: As far as we know, among the analyses of algorithms of
that post-Turing period, only Kolmogorov’s analysis seems
to be a true semantics-to-syntax analysis. By the way, even
though Kolmogorov machines do not compute more numeri-
cal functions than Turing machines do, they implement more
algorithms.

Q: That raises the question when two algorithms are the same.

A: We addressed the question in [4].

In §4, we review Robin Gandy’s analysis of machine computations
[10]. In §5, we review our own analysis if sequential algorithms.

Q: You review your own analysis? Why?

A: Well, most of the semantics-to-syntax analyses of species
of algorithms in the literature are devoted to sequential algo-
rithms, and we think, rightly or wrongly, that our analysis of
sequential algorithms is definitive. Also we use this opportu-
nity to spell out, for the first time, our fulcrum.

2 Here and below a numerical function is a function f(x1, . . . , xj), possibly partial, of
finite arity j, where the arguments xi range over natural numbers, and the values
of f — when defined — are natural numbers.

Finally, in §6, we discuss limitations of semantics-to-syntax analyses.

2 Turing

Alan Turing analyzed computation in his 1936 paper “On Com-
putable Numbers, with an Application to the Entscheidungsprob-
lem” [25]. All unattributed quotations in this section are from that
paper.

The Entscheidungsproblem is the problem of determining
whether a given first-order formula is valid. The validity relation
on first-order formulas can be naturally represented as a real num-
ber, and the Entscheidungsproblem becomes whether this particular
real number is computable. “Although the subject of this paper is
ostensibly the computable numbers, it is almost equally easy to de-
fine and investigate computable functions of an integral variable or
a real or computable variable, computable predicates, and so forth.
The fundamental problems involved are, however, the same in each
case, and I have chosen the computable numbers for explicit treat-
ment as involving the least cumbrous technique.”

Q: Hmm, input strings of a Turing machine are finite which
does not suffice to represent real numbers.

A: Turing himself did not insist that input strings are finite.

2.1 Turing’s species of algorithms

Turing’s intention might have been to consider all algorithms. But
algorithms of the time were sequential, and the computers were hu-
mans3. So Turing analyzed sequential algorithms performed by ide-
alized human computers. In the process he explicated some inherent
constraints of the species and imposed — explicitly or implicitly
— some additional constraints. Here are the more prominent con-
straints of Turing’s analysis.

3 “Numerical calculation in 1936 was carried out by human beings; they used me-
chanical aids for performing standard arithmetical operations, but these aids were
not programmable” (Gandy [11, p. 12]).

Digital Computation is digital (or symbolic, symbol-pushing).
“Computing is normally done by writing certain symbols on pa-
per.”

Q: Is the digital constraint really a constraint?

A: These days we are so accustomed to digital computations
that the digital constraint may not look like a constraint.
But it is. Non-digital computations have been performed by
humans from ancient times. Think of ruler-and-compass com-
putations or of Euclid’s algorithm for lengths [16, §3].

Sequential time Computation splits into a sequence of steps.
“Let us imagine the operations performed by the computer to be
split up into [a sequence of] ‘simple operations’.”

Elementary steps The simple operations mentioned above “are so
elementary that it is not easy to imagine them further divided.”

Q: The elementary steps are elementary indeed but, as you
mentioned, they involve parallel actions: changing the con-
trol state, modifying the active-cell, moving the tape. There
are multi-tape Turing machines where more actions are per-
formed in parallel.

A: This is true, but the parallelism remains bounded.

Interaction with the environment

Q: Earlier you mentioned an important constraint on sequen-
tial algorithms which, I guess, applies to Turing’s analysis:
the computation does not interact with the environment. Of
course the environment supplies inputs and presumably con-
sumes the outputs but the computation itself is self-contained.
It is determined by the algorithm and the initial state. No ora-
cle is consulted, and nobody interferes with the computation.

A: Actually4 Turing introduced nondeterministic machines al-
ready in [25] and oracle machines in [26].

4 This was pointed out to us by the anonymous referee.

Q: I didn’t know that. Come to think of it, oracle machines
make good sense in the context of human computing. The
human computer may consult various tables, may ask an as-
sistant to perform an auxiliary computation, etc. But I don’t
see how nondeterministic algorithms come up in the analysis
of human computing.

A: It wasn’t the analysis of human computing that brought
Turing to nondeterminism. “For some purposes we might use
machines (choice machines or c-machines) whose motion is
only partially determined by the configuration When such
a machine reaches one of these ambiguous configurations, it
cannot go on until some arbitrary choice has been made by
an external operator. This would be the case if we were using
machines to deal with axiomatic systems.”

Q: I see, a nondeterministic machine can deal gracefully with
axiomatic systems; it can guess and then verify a proof. You
argued already that nondeterministic algorithms are really in-
teractive. But can one really use a choice machine for mean-
ingful interaction?

A: Well, a choice machine may be programmed to play chess.
The moves of the other player can be entered as choices “made
by an external operator.”

2.2 Turing’s fulcrum

How can one analyze the great and diverse variety of computations
performed by human computers. Amazingly Turing found a way to
do that. We believe that his fulcrum was as follows. Ignore what a
human computer has in mind and concentrate on what the computer
does and what the observable behavior of the computer is. In other
words, Turing treated the idealized human computer as an operating
system of sorts.

One may argue that Turing did not ignore the computer’s mind.
He spoke about the state of mind of the human computer explicitly
and repeatedly. Here is an example. “The behaviour of the computer
at any moment is determined by the symbols which he is observing,
and his ‘state of mind’ at that moment.” But Turing postulated that
“the number of states of mind which need be taken into account is

finite.” The computer just remembers the current state of mind, and
even that is not necessary: “we avoid introducing the ‘state of mind’
by considering a more physical and definite counterpart of it. It is
always possible for the computer to break off from his work, to go
away and forget all about it, and later to come back and go on with
it. If he does this he must leave a note of instructions (written in
some standard form) explaining how the work is to be continued.
This note is the counterpart of the ‘state of mind’.”

2.3 On Turing’s results and argumentation

Turing introduced abstract computing machines that became known
as Turing machines, and he constructed a universal Turing machine.
A real number is Turing computable “if its decimal can be written
down by a [Turing] machine.” His thesis was that Turing computable
numbers “include all numbers which could naturally be regarded as
computable.” He used the thesis to prove the undecidability of the
Entscheidungsproblem. To convince the reader of his thesis, Turing
used three arguments [25, §9].

Reasonableness: He gave examples of large classes of real numbers
which are [Turing] computable.

Robustness He sketched an alternative definition of computabil-
ity “in case the new definition has a greater intuitive appeal”
and proved it equivalent to his original definition. The alterna-
tive definition is based on provability in a finitely axiomatizable
fragment of the first-order theory of arithmetic. The robustness
argument was strengthened in the appendix where, after learn-
ing about Church’s definition of computability [6], he proved the
equivalence of their definitions.

Appeal to Intuition He analyzed computation appealing to intu-
ition directly.

The first two arguments are important but insufficient. There are
other reasonable and robust classes of computable real numbers, e.g.
the class of primitive recursive real numbers. The direct appeal to
intuition is crucial.

2.4 Two critical quotes

Q: I came across a surprising remark of Gödel that Turing’s
argument “is supposed to show that mental procedures can-
not go beyond mechanical procedures” [12]. It is hard for me
to believe that this really was Turing’s goal. Anyway, Gödel
continues thus. “What Turing disregards completely is the
fact that mind, in its use, is not static, but constantly de-
veloping, i.e., that we understand abstract terms more and
more precisely as we go on using them, and that more and
more abstract terms enter the sphere of our understanding.
There may exist systematic methods of actualizing this de-
velopment, which could form part of the procedure” [12].

Do you understand that? Apparently Gödel thought that
gifted mathematicians may eventually find a sophisticated de-
cision procedure for the Entscheidungsproblem that is not
mechanical. But if gifted mathematicians are able to reliably
execute the procedure, they should be able to figure out how
to program it, and then the procedure is mechanical.

A: Maybe Gödel was just pointing out that, in solving in-
stances of Entscheidungsproblem, human creativity would
outperform any mechanical procedure. Turing would surely
agree with that.

Q: Let me change the topic. Here is another interesting quote.
“For the actual development of the (abstract) theory of com-
putation, where one must build up a stock of particular func-
tions and establish various closure conditions, both Church’s
and Turing’s definitions are equally awkward and unwieldy. In
this respect, general recursiveness is superior” (Sol Feferman,
[11, p. 6]). Do you buy that?

A: Indeed, the recursive approach has been dominant in math-
ematical logic. It is different though in computer science where
Turing’s approach dominates. Turing’s machine model en-
abled computational complexity theory and even influenced
the early design of digital computers. Church’s λ-calculus has
been influential in programming language theory.

3 Kolmogorov

Andrey Kolmogorov’s analysis is reflected in a 1953 talk to the
Moscow Mathematical Society [19] and in a paper [20] with his stu-
dent Vladimir Uspensky5. Kolmogorov’s approach isn’t as known as
it deserves to be. In this connection, here are some relevant refer-
ences: [1, 13, 27, 28].

3.1 Kolmogorov’s species of algorithms

Like Turing, Kolmogorov might have intended to analyze all algo-
rithms. The algorithms of his time still were sequential. In the 1953
talk, Kolmogorov stipulated that every algorithmic process satisfies
the following constraints.

Sequentiality An algorithmic process splits into steps whose com-
plexity is bounded in advance.

Elementary steps Each step consists of a direct and unmediated
transformation of the current state S to the next state S∗.

Locality Each state S has an active part of bounded size. The
bound does not depend on the state or the input size, only on
the algorithm itself. The direct and unmediated transformation
of S to S∗ is based only on the information about the active part
of S and applies only to the active part.

Implicitly Kolmogorov presumes also that the algorithm does not
interact with its environment, so that a computation is a sequence
S0, S1, S2, . . . of states, possibly infinite, where every Sn+1 = S∗

n

Q: The second stipulation does not seem convincing to me.
For example, a sequential algorithm may multiply and divide
integers in one step. Such transformations do not look direct
and immediate in some absolute sense.

A: Kolmogorov restricts attention to sequential algorithms
working on the lowest level of abstraction, on the level of
single bits.

5 Uspensky told us that the summary [19] of the 1953 talk was written by him after
several unsuccessful attempts to make Kolmogorov to write a summary.

3.2 Kolmogorov’s fulcrum

Kolmogorov’s ideas gave rise to a new computation-machine model
different from Turing’s model [20]. Instead of a linear tape, a
Kolmogorov (or Kolmogorov-Uspensky) machine has a graph of
bounded degree (so that there is a bound on the number of edges
attached to any vertex), with a fixed number of types of vertices and
a fixed number of types of edges. We speculated in [13] that “the
thesis of Kolmogorov and Uspensky is that every computation, per-
forming only one restricted local action at a time, can be viewed as
(not only being simulated by, but actually being) the computation
of an appropriate KU machine.” Uspensky agreed [27, p. 396].

We do not know much about the analysis that led Kolmogorov
and Uspensky from the stipulations above to their machine model.
“As Kolmogorov believed,” wrote Uspensky [27, p. 395], “each state
of every algorithmic process . . . is an entity of the following struc-
ture. This entity consists of elements and connections; the total
number of them is finite. Each connection has a fixed number of
elements connected. Each element belongs to some type; each con-
nection also belongs to some type. For every given algorithm the
total number of element types and the total number of connection
types are bounded.” In that approach, the number of non-isomorphic
active zones is finite (because of a bound on the size of the active
zones), so that the state transition can be described by a finite pro-
gram.

Leonid Levin told us that Kolmogorov thought of computation as
a physical process developing in space and time [21]. That seems to
be Kolmogorov’s fulcrum. In particular, the edges of the state graph
of a Kolmogorov machine reflect physical closeness of computation
elements. One difficulty with this approach is that there may be no
finite bound on the dimensionality of the computation space [15,
footnote 1].

Q: I would think that Kolmogorov’s analysis lent support to
the Church-Turing thesis.

A: It did, to the extent that it was independent from Turing’s
analysis. We discuss the issue in greater detail in [9, §1.2].

Q: You mentioned that Turing’s machine model enabled com-
putational complexity theory. Was the Kolmogorov-Uspensky

machine model useful beyond confirming the Church-Turing
thesis?

A: Very much so; please see [1, §3].

4 Gandy

Gandy analyzed computation in his 1980 paper “Church’s Thesis and
Principles for Mechanisms” [10]. In this section, by default, quota-
tions are from that paper.

4.1 Gandy’s species of algorithms

The computers of Gandy’s time were machines, or “mechanical de-
vices”, rather than humans, and that is Gandy’s departure point.

“Turing’s analysis of computation by a human being does not
apply directly to mechanical devices . . . Our chief purpose is
to analyze mechanical processes and so to provide arguments
for . . .

Thesis M. What can be calculated by a machine is com-
putable.”

Since mechanical devices can perform parallel actions, Thesis M
“must take parallel working into account.” But the species of all
mechanical devices is too hard to analyze, and Gandy proceeds to
narrow it to a species of mechanical devices that he is going to ana-
lyze.

“(1) In the first place I exclude from consideration devices
which are essentially analogue machines. . . . I shall distin-
guish between “mechanical devices” and “physical devices”
and consider only the former. The only physical presupposi-
tions made about mechanical devices . . . are that there is a
lower bound on the linear dimensions of every atomic part of
the device and that there is an upper bound (the velocity of
light) on the speed of propagation of changes.

(2) Secondly we suppose that the progress of calculation by a
mechanical device may be described in discrete terms, so that

the devices considered are, in a loose sense, digital computers.

(3) Lastly we suppose that the device is deterministic; that
is, the subsequent behaviour of the device is uniquely deter-
mined once a complete description of its initial state is given.

After these clarifications we can summarize our argument for
a more definite version of Thesis M in the following way.

Thesis P. A discrete deterministic mechanical device satisfies
principles I–IV below.”

Principle I asserts in particular that, for any mechanical device,
the states can be described by hereditarily finite sets6 and there is a
transition function F such that, if x describes an initial state, then
Fx, F (Fx), . . . describe the subsequent states. Gandy wants “the
form of description to be sufficiently abstract to apply uniformly
to mechanical, electrical or merely notional devices,” so the term
mechanical device is treated liberally.

Principles II are III are technical restrictions on the state descrip-
tions and the transition function respectively. Principle IV general-
izes Kolmogorov’s locality constraint to parallel computations.

“We now come to the most important of our principles. In Tur-
ing’s analysis the requirement that the action depend only on
a bounded portion of the record was based on a human limi-
tation. We replace this by a physical limitation [Principle IV]
which we call the principle of local causation. Its justification
lies in the finite velocity of propagation of effects and signals:
contemporary physics rejects the possibility of instantaneous
action at a distance.”

A preliminary version of Principle IV gives a good idea about the
intentions behind the principle.

“Principle IV (Preliminary version). The next state, Fx, of
a machine can be reassembled from its restrictions to over-
lapping “regions” s and these restrictions are locally caused.
That is, for each region s of Fx there is a causal neighborhood

6 A set x is hereditarily finite if its transitive closure TC(x) is finite. Here TC(x) is
the least set t such that x ∈ t and such that z ∈ y ∈ t implies z ∈ t.

t ⊆ TC(x) of bounded size such that Fx � s [the restriction of
Fx to s] depends only on x � t [the restriction of x to t].”

4.2 Gandy’s fulcrum

It seems to us that Gandy’s fulcrum is his Principle I. It translates
the bewildering world of mechanical devices into the familiar set-
theoretic framework.

4.3 Comments

Gandy pioneered the axiomatic approach in the area of semantics-
to-syntax analyses of algorithms. He put forward the ambitious The-
sis M asserting that a numerical function can be calculated by a ma-
chine only if it is Turing computable. In our view, Gandy’s decision
to narrow the thesis is perfectly justified; see §6 in this connection.

But his narrowing of Thesis M is rather severe. A computing ma-
chine may have various features that Turing’s analysis rules out, e.g.
asynchronous parallel actions, analog computations. Gandy allows
only synchronous parallelism, that is sequential-time parallelism. His
species is a subspecies of the species of synchronous parallel algo-
rithms (which was analyzed later, already in the new century, in
[2]).

One reason that Gandy’s species is a subspecies of synchronous
parallel algorithm is Principle I. Hereditarily finite sets are finite.
Taking into account that Gandy’s machines do not interact with
the environment, this excludes many useful algorithms. For example
it excludes a simple algorithm that consumes a stream of numbers
keeping track of the maximal number seen so far.

Q: Isn’t this algorithm inherently interactive?

A: In a sense yes. But it is a common abstraction in program-
ming to pretend that the whole input stream is given in the
beginning. The abstraction is realizable in the Turing machine
model.

Also, the principle of local causality (Principle IV) does not ap-
ply to all synchronous parallel algorithms. Gandy himself mentions
one counterexample, namely Markov’s normal algorithms [22]. The

principle fails in the circuit model of parallel computation, the oldest
model of parallel computation in computer theory. The reason is that
the model allows gates to have unbounded fan-in. We illustrate this
on the example of a first-order formula ∀xR(x) where R(x) is atomic.
The formula gives rise to a collection of circuits Cn of depth 1. Cir-
cuit Cn has n input gates, and any unary relation R on {1, . . . , n}
provides an input for Cn. Circuit Cn computes the truth value of
the formula ∀xR(x) in one step, and the value depends on the whole
input.

Our additional critical remarks of Gandy’s analysis are found
in [16, §4]. (Wilfried Sieg adopted Gandy’s approach and simplified
Gandy’s axioms, see [24] and references there, but — as far as our
critique is concerned — the improvements do not make much differ-
ence.)

Q: If Turing thought of synchronous parallelism, he could have
claimed that, without loss of generality, the parallel actions
performed during one step can be executed sequentially, one
after another.

A: Gandy complains that the claim seems obvious to people.
One should be careful though about executing parallel ac-
tions sequentially. Consider for example a parallel assignment
x, y := y, x. If you start with x := y, you’d better save the
value of x so that y := x can be performed as intended. In any
case, the claim can be proved in every model of synchronous
parallelism in the literature, including the most general model
of [2].

5 Sequential algorithms

5.1 Motivation

By the 1980s, there were plenty of computers and software. A prob-
lem arose how to specify software. The most popular theoretical ap-
proaches to this problem were declarative. And indeed, declarative
specifications (or specs) tend to be of higher abstraction level and
easier to understand than executable specs. But executable specs
have their own advantages. You can “play” with them: run them,
test, debug.

Q: If your spec is declarative then, in principle, you can verify
it mathematically.

A: That is true, and sometimes you have to verify your spec
mathematically; there are better and better tools to do that.
In practice though, mathematical verification is out of the
question in an overwhelming majority of cases, and the pos-
sibility to test specs is indispensable, especially because soft-
ware evolves. In most cases, it is virtually impossible to keep
a declarative spec in sync with the implementation. In the
case of an executable spec, you can test whether the imple-
mentation conforms to the spec (or, if the spec was reverse-
engineered from an implementation, whether the spec is con-
sistent with the implementation).

A question arises whether an executable spec has to be low-level
and detailed? This leads to a foundational problem whether any
algorithm can be specified, in an executable way, on its intrinsic
level of abstraction.

Q: A natural-language spec would not do as it is not exe-
cutable.

A: Besides, such a spec may (and almost invariably does) in-
troduce ambiguities and misunderstanding.

Q: You can program the algorithm in a conventional program-
ming language but this will surely introduce lower-level de-
tails.

A: Indeed, even higher-level level programming languages tend
to introduce details that shouldn’t be in the spec.

Turing and Kolmogorov machines are executable but low-level.
Consider for example two distinct versions of Euclid’s algorithm for
the greatest common divisor of two natural numbers: the ancient
version where you advance by means of differences, and a modern
(and higher-level) version where you advance by means of divisions.
The chances are that, in the Turing machine implementation, the
distinction disappears.

Can one generalize Turing and Kolmogorov machines in order to
solve the foundational problem in question? The answer turns out

to be positive, at least for sequential algorithms [15], synchronous
parallel algorithms [2], and interactive algorithms [3, 5]. We discuss
here only the first of these.

5.2 The species

Let’s restrict attention to the species of sequential algorithms but
without any restriction on the abstraction level. It could be the
Gauss Elimination Procedure for example. Informally, paraphrasing
the first stipulation in §3, an algorithm is sequential if it computes
in steps whose complexity is bounded across all computations of
the algorithm. In the rest of this section, algorithms are by default
sequential.

We use the axiomatic method to explicate the species. The first
axiom is rather obvious.

Axiom 1 (Sequential Time) Any algorithm A is associated with
a nonempty collection S(A) of states, a sub-collection I(A) ⊆ S(A)
of initial states and a (possibly partial) state transition map τA :
S(A) −→ S(A).

Definition 1. Two algorithms are behaviorally equivalent if they
have the same states, the same initial states and the same transition
function.

Q: I guess the computation of a sequential algorithm A is
determined by the initial state.

A: Actually we can afford to be more general and allow the en-
vironment to intervene between the steps of the algorithm A,
provided that every such intervention results in a legitimate
state of A, so that A can continue to run. Thus, in general, the
steps of A are interleaved with those of the environment, and
the computation of A depends on the environment. But, for a
given environment, replacing A with a behaviorally equivalent
algorithm results in exactly the same computation.

Recall that a first-order structure X is a nonempty set (the base set
of X) with relations and operations; the vocabulary of X consists
of the names of those relations and operations. For example, if the

vocabulary of X consists of one binary relation then X is a directed
graph.

Axiom 2 (Abstract State) The states of an algorithm A can be
faithfully represented by first-order structures of the same finite vo-
cabulary, which we call the vocabulary of A, in such a way that

– τA does not change the base set of a state,

– collections S(A) and I(A) are closed under isomorphisms, and

– any isomorphism from a state X to a state Y is also an isomor-
phism from τA(X) to τA(Y).

Q: You claim that first-order structures are sufficiently general
to faithfully represent the states of any algorithm?

A: We do, and we have been making that claim since the
1980s. The collective experience of computer science seem to
corroborate the claim.

Q: The states of real-world algorithms seems to be finite. Do
you need infinite structures?

A: The states of real-world algorithms often are infinite. For
example, consider the C programming language. A program-
ming language can be viewed as an algorithm that runs a
given program on the given data. In C, data structures like
multi-sets or trees need to be programmed but arrays are
readily available; they pre-exist in the initial state of C. So
the states of C are infinite. And of course the states of the
Gauss Elimination Procedure are infinite.

Q: OK, I have another question about the axiom. That base-
set preservation sounds restrictive. A graph algorithm may
extend the graph with new nodes.

A: And where will the algorithm take those nodes? From some
reserve? Make (a possibly abstracted version of) that reserve
a part of your initial state.

Q: Now, why should the collection of states be closed under
isomorphisms, and why should the state transition respect
isomorphisms?

A: Because an algorithm works at a particular level of ab-
straction, and lower-level details are abstracted away. Con-
sider a graph algorithm for example. In an implementation,
nodes may be integer numbers, but the algorithm can’t ex-
amine whether a node is even or odd because implementation
details are irrelevant. If the algorithm does take advantage of
the integer representation of nodes then its vocabulary should
reflect the relevant part of arithmetic.

According to the informal definition of sequential algorithms,
there is a bound on the complexity of the steps of the algorithm.
But how to measure step complexity? The abstract-state axiom al-
lows us to address the problem. The next state τA(X) of an algorithm
A depends only on the current state X of A. The executor does not
need to remember any history (even the current position in the pro-
gram); all of that is reflected in the state. If the executor is human
and writes something on scratch paper, that paper should be a part
of the computation state.

In order to change the given state X into τA(X), the algorithm
A explores a portion of X and then performs the necessary changes
of the values of the predicates and operations of X. We argue in
[15] that an abstracted version of Kolmogorov’s locality constraint
is valid on any level of abstraction. The “active zone” of state X is
bounded. The change from X to τA(X), let us call it ∆A(X), depends
only on the results of the exploration of the active zone. Formally,
∆A(X) can be defined as a collection of assignments F (ā) := b where
F is a vocabulary function.

Q: What about vocabulary relations? Are they necessarily
static?

A: We view relations as Boolean-valued functions, so the vo-
cabulary relations may be updatable as well.

Q: How does the algorithm know what to explore and what
to change?

A: That information is supplied by the program, and it is ap-
plicable to all the states. In the light of the abstract-state
axiom, it should be given symbolically, in terms of the vocab-
ulary of A.

Axiom 3 (Bounded Exploration) There exists a finite set T of
terms (or expressions) in the vocabulary of algorithm A such that
∆A(X) = ∆A(Y) whenever states X, Y of A coincide over T .

Now we are ready to define (sequential) algorithms.

Definition 2. A (sequential) algorithm is any entity that satisfies
the sequential-time, abstract-state and bounded-exploration axioms.

Abstract state machines (ASMs) were defined in [14]. Here we
restrict attention to sequential ASMs which are undeniably algo-
rithms.

Theorem 1 ([15]). For every algorithm A, there exists a sequential
ASM that is behaviorally equivalent to A.

5.3 The fulcrum

Every sequential algorithm has its native level of abstraction. On
that level, the states can be faithfully represented by first-order
structures of a fixed vocabulary in such a way that state transitions
can be expressed naturally in the language of the fixed vocabulary.

Q7: I can’t ask Turing, Kolmogorov or Gandy how they arrived
to their fulcrums, but I can ask you that question.

A: In 1982 we moved abruptly from logic to computer sci-
ence. We tried to understand what was that emerging science
about. The notion of algorithm seemed central. Compilers,
programming languages, operating systems are all algorithms.
As far as sequential algorithms are concerned, the sequential-
time axiom was obvious.

Q: How do you view a programming language as an algorithm?

A: It runs a given program on given data.

Q: What about all those levels of abstraction?

A: It had been well understood by 1982 that a real-world com-
putation process can be viewed at different levels of abstrac-
tion. The computer was typically electronic, but you could

7 This discussion is provoked by the anonymous referee who thought that the one
sentence above is insufficient for this subsection.

abstract from electronics and view the computation on the
level of single bits. More abstractly, you could view the com-
putation on the assembly-language level, on the level of the
virtual machine for the programming language of the pro-
gram, or on the level of the programming language itself. But
there is no reason to stop there. The abstraction level of the
algorithm that the program executes is typically higher yet.

Besides, we became interested in software specifications
and took the position that software specs are high-level algo-
rithms. The existing analyses of algorithms did not deal with
the intrinsic levels of abstraction of algorithms.

Q: Is the intrinsic abstraction level of any algorithm well de-
termined?

A: This is one of the critical questions. It was our impression
that the abstraction level of an algorithm is determined by
that of its states and by the operations that the algorithm
executes in one step. That led us eventually to the abstract-
state axiom and to abstract state machines originally called
evolving algebras [14].

Q: Was your logic experience of any use?

A: Yes, it was particularly useful to know how ubiquitous first-
order structures were. Any static mathematical object that we
knew could be faithfully represented by a first-order struc-
ture, and the states of an algorithm are static mathematical
objects.

Q: When did you realize that sequential algorithms could be
axiomatized?

A: This took years. We mentioned above that, in a semantics-
to-syntax analysis, a fulcrum makes the analysis more feasible
but not necessarily easy. The sequential-time and abstract-
state axioms are implicit in the definition of abstract state
machines [14]. We had not thought of them as axioms yet.
Our thesis, restricted to sequential algorithms, was that se-
quential abstract state machines are able to simulate arbitrary
sequential algorithms “in a direct and essentially coding-free
way” [14]. The thesis was successfully tested in numerous ap-
plications of abstract state machines, and our confidence in

the thesis as well as the desire to derive it from “first princi-
ples” grew. The problem was solved in [15].

6 Final remarks

In [16] we argue that “the notion of algorithm cannot be rigorously
defined in full generality, at least for the time being.” The reason is
that the notion is expanding. In addition to sequential algorithms,
in use from antiquity, we have now parallel algorithms, interactive
algorithms, distributed algorithms, real-time algorithms, analog al-
gorithms, hybrid algorithms, quantum algorithms, etc. New kinds of
algorithms may be introduced and most probably will be. Will the
notion of algorithms ever crystallize to support rigorous definitions?
We doubt that.

“However the problem of rigorous definition of algorithms is not
hopeless. Not at all. Large and important strata of algorithms have
crystallized and became amenable to rigorous definitions” [16]. In §5,
we explained the axiomatic definition of sequential algorithms. That
axiomatic definition was extended to synchronous parallel algorithms
in [2] and to interactive sequential algorithms in [3, 5].

The axiomatic definition of sequential algorithms was also used
in to derive Church’s thesis from the three axioms plus an additional
Arithmetical State axiom which asserts that only basic arithmetical
operations are available initially [9].

Q: I wonder whether there is any difference between the species
of all algorithms and that of machine algorithms.

A: This is a good point, though there may be algorithms ex-
ecuted by nature that machines can’t do. In any case, our
argument that the species of all algorithms can’t be formal-
ized applies to the species of machine algorithms. The latter
species also evolves and may never crystallize.

Acknowledgements

Many thanks to Andreas Blass, Bob Soare, Oron Shagrir and the
anonymous referee for useful comments.

References

1. Andreas Blass and Yuri Gurevich, “Algorithms: A quest for absolute definitions,”
in Current Trends in Theoretical Computer Science, World Scientific (eds. G. Paun
et al.), 2004, 283–311, and in Church’s Thesis After 70 Years (A. Olszewski, ed.)
Ontos Verlag, 2006, 24–57.

2. Andreas Blass and Yuri Gurevich, “Abstract state machines capture parallel al-
gorithms,” ACM Trans. on Computational Logic 4:4 (2003), 578–651. Correction
and extension, same journal, 9:3 (2008), article 19.

3. Andreas Blass and Yuri Gurevich, “Ordinary interactive small-step algorithms”,
ACM Trans. on Computational Logic 7:2 (2006) 363–419 (Part I), plus 8:3 (2007),
articles 15 and 16 (Parts II and III).

4. Andreas Blass, Nachum Dershowitz and Yuri Gurevich, “When Are Two Algo-
rithms the Same?” Bulletin of Symbolic Logic 15:2 (2009), 145-168.

5. Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman, “Inter-
active small-step algorithms”, Logical Methods in Computer Science 3:4 (2007),
papers 3 and 4 (Part I and Part II).

6. Alonzo Church, “An unsolvable problem of elementary number theory”, American
Journal of Mathematics 58 (1936), 345–363.

7. Edgar Frank Codd, “Relational model of data for large shared data banks,” Com-
munications of the ACM 13:6 (1970), 377–387.

8. Martin Davis (editor), “The undecidable: Basic papers on undecidable proposi-
tions, unsolvable problems and computable functions,” Raven Press, Hewlett, NY,
1965, reprinted by Dover Publications, Mineola, NY, 2004.

9. Nachum Dershowitz and Yuri Gurevich, “A natural axiomatization of computabil-
ity and proof of Church’s thesis”, Bull. of Symbolic Logic 14:3 (2008), 299–350.

10. Robin O. Gandy, “Church’s thesis and principles for mechanisms”, In The Kleene
Symposium (eds. J. Barwise et al.), North-Holland, 1980, 123–148.

11. Robin O. Gandy and C.E.M. (Mike) Yates (editors), “Collected works of A.M.
Turing: Mathematical logic”, Elsevier, 2001.

12. Kurt Gödel, “A philosophical error in Turing’s work,” in Kurt Gödel: Collected
Works,” Volume II (eds. S. Feferman et al.), Oxford University Press, 1990, p. 306.

13. Yuri Gurevich, “On Kolmogorov machines and related issues,” Bull. of Euro. Assoc.
for Theor. Computer Science 35 (1988), 71-82.

14. Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification and Vali-
dation Methods (E. Börger, ed.), Oxford Univ. Press (1995), 9–36.

15. Yuri Gurevich, “Sequential abstract state machines capture sequential algorithms,”
ACM Trans. on Computational Logic 1:2 (2000), 77–111.

16. Yuri Gurevich, “What is an algorithm?” In SOFSEM 2012: Theory and Practice of
Computer Science (eds. M. Bielikova et al.), Springer LNCS 7147, 2012. A slight
revision will appear in Proc. of the 2011 Studia Logica conference on Church’s
Thesis: Logic, Mind and Nature.

17. Yuri Gurevich, “Foundational Analyses of Computation”, in How the World Com-
putes (eds. S. Barry Cooper et al.), Turing Centennial Conference, Springer LNCS
7318 (2012), 264–275.

18. Stephen Cole Kleene, “Introduction to metamathematics,” D. Van Nostrand, 1952.
19. Andrey N. Kolmogorov, “On the concept of algorithm”, Uspekhi Mat. Nauk 8:4

(1953), 175–176, Russian.
20. Andrey N. Kolmogorov and Vladimir A. Uspensky, “On the definition of algo-

rithm”, Uspekhi Mat. Nauk 13:4 (1958), 3–28, Russian. English translation in
AMS Translations 29 (1963), 217–245.

21. Leonid A. Levin, Private communication, 2003.
22. Andrey A. Markov, “Theory of algorithms,” Trans. of the Steklov Institute of

Mathematics 42, 1954, Russian. English translation by the Israel Program for
Scientific Translations, 1962; also by Kluwer, 2010.

23. Emil L. Post, “Finite combinatorial processes — formulation I,” Journal of Sym-
bolic Logic 1 (1936), 103–105.

24. Wilfried Sieg, “On computability,” in Handbook of the Philosophy of Mathematics
(A. Irvine, ed.), Elsevier, 2009, 535-630.

25. Alan M. Turing, “On computable numbers, with an application to the Entschei-
dungsproblem”, Proceedings of London Mathematical Society, ser. 2, vol. 42 (1936-
37), 230–265.

26. Alan M. Turing, “Systems of logic based on ordinals,” Proceedings of London
Mathematical Society, ser. 2, vol. 45 (1939), 161–228.

27. Vladimir A. Uspensky, “Kolmogorov and mathematical logic,” Journal of Symbolic
Logic 57:2 (1992), 385–412.

28. Vladimir A. Uspensky and Alexei L. Semenov, Theory of algorithms: Main Dis-
coveries and Applications, Nauka 1987 (Russian), Kluwer 2010 (English).

29. Jǐŕı Wiedermann and Jan van Leeuwen, “Rethinking Computation”, in Proc. 6th
AISB Symposium on Computing and Philosophy (eds. M. Bishop and Y.J. Erden.),
Society for the Study of Artificial Intelligence and the Simulation of Behaviour,
Exeter, UK, 2013, pp. 6–10.

