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Abstract
Primal infon logic (PIL) was introduced in 2009 in the framework of policy and trust management. In the meantime, some
generalizations appeared, and there have been some changes in the syntax of the basic PIL. This article is on the basic PIL,
and one of our purposes is to ‘institutionalize’ the changes. We prove a small-model theorem for the propositional fragment of
basic primal infon logic (PPIL), give a simple proof of the PPIL locality theorem and present a linear-time decision algorithm
(announced earlier) for PPIL in a form convenient for generalizations. For the sake of completeness, we cover the universal
fragment of basic PIL. We wish that this article becomes a standard reference on basic PIL.
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1 Introduction

Primal infon logic (PIL) was discovered in the framework of research on policy and trust management
[15]. It was generalized in [4, 10], and more generalizations are in preparation. This article is on the
basic version of PIL.

Infons. Principals of a distributed system (people, organizations and computers) communicate by
sending each other items of information called infons in [14]. Infons often look like formulas in
first-order logic, but it may make no sense to ask whether an infon is true or false. The meaningful
question is whether the infon is known to a principal.

Infon algebra. Infons are naturally preordered by the relation ‘at least as informative as.’The preorder
contains a known-to-all infon � on one extreme and an unknowable infon ⊥ on the other extreme.
In accordance with the venerable logic tradition to have � at the top, we write y≤x to express that
y is at least as informative as x.

The conjunction of infons is their union, so that it is at least as informative as either of the conjuncts,
and it is a least informative infon with this property. The preorder of infons gives rise to a partial order
if one identifies equally informative infons. Conjunction turns that partial order into a semilattice.
On the semilattice live unary operations p said where p ranges over the principals. If infons x and
y are equally informative, then so are p said x and p said y.

From infon algebra to propositional PIL. Implication a→b can be introduced as a solution
of inequalities (a∧x)≤b and b≤x. Similarly, disjunction a∨b can be introduced as a solution
of inequalities a≤x and b≤x. This leads to basic propositional primal infon logic (PPIL)
studied in [13, 15, 16]. PPIL has a remarkable combination of expressivity and feasibility. PPIL
expresses typical policy scenarios that do not involve substitutions, and the multi-derivability
problem for PPIL (decide which of given queries follow from given hypotheses) is solvable in
linear-time [13].
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118 Basic primal infon logic

Requiring that there is a greatest (that is least informative) solution of the inequalities (a∧x)≤b and
b≤x leads to intuitionistic implication, and requiring that there is a smallest (that is most informative)
solution of the inequalities a≤x and b≤x leads to intuitionistic disjunction [3] (L. Beklemishev et al.,
in preparation). In contrast to PPIL, the derivability problem (decide whether a given query follows
from given hypotheses) for the → fragment of intuitionistic logic is polynomial-space complete [19].
The derivability problem for the combination of conjunction, primal implication and intuitionistic
disjunction is NP-complete [4]. The contrast makes PPIL and its feasible extensions attractive in
applications.

Basic PIL. Of course, policy scenarios may and often do involve object variables, e.g. ‘Every
password contains digits and letters,’ or ‘Any employee has a manager.’ It is typically presumed that
the object variables are universally quantified. That leads to the universal fragment of PIL [6].

One modification of basic PIL. Originally, in addition to unary connectives p said, PIL had unary
connectives pimplied, and it was postulated that psaid x entails pimplied x. The intention was
to increase the expressivity of Distributed KnowledgeAuthorization Language DKAL [7, 14, 15]. But
DKAL customers found the said/implied interplay confusing. Further development of DKAL
made the use of connectives p implied unnecessary, and the implied construct was removed
from PIL [13].

This article. This article is self-contained. We intend to make it a standard reference on basic PIL,
especially on its propositional part PPIL. The main distinguishing features of our version of PPIL
and this article in general, comparative with their predecessors, in particular [16], are as follows.

• Connectives The propositional connectives of the original PPIL were ∧, →, �, p said and
p implied [16]. Here the connectives are ∧,∨,→,�,⊥ and p said. We already explained
the reason for dropping implied. In the meantime, we realized the necessity of connectives
⊥ and ∨. ⊥ is necessary (in addition to �) because of the need to translate Boolean values,
true and false to infons. Disjunction is necessary in particular because policy rules often
have the form (x1 ∧···∧xk)→y, where y is atomic and every xi is atomic or a disjunction of
atomic formulas. For example, ‘An employee can read File 13 if he/she works on project 7 or
project 11 and is a US or Canadian citizen.’ It is easy to see that any such rule can be faithfully
rewritten as several disjunction-free rules, but this may be prohibitively expensive.

• Locality theorem The locality theorem for PPIL [16, Theorem 5.11] asserts this: if hypotheses
� entail a formula ϕ, then there is a derivation of ϕ from � composed from formulas local to
�∪{ϕ} in some precise sense. Our proof of the locality theorem is much simplified.

• Complexity It is proven in [16] that the multi-derivability problem (decide which of given
queries follow from given hypotheses) is linear-time for any fragment of the original PPIL with
bounded quotation depth. The presence of implied and the resulting opportunity to alternate
said and implied make the restriction on the quotation depth necessary. Here we prove the
result, announced in [13], that the multi-derivability problem is linear-time for the whole of
our PPIL. (It is claimed in [2] (A. Baskar et al., in preparation) that the derivability problem,
and thus the multi-derivability problem, for the whole original PPIL is polynomial time.)

• Decision algorithm Our linear-time decision algorithm for (the multi-derivability problem
for) PPIL is a simplification of that in [16]. One change is related to the need to decide in
constant-time (after some preprocessing) whether two nodes of a parse tree represent identical
formulas. Instead of the Cai–Paige algorithm [8], used in [16], here we use suffix arrays that are
better known and have efficient implementations available. Also, we use compact parse trees
of [5]. Following [6], we extend (in §6) the decision algorithm for PPIL to that for the universal
fragment of PIL. The extended algorithm has been implemented and is available at [11].
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Basic primal infon logic 119

• Witness extraction We extend the decision algorithm to extract in linear-time a witness that
the queries deemed to be derivable (resp. not derivable) from the given hypotheses are indeed
derivable (resp. not derivable).

Related work. We refer the reader to the related-work subsection 1.1 in a recent article [4] on
propositional primal logic with disjunction. Here are additional remarks, mostly summarizing
references above. For brevity, we say that a logic L is linear-time, polynomial time, etc. if the
derivation problem for L (decide whether a given query follows from given hypotheses) is so.

This article builds on its precursors [16] and [6]. The linear-time decision algorithm for the version
of the original PPIL without the implied construct was announced in [13]. It is claimed in [2]
(A. Baskar et al., in preparation) that the original PPIL is polynomial time.

The extension of the original PPIL with full-fledged disjunction (with disjunction introduction
and disjunction elimination rules) was studied in [4] and proven NP-complete there. The extension
of the original PPIL with primal disjunction (with disjunction introduction rules but no disjunction
elimination rules) is addressed in [4, Remark 4.7]; it is shown there that the quotation-free fragment
of that extension is linear-time.

2 Hilbertian calculus for PPIL

PPIL formulas are built from propositional variables and the propositional constants �,⊥ by means
of the binary connectives ∧, ∨ and → and unary connectives q said, where q ranges over principal
constants. We presume that there are countably infinite lists of propositional variables and principal
constants. Thus every formula x has the form

q1 said q2 said ... qk said y

such that y is atomic or is a binary combination (conjunction, disjunction or implication) of two
subformulas. Here y is the body of x. If k >0, then x is a quote formula or simply a quote; otherwise
it is its own body (but of course it may have quote subformulas). Every string q1 said ... qj said
with 0≤ j≤k is a quotation prefix of x. In case j=0, the prefix is empty. In case j=k, the prefix is
the maximal quotation prefix of x.

Let x,y range over formulas and pref range over quotation prefixes.

PPIL calculus

Axioms

(�) pref�
Rules of inference

pref x pref y
(∧i)

pref(x∧y)

pref(x∧y)
(∧e)

pref x
pref(x∧y)
pref y

pref y
(→i)

pref(x→y)
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120 Basic primal infon logic

pref x pref(x→y)
(→e)

pref y

pref x
(∨i)

pref(x∨y)
pref y

pref(x∨y)

As usual, a derivation D of a formula x from a set � of hypotheses is a finite tree (or, more
generally, a finite dag—directed acyclic graph—with a single source node, the root) where each node
u is labelled with a formula D(u). The root is labelled with x. The leaves are labelled with axioms or
hypotheses. If v1,v2,...,vn are the children of node u, then

D(v1) … D(vn)
D(u)

is an instance of an inference rule. Of course in our case, n is 1 or 2. The length of the proof is the
number of its nodes.

A set � of formulas entails a formula x if x is derivable from �, i.e., if there is a derivation of x
from �. The following two definitions will be used throughout the article.

Definition 2.1 (Local formulas)
We define inductively the set of formulas local to a given formula x:

• Formula x is local to x.
• For any binary connective ∗, if pref(y∗z) is local to x, then prefy and prefz are local to x.

A formula is local to a set � of formulas if it is local to some formula in �.

Definition 2.2 (Local prefixes)
A prefix pref is local to a formula x if some formula prefz is local to x. A prefix is local to a set
of formulas � if it is local to some formula x∈�. (Note that, if a prefix π is an initial segment of a
prefix local to �, then π is also local to �.)

For example, let � be

{p said(q said y∧r said s said x), p said(x→((q said x)→x))}
where x,y are propositional variables. Then �-local formulas are the two formulas in � plus

p said q said y, p said r said s said x,

p said x, p said((q said x)→x), p said q said x.

The �-local prefixes are

p said, p said q said, p said r said, p said r said s said.

3 Soundness and completeness

Definition 3.1
A Kripke model is any structure M whose vocabulary comprises (i) binary relations Sq where q
ranges over the principal constants and (ii) unary relations Vx where x ranges over the formulas. The
elements of (the universe of) M are called worlds.
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Basic primal infon logic 121

Definition 3.2
Given a Kripke model M, we define when a world w satisfies a formula x, symbolically w�x. We do
that by induction on x. Every world satisfies �. Further:

1. w satisfies a propositional variable x if w∈Vx .
2. w�x1 ∧x2 if w�x1 and w�x2.
3. w�x1 ∨x2 if w�x1 or w�x2 or w∈Vx1∨x2 . In other words:

(a) If w satisfies some xi, then it satisfies x1 ∨x2.
(b) Otherwise w satisfies x1 ∨x2 if and only if it belongs to Vx1∨x2 .

4. w�x1 →x2 if w�x2 or (w�x1 and w∈Vx1→x2 ). In other words:

(a) If w satisfies x2, then it satisfies x1 →x2.
(b) If w satisfies x1 but not x2, then it does not satisfy x1 →x2.
(c) If w satisfies neither x1 nor x2, then it satisfies x1 →x2 if and only if it belongs to Vx1→x2 .

5. w�x=q said x1 if w�x1 for all w′ with wSqw′.
A world w satisfies a set � of formulas if it satisfies every formula in �.

Although Kripke models have unary relations Vx for all formulas x, these relations are only relevant
for variables, implications and disjunctions.

Theorem 3.3 (Soundness and completeness)
A set � of formulas entails a formula y if and only if, for every Kripke model, y holds in every world
where � holds.

Proof. (⇒). To establish the soundness, we suppose that a world w of a given Kripke model satisfies
� and prove that w�y as well. That is done by induction on the size of the given derivation of y from
�. The case when y is a hypothesis is trivial. If y is an axiom pref�, induct on the length of pref.

Now, suppose that y is obtained by means of an inference rule R. Several cases arise depending
on what R is. All these cases are straightforward. We consider here only the case where R is the rule

pref x pref(x→y)
(→e)

pref y

By the induction hypothesis, w�prefx and w�pref(x→y). We prove w�pref y by an auxiliary
induction on the length of pref. For the empty quotation prefix, by the definition of primal
implication, we have either w�y or else (w�x and w∈Vx→y). As w�x, we conclude that w�y. Now
suppose pref=q said pref′ and let w′ range over the worlds such that wSqw′. As w�prefx
and w�pref(x→y), we have w′ �pref′x and w′ �pref′(x→y). By the induction hypothesis,
w′ �pref′y. Hence, w�q said pref′y.

(⇐). To establish completeness, we assume that � does not entail y and construct a Kripke model
M with a world where � holds but y fails. Call a quotation prefix local if it is local to �∪{y}. Let
pref range over the local prefixes. Now we are ready to define M.

• The worlds are the local prefixes.
• Vx ={pref : ��prefx}.
• Sq ={(pref,pref′) : pref′ =pref q said}.

Lemma 3.4
pref�x iff ��prefx, for any local prefix pref.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/26/1/117/2579202 by U
niversity of M

ichigan user on 28 June 2020



122 Basic primal infon logic

Proof of Lemma. Induction on x.

• If x is a variable, the claim follows from the definition of M.
• Suppose that x=x1 ∧x2. We have

pref �x1 ∧x2 ⇔pref �x1 and pref �x2

⇔��pref x1 and ��pref x2 by induction hypothesis

⇔��pref(x1 ∧x2) by rules (∧i) and (∧e)

• Let x=x1 ∨x2. First suppose that pref�xi for some i. By the definition of disjunction
satisfaction, pref�x. By the induction hypothesis, ��prefxi so that, by rule (∨i), ��
prefx.
Next suppose pref�xi for both i=1 and i=2. By the induction hypothesis, ��xi for both
i=1 and i=2. We have

pref�x⇔pref∈Vx ⇔��prefx.

The first equivalence is based on the definition of disjunction in Kripke models, and the second
is based on the definition of model M.

• Let x=x1 →x2. Consider the three cases of item 4 in definition 3.2 and invoke the induction
hypothesis. In case 1, we have pref�x and ��prefx. In case 2, we have pref�x and
��prefx. In case 3, we have that pref�x if and only if pref belongs to Vx if and only if
(by the definition of M) ��prefx.

• Let x=q said x′. We have

pref�q said x′

⇔pref′ �x′ for all pref′ such that pref Sq pref
′

⇔pref q said �x′ because pref Sq pref
′ iff pref′ =pref q said

⇔��pref q said x′ by the induction hypothesis.

�
To finish the proof of the theorem, let ε be the empty prefix. As ��y, � holds in ε but y

does not. �
One could expect that ⊥ fails in every world of any Kripke model, but this is not necessarily

so. If it were so then ⊥ would entail every formula, but our calculus does not have any axioms or
rules specifically for ⊥. It is possible of course to extend the calculus with a rule that ⊥ entails every
formula and then require that ⊥ fails in every world of any Kripke model. Theorem 3.3 would remain
valid.

By induction on a formula x, we define its width |x|. If x is a propositional variable or constant, then
|x|=1; if x=x1 ∗x2, where ∗ is any binary connective, then |x|=|x1|+|x2|+1, and if x=q said x1,
then |x|=|x1|+2. For a set � of formulas, the width |�|=∑{|x| : x∈�}.
Theorem 3.5 (Small model)
If � does not entail y, then there is a counterexample model of size <1+|�∪{y}|/2.

Proof. We start with an auxiliary lemma.
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Basic primal infon logic 123

Lemma 3.6
The number of non-empty prefixes local to a formula x is less than |x|/2.

Proof. Let LP(x) be the number of non-empty prefixes local to x. This lemma is easily proved by
induction on the number of connectives of x. For the case x=q said x′, note that the non-empty local
prefixes of x are q said plus all the prefixes of the form q said pref, where pref is non-empty
and local to x′. Hence,

LP
(
q said x′)=1+LP

(
x′)<1+∣∣x′∣∣/2=(

2+∣∣x′∣∣)/2

= ∣∣q said x′∣∣/2.

�
Now consider the model M built in the proof of Theorem 3.3. Recall that the worlds of the

underlying Kripke structure of M are all prefixes local to �∪{y}. The previous lemma implies that
the number of non-empty prefixes local to a set of formulas � is less than |�|/2; so the number of
prefixes local to � is less than 1+|�|/2. Hence, the size of M is less than 1+|�∪{y}|/2. �
Remark 3.7 (Possible worlds)
The original definition of Kripke models for primal logic in [16] contained a partial order on
the worlds. We simplified the definition because the partial order is not needed for soundness
and completeness theorem. But, in the intended applications of primal logic in policy and trust
management, a partial order on the worlds makes good sense. It reflects possible developments. In
a world w1, Bob is proposing Alice to be a Facebook friend of his but she isn’t his friend in w1.
However, she is a Facebook friend of his in some world w2 >w1. In the presence of partial order ≤
on the worlds, the following constraints are necessary to maintain soundness (in particular to ensure
that satisfaction of formulas is preserved upward in the partial order):

• If u≤v and vSqw, then uSqw.
• If u≤v and u∈Vx , then v∈Vx .

4 Local derivations

Lemma 4.1
Let D be a shortest derivation of a formula from a set of formulas �. Whenever an elimination rule
is used in D, its premises are local to �. More explicitly:

1. If D has an instance

...

pref(x1 ∧x2)

pref xi

of rule (∧e), then the premise pref(x1 ∧x2) is local to �. Consequently, pref x1 and pref x2
are local to �.
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124 Basic primal infon logic

2. If D has an instance

...
pref x

...

pref(x→y)
pref y

of rule (→e), then the premises prefx and pref(x→y) are local to �. Consequently, prefy
is local to �.

Proof. We prove claims 1 and 2 simultaneously, by induction on the derivation of the premise z
where z is the only premise pref(x1 ∧x2) in case 1 and z is the major premise pref(x→y) in
case 2. Note that, in case 2, the minor premise is local to the major premies, so it will also be local
to �.

Base case. In either case, due to its form, the premise z cannot be an axiom, so it is a hypothesis.
Induction step. The premise z is the conclusion of an instance of some inference rule R. We

consider our two cases separately.

1. z=pref(x1 ∧x2), so R cannot be (→i) or (∨i). It cannot be (∧i) either; otherwise D can be
shortened as follows:

...
pref x1

...
pref x2(∧i)

pref(x1 ∧x2)(∧e)
pref xi

...

⇒
...

pref xi

...

So, R must be either (∧e) or (→e). In either case, use the induction hypothesis. It follows that
pref(x1 ∧x2) is local to �.

2. z=pref(x→y), so R cannot be (∧i) or (∨i). It cannot be (→i) either; otherwise D could
be shortened. Hence, R must be (∧e) or (→e). In either case, use the induction hypothesis. It
follows that pref(x→y) is local to �.

�
Definition 4.2 (Local derivations)
Aderivation of a formula y from hypotheses � is local if all node formulas of the derivation (including
the axioms if any) are local to �∪{y}.
Theorem 4.3 (Local derivations)
Any shortest derivation of y from � is local.

Proof. Clearly y is local to �∪{y}. Now, suppose that we have proved that a formula x′ in the
shortest derivation is local to �∪{y}. Formula x′ is obtained by means of some derivation rule R. Let
x be a premise in that application of R. It suffices to prove that x is local. If R is an elimination rule,
use the previous lemma. The cases when R is an introduction rule are all obvious. �
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Basic primal infon logic 125

Axioms may be used in a shortest derivation of y from � but they are local. For example, a shortest
derivation of y from {�→y} uses axiom � local to the hypothesis. A shortest derivation of x∧�
from x uses axiom � local to the conclusion.

Theorem 4.4 (Interpolation)
If � entails y, then there is a set � of formulas such that

1. every � formula is simultaneously local to � and local to y,
2. there is a derivation of every � formula from � using only formulas local to � and
3. there is a derivation of y from � using only introduction rules and axioms local to y, and thus

using only formulas local to y.

Proof. Suppose ��y. Note that claim 1 follows from the other two claims. Let D be a shortest
derivation of y from �. We say that a node u of D is an elimination node if the rule used to obtain
D(u) is an elimination rule.

Let U be the set of nodes u in D such that no node between u and the root of the derivation tree
(or dag) is an elimination node, but u itself is either an elimination node or else a leaf such that D(u)
is local to �. The desired �={D(u) : u∈U}. Claim 3 follows from the definition of �.

Consider any D(u) in �. If u is a leaf, then D(u) is local to � by the definition of U, and if u is an
elimination node, then D(u) is local to � by Lemma 4.1. Consider a part D′ of D rooted at u. As D
is a shortest derivation of y, D′ is a shortest derivation of D(u). Claim 2 follows from Theorem 4.3.

�

5 Decision algorithm

Theorem 5.1 (Decision algorithm)
There is a linear-time algorithm that, given two finite sequences of formulas, H (hypotheses) and Q
(queries), decides which formulas in Q are derivable from H.

The rest of this oversized section is devoted to proving Theorem 5.1. After some preliminaries in
§ 5.1, we construct the desired decision algorithm and explain how it works.

5.1 Preliminaries

High-level idea. Call a formula or quotation prefix local if it is local to the union H ∪Q of the given
H and Q. Call a formula y locally derivable if it is local and derivable from H. By Theorem 4.3, if y
is locally derivable, then there is a derivation of y from H that consists of formulas local to H ∪{y}.

The high-level idea of the algorithm is to derive all locally derivable formulas and output the
locally derivable queries. For the sake of clarity, we forgo some possible optimization to simplify
the exposition.

Example 5.2
Let

H = {a∧b,c,e,(a∧c)→(d →e)},
Q = {(a∧(d →e))→d,b→(d →e)}.

All hypotheses are trivially locally derivable. From a∧b we can derive a and b by rule (∧e). From
a and c we can derive a∧c by rule (∧i). From (a∧c) and (a∧c)→(d →e) we can derive d →e by
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126 Basic primal infon logic

(→e). From this formula, we can derive b→(d →e) by (→i). We can also derive (a∧(d →e)) and
(b∧(d →e)), but the latter is irrelevant because we are only interested in local formulas. We cannot
derive any more local formulas, so the locally derivable formulas are:

a∧b,c,e,(a∧c)→(d →e),a,b,a∧c,(d →e),b→(d →e),(a∧(d →e)).

Accordingly, b→ (d →e) is the only query derivable from H.

The stages of the decision algorithm. Our algorithm works in five stages.

1. Parse the input and bind the nodes of the resulting parse tree to appropriate input positions
[§5.2].

2. Construct a convenient data structure of the local quotation prefixes [§5.3].
3. Bind local formulas to nodes of the input parse tree [§5.4].
4. Construct additional data structures needed for fast derivation of local formulas [§5.5].
5. Derive the locally derivable formulas and output the derivable queries [§5.6].

In §5.7 we prove that the algorithm is indeed linear-time, establish its correctness and remark on
computing—in linear-time—not only the derivable queries but also their derivations.

Computation model. We use the standard computation model of the analysis of algorithms [9].
It is the random access machine such that (i) the registers are of size O(log n) where n is the size
of the input and (ii) the basic register operations are constant-time. The main justification for that
computation model is that the traditional uniprocessor computer can be viewed as a unit-cost random
access machine. ‘In algorithms you use the unit-cost RAM model where basic register operations
over O(logn) bit registers count as a single computation step. There are some good arguments for
this: As technology improves for us to handle larger input sizes, the size of the registers tend to
increase as well. For example, registers have grown from 8 to 64 bits on microprocessors over the
past few decades,’ [12].

Syntax assumptions. We assume that the formal syntax of our formulas satisfies the following rather
usual requirements.

1. Formulas are strings in a fixed finite alphabet.
2. Any occurrence of any subformula of a formula x is a contiguous segment of the string x.
3. No two subformula occurrences in a formula x start at the same position of the string x. We

will use the starting position of a subformula occurrence o as a key to identify o.
4. There is a deterministic pushdown automaton with an output tape (a deterministic pushdown

transducer) that, given a formula, detects the initial position Key(o) of every subformula
occurrence o, computes the length of the subformula in question and associates it with Key(o).

The standard syntax of formulas with all binary operators in prefix position satisfies the requirements;
no parentheses are required. The infix position for the binary operators is no problem; just put
parenthesis around every non-atomic subformula including the whole formula.We have been allowing
ourselves to skip the outermost parentheses because they are not needed for human comprehension.
But, formally, they are required.

Notation and terminology.

• The term ‘input’ will be used for a current input for the desired decision algorithm. The input
thus is a sequence of the given hypotheses and then the given queries. More precisely (and
pedantically), it is the sequence of letters obtained by concatenating the given hypotheses, then
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Basic primal infon logic 127

some separator and then the given queries. We presume that the input went through a lexical
analyzer and so the names of the variables and constants are of length O(logn).

• H and Q are the sets of the hypotheses and queries, respectively. A formula or quotation prefix
is local if it is local to H ∪Q.

• n is the length of the input.
• If J is a contiguous segment of the input, then the initial position p of J (in the form of a binary

number) is its key, symbolically Key(J)=p. Note that every formula occurrence in the input
is uniquely identified by its key.

5.2 Parsing

Contrary to our derivation trees, which grow up in accordance with logic tradition, our parse trees
grow down in accordance with computer science tradition. In particular, the root of a parse tree is at
the top of the tree. Following [16], we define compact parse trees of formulas where the edge labels
may carry substantial information.

Definition 5.3 (Formula parse tree)
By induction on formula x, we define the parse tree PT(x) of x.

• If x is atomic, PT(x) consists of one node labelled with x.
• If x is a quote prefz with body z, then the root r of PT(x) has a unique child r′, the r′-rooted

subtree is isomorphic to PT(z) and the edge (r,r′) is labelled with pref.
• Let x be a binary combination x1 �x2. Then the root r of PT(x) is labelled with the binary

connective ∗ and has two children, a left child r1 and right child r2. Let Ti be the ri-rooted
subtree of PT(x), and let T ′

i be the extension of Ti with r and the edge (r,ri). Three cases arise.

1. If neither xi is a quote, then each Ti is isomorphic to PT(xi), and the edges (r,ri) are
unlabelled.

2. If xi is a quote but xj is not, then Tj is isomorphic to PT(xj), the edge (r,rj) is unlabelled,
and T ′

i is isomorphic to PT(xi).
3. If both xi are quotes, then each T ′

i is isomorphic to PT(xi).

We present some examples, see Figures 1–4, to clarify this definition. In the examples, x and y are
propositional variables.

If u is a parse-tree node labelled with a binary connective, then we use ul and ur to denote the left
and the right child of u, respectively.

Remark 5.4
The parse tree PT(x) of a formula x is compact in the following sense. Normally, every subformula
occurrence x would be represented by a separate node u of the parse tree for x (with the u-rooted
subtree isomorphic to the parse tree of the subformula). In our case, however, this only holds if the

∧

x y

Figure 1. Parse tree for x∧y.
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∧

x y

p said
q said

Figure 2. Parse tree for x∧(psaidqsaidy).

∧

x

q
sa
id

y

q
said

p
said

Figure 3. Parse tree for psaid((qsaidx)∧(qsaidy)).

∧

x

q
sa
id

y

p
said

Figure 4. Parse tree for p said((q said x)∧y).

subformula is a non-quote or x itself. Such more compact parse trees are more convenient for our
purposes.

Definition 5.5 (Input parse tree)
Recall that the input for the desired decision algorithm is a sequence of hypothesis followed by
a sequence of queries. The top node of the input parse tree is labelled input. It has two children
labelled hypothesis and query. The parse trees of the hypotheses hang under thehypothesis
node in the order they occur in H. If the root node of a hypothesis x is unlabelled it is merged with the
hypothesis node; otherwise the edge from the hypothesis node to the root of x is unlabelled.
In a similar way, the parse trees of the queries hang under the query node.
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input

hypothesis

x

p
sa
id

∧

y

q
sa
id

x

r
said

s
said

p
said

query

→

x →

x

q
sa
id

x

p
said

Figure 5. Parse tree for an instance of the multi-derivability problem.

For example, Figure 5 shows the parse tree for input

H ={p said x,p said (q said y∧r said s said x)},
Q={p said (x→(q said x→x))}.

Definition 5.6 (Regular nodes and their body formulas)
Anode u of the input parse tree is regular if u is labelled with an atomic formula or a binary connective;
otherwise it is irregular. The body formula BF(u) of a regular node u is the formula x such that the
u-rooted subtree is isomorphic to the parse tree of BF(u).

Thus only the three top nodes of the input parse tree, labelled input,hypothesis and query,
are irregular.

Corollary 5.7
• A subformula x of the input is the body formula of some regular node if and only if x is not a

quote subformula.
• If x is a non-quote subformula with n occurrences in the input, then there are exactly n nodes

with x as their body formula.

In accordance with Remark 5.4, every occurrence o of a non-quote formula x in the input gives
rise to a separate node u, with BF(u)=x, of the input parse tree. And every regular node u is obtained
this way. We say that u represents o and that the key of u is that of o. Here is a more careful version
of that definition.

Definition 5.8
Let x be a non-quote subformula of H ∪Q; let o1,...,om be the occurrences of x in the input, listed
left to right; and let u1,...,um be the m nodes of the input parse tree, in the depth-first order, with x
as their body formula. Then each ui represents the occurrence oi of x, and the key of ui is that of oi.
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130 Basic primal infon logic

Corollary 5.9
There is a linear-time algorithm—Algorithm 1—that, given an input in the form of a list of hypotheses
and queries, builds the following:

• A parse tree for the input where every node u is decorated with the following additional fields:

– Key(u), a number that uniquely identifies node u, namely, the initial position of the particular
occurrence of formula BF(u) in the input represented by u.

– H(u), a pointer of type node, to be used in stage 3 of the desired decision algorithm and set
to nil for the time being.

– Length(u), the length of BF(u).
– Vertex(u), to be used in stage 2 of the decision algorithm and set to nil for the time being.
– T (u), a record, to be used in stages 4 and 5 of the decision algorithm and set to nil for the

time being.

• An array Node indexed by input positions. If p is the initial position of a subformula occurrence,
then Node[p] is the node u with Key(u)=p. Otherwise Node[p]=nil.

Proof. The desired algorithm uses standard parsing techniques to compute the required structure
and fields [1]. �

Stage 1 Algorithm 1 is stage 1 of the desired decision algorithm.

5.3 Constructing a trie of local prefixes

A trie (also known as a keyword tree in the pattern-matching community) is a well-known data
structure for quick storage and retrieval of strings [17, 18]. A trie for a list 〈s1,s2,...,sk〉 of strings in
some finite alphabet � is a tree with the following properties. It will be convenient for us to use the
term vertex for trie’s nodes.

• Every edge is labelled with a letter in the alphabet �. As a result, every vertex v is associated
with the string on the route from the root vertex to v.

• Distinct vertices v1,v2 are associated with distinct strings.
• For every string si there is a vertex vi associated with si; the vertex vi is labelled with the string

si. There are no other labelled vertices.
• Every leaf vertex is labelled. Some internal vertices may be labelled as well.

Example 5.10
We sketch a construction of a trie (see Figure 6 for a list

〈 BE, SO, BAT, BEE, SIN, BELL, BEST, SING, SINK 〉
of strings in capital Latin letters. Start by creating a root vertex. Then read the given strings one after
another, letter by letter, and put the current string on the trie as follows:

The case of BE. As the root does not have an outgoing B-labelled edge, create such an edge as
well as a subsequent E-labelled edge. Label with BE the vertex associated with that string. The case
of SO is similar.

The case of BAT. As the root has already a B-labelled edge, go down that edge. This brings you to
a vertex without an outgoing A-labelled edge. Create such an edge as well as a subsequent T-labelled
edge. Label with BAT the vertex associated with that string. And so on.
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BAT

T

A

BE

BEE

E

BELL

L
L

BEST

T

S

E

B

SO

O

SIN

SING

G

SINK

K

N

I

S

Figure 6. A trie for 〈be, so, bat, bee, sin, bell, best, sing, sink〉.
q
sa
id

s
said

r
said

p
said

Figure 7. Trie of prefixes for the parse tree of Figure 5.

It is easy to see that tries over a fixed finite alphabet are built in linear-time.
For the purpose of the next definition, but also below, unlabelled edges of the input parse tree are

viewed being labelled with the empty prefix ε.

Definition 5.11 (Node prefixes)
For every node u of the input parse tree, Pref(u) is the concatenation of the edge labels from the root
to u. In other words, if u is the root, then Pref(u)=ε; otherwise Pref(u)=Pref(v)Label(v,u), where
v is the parent of u.

Theorem 5.12
There is a linear-time algorithm—Algorithm 2—that, given the output of Algorithm 1, builds an
auxiliary datastructure of the local prefixes in such a way that questions whether Pref(u)=Pref(w)
is decidable in constant-time.
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132 Basic primal infon logic

Proof. The auxiliary datastructure is the trie of node prefixes, the prefix trie. Figure 7 shows a
simplified prefix trie for the parse tree in Figure 5 where each unary quotation prefix is treated
as one letter. In the honest trie, principal constants should be spelled in full, so that each edge of
Figure 7 may have internal nodes, and the two edges of Figure 7 that come from the same vertex
may have a common initial segment. The occurrences of said may be omitted. However, the blank
separating a principal constant from said should stay or be replaced by another character that does
not occur in principal constants. Otherwise, different prefixes may give rise to the same string, e.g.
andrea said sandy said and andreas said andy said give rise to the same string
andreasandy.

The desired algorithm traverses the input parse tree in the depth-first way. The vertices of the
desired prefix trie are records. In particular, there are these two numerical fields: the identifier and the
SA-Position field. By default, when a vertex v is created, SA-Position(v) is set to −1; the SA-Position
field will be used on a later stage. Also, for every regular node u, the desired algorithm sets Vertex(u)
to the unique trie vertex representing Pref(u), so that Pref(u)=Pref(Vertex(u)).

The algorithm starts with creating the root vertex of the desired trie and setting the Vertex field of
the root node of the input parse tree to the root vertex. The rest of the work is done whenever the
algorithm goes down an edge (u,u′) of the input parse tree. Let v=Vertex(u) and π =Label(u,u′). If
π is the empty prefix, then Vertex(u′) is set to v. Otherwise let π0 be the maximal prefix of π such
that the current trie has a branch b0 with a final vertex v0 such that b0 starts from v and the letters
on b0 spell π0. If π0 =π , the algorithm sets Vertex(u′)=v0. Otherwise π has the form π0π1, and the
algorithm constructs a branch b1 from v0 down to a leaf v′ such that the letters on b1 spell π1. Then
the algorithm sets Vertex(u′) to v′.

Now, for any two nodes u and w of the input parse tree, it can be decided in constant-time whether
Pref(u)=Pref(w); just check whether Vertex(u)=Vertex(w). �

Stage 2 Algorithm 2 is stage 2 of the desired decision algorithm.

5.4 A node representation of local formulas

Recall that for every contiguous segment J of the input, Key(J) is the start position of J . Let J0,...,Jn−1
be the nonempty suffixes of the input in the lexicographic order. (If J is a prefix of another suffix J ′,
then J lexicographically precedes J ′.) The suffix array for the input is the array

[〈
Key(J0),LCP(0)

〉
...

〈
Key(Jn−1),LCP(n−1)

〉]

where LCP(i) is the length of the longest common prefix of Ji and Ji−1, unless i=0, in which case
LCP(i)=0. The suffix array of a string is computable in linear-time [17].

Example 5.13
Consider a formula

( ( ( x → y ) → x ) → x )
0 1 2 3 4 5 6 7 8 9 10 11 12

and suppose that the lexicographic order of the symbols is

x, y, →, (, ).

Table 1 shows the suffix array for the formula.
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Table 1. Suffix array for (((x→y)→x)→x). The extra column Ji is included for clarity; it is not
a part of the suffix array

i Key(Ji) LCP(i) Ji

0 3 0 x→y)→x)→x)
1 11 1 x)
2 8 2 x)→x)
3 5 0 y)→x)→x)
4 10 0 →x)
5 7 3 →x)→x)
6 4 1 →y)→x)→x)
7 2 0 (x→y)→x)→x)
8 1 1 ((x→y)→x)→x)
9 0 2 (((x→y)→x)→x)
10 12 0 )
11 9 1 )→x)
12 6 4 )→x)→x)

Definition 5.14 (Complete node formulas CF(u))
For every regular node u, CF(u)=Pref(u)BF(u). In other words, if u is a leaf, then CF(u)=
Pref(u)Label(u), and otherwise

CF(u)=Pref(u)
[(

Label(u,ul)(BF(ul)
)∗ (

Label(u,ur)BF(ur)
)]

.

Definition 5.15 (Homonymy)
Let u,w range over the regular nodes of the input parse tree. If CF(u)=CF(w), then u,w are homonyms.

Corollary 5.16
Every CF(u) is a local formula, and every local formula is the complete node formula CF(u) for some
node u.

Proof. To prove the first claim, induct on the number of edges from the root to u. As for the second
claim, let x be an arbitrary member of H ∪Q. It suffices to prove that every formula local to x is the
complete formula CF(u) for some node u. Induct on the formulas local to x. �
Theorem 5.17
There is a linear-time algorithm—Algorithm 3—that, given the input sequence of hypotheses and
queries and given the outputs of Algorithm 1 and Algorithm 2,

• computes a particular node, the homonymy leader, in every homonymy class of regular nodes,
and

• sets the pointer H(u) to the homonymy leader of u, for every regular node u.

Proof. Let Suff(u) be the suffix J of the input with Key(J)=Key(u). We will choose a regular node
u as a homonymy leader if Suff(u) lexicographically precedes Suff(w) for every other homonym w
of u.

Observe that, if x is a non-quote subformula of the input, and if u1,...,um are the regular nodes
with BF(ui)=x ordered according to the lexicographic ordering of the associated suffixes Suff(ul),
then

1. (Suff(u1),...,Suff(um)) is a contiguous segment in the lexicographic ordering of the input
suffixes.
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134 Basic primal infon logic

2. If pl is the position of Suff(ul) in the first column of the suffix array, then LCP(p1)<Length(x),
LCP(pi)≥Length(x) for 1< i≤m and LCP(1+pm)<Length(x).

3. ul is a homonymy leader if and only if Pref(ul) differs from every Pref(ui) with i< l.

The desired algorithm works as follows. First it constructs the suffix array for the input. Then it
traverses the suffix array. The work is done when it traverses stretches Suff(u1),...,Suff(um) of the
kind described in the observations above. Let’s consider the traversal of one of such stretches. We use
the notation of the observations; in addition let vi =Vertex(ui). Note that formula x=BF(Node[p1]);
let 	=Length(x). The suffix-array position p1 is recognized because Node[p1] �=nil and LCP(p1)<
	. The position 1+pm is recognized because it is the first position p after p1 such that LCP(p)<	.

At any position pl, the algorithm checks whether SA-Position(vl)<p1. If yes, then it sets H(ul)=ul,
thus making ul a homonymy leader, and it sets SA-Position(vl)=pl. Otherwise the algorithm sets
H(ul)=Node[SA-Position(vl)].

We illustrate the algorithm on an example where m=4, v1 =v3, v2 =v4 but v1 �=v3. All four nodes
ui have the same body formula x, and there are no other nodes with that body formula. However, the
complete node formulas CF(ui) are not all the same. We have CF(u1)=CF(u3) and CF(u2)=CF(u4)
but CF(u1) �=CF(u2). Thus the four nodes ui give rise to two distinct homonymy classes {u1,u3}
and {u2,u4}. The algorithm starts the traversal of the stretch Suff(u1),Suff(u2),Suff(u3),Suff(u4)
by checking whether SA-Position(v1)<p1. The answer is positive. Indeed, if the algorithm has
never touched SA-Position(v1), then SA-Position(v1)=−1<p1. Otherwise the algorithm touched
SA-Position(v1) for the last time as it traversed some earlier stretch Suff(u′

1),Suff(u′
2),... of the suffix

array, and so SA-Position(v1) is some position p′
i =Key(u′

i) with Suff(u′
i) in that earlier stretch. That

earlier suffix Suff(u′
i) starts at position p′

i, and so p′
i <p1. Accordingly, the algorithm sets H(u1)=u1,

making u1 the leader in the homonymy class {u1,u3}. Similarly, the algorithm will discover that
SA-Position(v2)<p1 and will set H(u2)=u2, making u2 the leader in the homonymy class {u2,u4}.
The algorithm will discover that SA-Position(v3)=p1 and will set H(u3)=Node[SA-Position(v3)]=
Node[p1]=u1. The algorithm will discover that SA-Position(v4)=p2 >p1 and will set H(u4)=
Node[SA-Position(v4)]=Node[p2]=u2. �

Stage 3 Algorithm 3 is the stage 3 of the decision algorithm.

Definition 5.18
A regular node u is the node representation of the local formula CF(u) if u is a homonymy leader.

5.5 Preprocessing

Recall that every node u of the input parse tree is decorated with a record T (u). View the record T (u)
as an entry of a table T . Initially every entry is nil. At its fourth stage, the decision algorithm fills
in some content into the table T , to be used on the final fifth stage. We ask the reader to bear with us.
The intended meaning of the table will become clear in the next subsection.
Description of table T . A record T (u) has the following fields where ∗ ranges over the binary
connectives. Let CF(u)=prefx where x may be a quote. We are interested only in records T (u)
where u is a homonymy leader.

• (∗, left): A list of all homonymy leaders w such that
CF(w)=pref(x∗y) for some y.

• (∗, right): A list of all homonymy leaders w such that
CF(w)=pref(y∗x) for some y.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/26/1/117/2579202 by U
niversity of M

ichigan user on 28 June 2020



Basic primal infon logic 135

• A numeric field Status(u) takes values 1, 2 and 3. Contrary to the previous fields that stay
unchanged during Stage 5, the status of a node may change at that stage.

The intended meaning of the status. Intentionally the status in question is that of the formula CF(u).
Besides, it is the status of H(u) that matters.

• Status(H(u))=1 indicates that CF(u) has not been derived yet. We say that H(u) is raw.
• Status(H(u))=2 indicates that CF(u) has been derived but not processed in the sense explained

in the next section. We say that H(u) is pending.
• Status(H(u))=3 indicates that CF(u) has been derived and processed. We say that H(u) is

processed.

In Stage 4, the status of every homonymy leader u is initialized to 1, unless u represents an axiom or
hypothesis, in which case the status of u is initialized to 2.

Stage 4 The algorithm traverses the input parse tree in the depth-first order and constructs the table
T . On the same occasion, it constructs a queue, called the pending queue, and initializes it with the
axioms and hypotheses.

• If the label of u is a binary connective ∗ and if H(u)=u, then append H(u) to the (∗, left) field
of T (H(ul)) and to the (∗, right) field of T (H(ur)).

• If Label(u)=� or u is a child of the hypothesis node, and if Status(H(u))=1, then append
H(u) to the pending queue and set Status(u)=2.

The one-node computation is constant-time. Therefore, Stage 4 takes linear-time.

5.6 Deriving local formulas

Finally we reach the stage of the decision algorithm where it derives all the locally derivable formulas.
The idea is simple. Pick the first pending node u and apply all derivation rules to CF(u), which may
cause some raw formulas to become pending, and then remove u from the pending queue and set
Status(u)=3. Repeat this procedure until there are no pending formulas. The following invariant is
maintained: if a homonymy leader u is pending or processed, then CF(u) is derivable.

But what does it mean to apply a derivation rule to the formula CF(u)? We explain that. So let u
be a homonymy leader. For brevity, to make a node w pending means to append w to the pending
queue and to set Status(w)=2.

Applying (∧e) to u.

Do this only if u is labelled with ∧. If H(ul) is raw, make it pending. Similarly, if H(ur) is raw,
make it pending.
Justification If u is labelled with ∧, then CF(u)=pref(x∧y), CF(H(ul))=prefx and
CF(H(ur))=prefy. As u is pending, pref(x∧y) is derivable. By rule (∧e), prefx and
prefy are derivable.

Applying (∧i) to u.

1. Walk through the nodes w in the (∧,left) field of T (u). If w is raw and if H(wr) is pending or
processed, then make w pending.
Justification Suppose CF(u)=prefx. The (∧,left) field of T (u) comprises homonymy leaders
w such that CF(w)=pref(x∧y) for some y. It follows that CF(H(wr))=CF(wr)=prefy. As
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136 Basic primal infon logic

u is pending, prefx is derivable. If H(wr) is pending or processed, then prefy is derivable
as well, and then—by the rule(∧i)—pref(x∧y) is derivable.

2. Similarly, walk through the nodes w in the (∧,right) field of T (u). If w is raw and if H(wl) is
pending or processed, then make w pending.

Applying (∨i) to u.

Walk through the (∨,left) and (∨,right) fields of T (u) and make pending each raw node w there.
Justification. Let CF(u)=prefx. The (∨,left) list comprises the homonymy leaders w with
CF(w)=pref(x∨y) for some y. Similarly, the (∨,right) list comprises the homonymy leaders
w with CF(w)=pref(y∨x) for some y. As u is pending, pref x is derivable. By rule (∨i),
pref(x∨y) and pref(y∨x) are derivable.

Applying (→i) to u.

Walk through the (→, right) field of T (u) and make pending each raw node w there.
Justification. Let CF(u)=pref x. The (→, right) list comprises homonymy leaders w such
that CF(w)=pref(y→x) for some y. As prefx is derivable, so is pref(y→x).

Applying (→e) to u. CF(u) can be used as (1) the left of the (→e) rule or (2) the right premise of
the rule. Accordingly, we have two substeps.

1. Walk through the (→,left) list of T (u). For each node w there, if w is pending or processed but
H(wr) is raw, then make H(wr) pending.
Justification. Let CF(u)=pref x. The (→,left) field of T (u) comprises homonymy leaders w
such that CF(w)=pref(x→y) for some y. Then CF(wr)=pref y. As u is pending, pref x
is derivable. If w is pending or processed, then pref(x→y) is also derivable, and then—by
the rule (→e)—pref y is derivable.

2. If u is labelled with → and if H(ul) is pending or processed but H(ur) is raw, then make H(ur)
pending. Otherwise do nothing.
Justification. Suppose that CF(u)=pref(x→y), so that CF(ul)=pref x and CF(ur)=
pref y. As u is pending, pref(x→y) is derivable. If pref x is also derivable, then, by
the rule (→ e), pref y is derivable.

Now we are ready to summarize the derivation stage of the decision algorithm.

Stage 5 The algorithm repeats the following procedure until the pending queue is empty.

Node-processing procedure. The algorithm picks the first pending node u and applies every derivation
rule to CF(u) in the way described above. Then it removes the node u from the pending queue and
sets Status(u)=3.

When the pending queue is empty, the algorithm compiles a list of the numbers of derivable queries.
To this end, it walks through the children u1,u2,...,uk of the query node. If H(ui) is processed,
then the algorithm appends the number i to the list.

That concludes the construction of the decision algorithm.

Remark 5.19
If necessary, we can print the derivable queries. Indeed, walk through the children u1,...,um of the
query node. The ith query is CF(ui), which is prefi BF(ui) where prefi is the label from the
query node to ui. So, if Status(ui)=3, then print prefi and then print the letters in input positions
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Key(ui) to Key(ui)+Length(u). As separate queries are separate segments of the input, the printing
process takes linear-time. If you worry that the ith query may be identical to a later query and you
don’t want to print it again, mark H(ui) printed, e.g. by setting Status(H(ui)) to 4. Ironically, we may
be unable to print the numbers of the derivable queries in linear-time. Consider e.g. the case with no
hypotheses and n queries �,...,�. The length of the list 1,...,n, in binary or decimal, is of the order
n×logn.

5.7 Analysis

Theorem 5.20
The decision algorithm works in linear-time.

Proof. We have already checked that Stages 1–4 take linear-time. As compiling the list of derivable
queries is linear-time, it remains to show the derivation process of Stage 5 takes linear-time. This is
not completely obvious because the processing of one pending node is not necessarily constant-time.

It suffices to check that, for every derivation rule R, the total time of all applications of R is linear-
time. The case of applying rule (∧e) is obvious, and so is the second case of applying rule (→e). We
restrict attention to rule (∧i) because the remaining cases are similar to it.

The application of rule (∧,i) to a pending node u is proportional to the number of nodes in the
(∧,left) and (∧,right) lists of u. The key point is that different homonymy leaders have disjoint (∧,left)
lists, and they have disjoint (∧,right) lists. So the number of nodes in all (∧,left) lists is ≤n, and the
number of nodes in all (∧,right) lists is ≤n. Hence the total time to apply the (∧i) rule to pending
nodes is linear. �
Theorem 5.21
The decision algorithm is sound (so that every query deemed derived by the algorithm from the given
hypotheses is indeed derived) and complete (so that all given queries that are derivable are derived
by the algorithm).

Proof. The soundness is obvious at this point; we have already provided sufficient justifications.
It remains to establish the completeness. To this end, it suffices to prove that, for every homonymy
leader u, if CF(u) is derivable from the hypotheses, then u becomes pending at some point. We
prove that by induction on the length of the given local derivation of CF(u). If CF(u) is an axiom or
hypothesis, then u becomes pending at Stage 4. Otherwise CF(u) is the conclusion of some inference
rule R. Several cases arise. Three of these cases are easy, so we consider the other two.

• R is (∧i). The last part of the derivation of CF(u) looks like this:

H
...

pref x

H
...

pref y
(∧i)

pref(x∧y)

Thus CF(u) has the form pref(x∧y), CF(ul)=prefx and CF(ur)=prefy. The derivations of
prefx and prefy from H are shorter, so by the induction hypothesis H(ul) and H(ur) become
pending during the execution of the algorithm. By symmetry, we may assume without loss of
generality that H(ur) is processed earlier than H(ul). When we apply (∧i) to H(ul), we walk through
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the nodes in the (∧,left) list of ul and find u there. As H(ur) had become pending earlier, we check
whether u is raw and, if yes, make it pending.

• R is (→e). The last part of the derivation of CF(u) looks like this:

H
...

pref x

H
...

pref(x→y)
(→e)

pref y

By assumption, this derivation uses only local formulas, so there must be a homonymy leader w
such that CF(w)=pref(x→y). Then CF(wl)=prefx and u=H(wr). The derivations of prefx
and pref(x→y) from H are shorter, so by the induction hypothesis H(wl) and w become pending
during the execution of the algorithm. Suppose w is processed earlier than H(wl) (the alternative,
where H(wl) is processed earlier, is easier). When we apply (→e) to H(wl), we walk through the
nodes of the (→,left) list of H(wl) and find w there. As w had been processed earlier, we check
whether H(wr) is raw and, if yes, make it pending. But H(wr)=u. �
Corollary 5.22 (Witness extraction)
The decision algorithm can be extended to extract in linear-time a witness that the given queries
claimed to be derivable are indeed derivable from the given hypotheses and that the remaining given
queries are not derivable from the given hypotheses.

Proof. The desired witness is a derivation dag D (directed acyclic graph) on the homonymy leaders
that can be constructed as a byproduct of the decision algorithm. First put down the nodes representing
axioms and hypotheses.As a new node u becomes pending, put it on the dag with pointers to the nodes
representing the premises of the derivation rule used to make u pending. For every query y claimed
to be derived, D includes a derivation of y from the hypotheses; just consider the sub-derivation of
D rooted at the node representing y.

By virtue of By Theorem 4.3, the derivation D can be also seen as a ‘negative witness,’ albeit
indirect, that any remaining query z is underivable from the hypotheses: if the node representing z
is not in D, then z is underivable. Indeed, the collection of the formulas labelling D nodes is closed
under local derivations and thus contains every locally derivable formula. By Theorem 4.3, it contains
every local formula derivable from the hypotheses. �

The use of D as a negative witness requires checking that the set of formula labels is closed under
local derivations. This may be not as satisfying as one would desire. Still D is a negative witness. It
can be used to construct an alternative negative witness in the form of a Kripke model. See also the
Normal Form theorem, Theorem 5.8 in [16], in this connection.

6 PIL with variables

PIL was developed in the context of policy and trust management. Its propositional version PPIL is
insufficient for the intended applications. Knowledge assertions often involve object variables, e.g.
‘Every password contains digits and letters,’ or ‘Any employee should have a manager.’

Our presentation of PIL follows that of [6], where PIL is called PIV, an allusion to Primal Infon
logic with Variables.
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6.1 Syntax and semantics

We restrict attention to the universal fragment of PIL. Atomic formulas are those of multi-sorted
first-order logic without equality or function symbols of positive arity. In particular, there is a sort
principal. Other formulas are built from atomic formulas and propositional constants �, ⊥ by means
of conjunction, disjunction, implication and unary connectives p said, where p is a variable or
constant of sort principal.

Formulas may have nullary function symbols, also known as constants; these are object constants
not to be confused with propositional constants � and ⊥. As there are no function symbols of positive
arity, a term is either a variable or a constant.

The intended meaning of a formula ϕ(v1,...,vk) is the universal closure ∀v1 ...∀vk ϕ(v1,...,vk). In
other words, the variables are implicitly quantified. A Hilbertian calculus for (the universal fragment
of) PIL is the extension of the Hilbertian calculus for PPIL in §2, where x and y range over (quantifier-
free) PIL formulas and pref ranges over quotation prefixes, with one additional rule of inference:

ϕ
(substitution)

ξϕ

where ξ is any substitution of variables with terms. In the rest of this section, we work in the Hilbertian
calculus for PIL, and denote PIL formulas with Greek letters.

Definition 6.1
A substitution ξ is native to a set � of formulas if every term ξ (v) occurs in �.

6.2 Derivation problem for PIL

Recall that the derivation problem for a logic L is the problem whether given hypotheses H entail
a given formula γ . Call a substitution native if it is native to the given H ∪{γ }. Call a derivation
propositional if it does not use the substitution rule.

Theorem 6.2
[6, Theorem 18 and Corollary 22] If H entails γ , then there is a set H ′ of native-substitution instances
of the hypotheses such that H ′ propositionally entails γ . Furthermore, suppose that at least one term
occurs in γ or at least one constant occurs in H. Then every variable of H ′ also occurs in γ . In
particular, if γ is ground (without variables), then so is H ′.

By virtue of Theorems 4.3 and 4.4, we may impose additional restrictions on the propositional
part of the deduction.

Corollary 6.3
Theorem 6.2 remains true if we require that the deduction of γ from H ′ satisfies the following
requirements.

• The derivation of γ from H ′ is local to H ′ ∪{γ }.
• If γ is atomic, then it is local to H ′, and the deduction of γ from H ′ is local to H ′. Otherwise the

deduction of γ from H ′ splits into, first, a part consisting of formulas local to H ′, and, second,
a part building up γ from these formulas local to H ′ by means of introduction rules.
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A decision algorithm. For the purpose of Theorem 6.2, the variables of γ are treated as constants.
The theorem gives rise to an algorithm deciding whether given hypotheses H entail a given query γ .
Indeed we may assume without loss of generality that the set C of constants in H ∪{γ } is not empty.
The desired H ′ can be the set of all substitution instances ξ (α) where α∈H and Range(ξ )⊆C. This
gives rise to a decision algorithm for PIL.

Of course there are in general exponentially many such substitution instances. However, the
following happens in many policy scenarios. Even though there may be many object variables in the
policy rules, almost all variables have been replaced with constants when the need arises to check
entailment. The decision algorithm in question was implemented by Artem Melentyev in 2012 and
is available at [11].

Other decision algorithms. A Prolog-like decision algorithm for (the universal fragment of) PIL
was written by Michał Moskal in 2010.

In §6 of [6], the decision problem for (the universal fragment of) PIL is reduced to that of Datalog.
A more practical version of that reduction is constructed in [5].
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