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What we see depends mainly on what we look for.
—John Lubbock

Abstract. Our main goal is to put Datalog into a proper logic perspec-
tive. It may be too early to put Datalog into a proper perspective from
the point of view of applications; nevertheless we discuss why Datalog
pops up so often in applications.

1 Introduction

Throughout our career, we came across Datalog many times, directly or indi-
rectly. This exposition is, in a sense, a summary of our experience. Here we are
interested in proper perspectives on Datalog from the point of view of logic and
applications. The exposition contains no new hard technical results.

A short §2on preliminaries seeks to fix the terminology and make this exposi-
tion more self-contained. In §3] we recall the notion of global relations; first-order
and second-order formulas are, semantically, global relations. According to the
standard model-theoretic semantics of Datalog, known also as the fixed-point
semantics, Datalog queries are global relations as well. We also recall the proof-
theoretic semantics of Datalog queries, and we formulate how the two semantics
of Datalog are related.

The goal of the following §4}{7] is to put Datalog into a proper logic per-
spective. The global-relation view allows us to compare the expressive power
of Datalog with that of more traditional logics. Whether we speak about all
structures or only finite structures, Datalog has only trivial intersection with
first-order logic ( and constitutes only a tiny fragment of second-order logic
(§5)). There is, however, a more traditional logic whose expressive power is ex-
actly that of Datalog; it is existential fixed-point logic ( The equiexpressivity
result is rather robust.

In applications, there is a growing interest in rule-based systems, and Data-
log emerges as a convenient and popular basis for such systems. One instructive
example is “Dedalus: Datalog in Time and Space” [3]. In §8] we illustrate the use
and limitations of Datalog for policy/trust management, and then we describe
an extension of Datalog, called primal infon logic, that overcomes indicated limi-
tations while preserving the feasibility of Datalog. To this end, Datalog is viewed
as a logic calculus without axioms. Primal infon logic extends that calculus with
axioms and more inference rules.



Is Datalog just a fleeting fashion or is there something objective in its coming
up again and again in different applications? Following a recent article [10], our
final section §9] gives an argument for the latter. It turns out that standard logic
systems (and even many non-logic systems) reduce to Datalog. While many of
these reductions are infeasible, some of them are rather practical and allow one
to exploit well-optimized Datalog tools.
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2 Preliminaries

By default, first-order formulas are without equality or function symbols of pos-
itive arity, and a term is a variable or constant.

A (pure) Datalog program is built from atomic formulas of first-order logic.
The relation symbols of the program split into eztensional and intensional; ac-
cordingly the atomic formulas are extensional or intensional. The program itself
is a finite set of facts and rules. Facts are extensional atomic formulas, and rules
have the form

BO :_ala"'aalwﬁla"wﬂe (1)

where all formulas o; are atomic and extensional, formulas 3; are atomic and
intensional, and k, ¢ may be zero. The implication form of is a formula

(a1 A Aag ABL A+ A Be) = o, (2)
and the closed form of (1] is a sentence
VI((ar A Ao ABL A A Br) = Bo) (3)

where T comprises the individual variables of . Similarly, the closed form of
a fact «(Z) is the sentence VZ «(Z).

A Datalog query Q is a pair (II,v) where IT is a Datalog program and ~ an
intensional atomic formula. The extensional vocabulary of IT (resp. ()) comprises
the constants and extensional relation symbols in IT (resp. @). The number of
distinct variables in v is the arity of Q). Nullary queries are also known as ground
queries.

Example 1. Let II; be the Datalog program

E(x,1)

E(2,3)

T(3,z): —

T(z,y) : — E(z,y)
T(z,y) + — T(x,2), T(2y)



with two facts and three rules. Relation E is extensional, and relation T is
intensional. The extensional vocabulary of query (I1;,7T(1,4)) consists of the
constants 1,2, 3,4 and the relation symbol E. a

Let IT be a Datalog program, 7" the extensional vocabulary of IT and 7" the
result of adding to 7" the intensional symbols of IT. The program IT gives rise
to an operator O that, given any 1”-structure B, does the following. For every
rule (1) of IT and every instantiation
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of the variables of the rule with elements of B such that the ground atomic for-
mulas oy, ..., ¢k, EP1, ..., £Be hold in B, the operator O sets £y true (unless
it was true already in B). The result is an Y’-structure O(B) which is like B
except that the intensional relations might have grown.

Given any 7T-structure A modeling (the closed form of) the facts of IT, let
Ag be the T’-expansion of A where all the intensional relations are empty,
Ant1 = O(4,), and A* be the limit of structures A, so that, for every in-
tensional relation symbol R, the interpretation of R in A* is the union of its
interpretations in structures A,,. The intensional relations of A* are the smallest
intensional relations closed under the rules of IT over A. In other words, they are
the smallest intensional relations that make the closed forms of the rules true.

Definition 2. A query (II,v(Z)) is bounded if there exists a number n such
that, for every structure A, we have

{a: AnEr@)}={a: A" Eq(a)} (4)

The query is bounded on a class C of structures if there exists n such that
holds on all structures in C. a

3 Proof-theoretic and model-theoretic semantics of
Datalog programs and queries

There are two different semantics of Datalog queries in the literature. It may be
useful to clarify what they are and how they are related.
3.1 Proof-theoretic semantics

View a given Datalog program IT as a deductive system. The axioms of IT are
its facts. Each rule of IT gives rise to an inference rule
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where £ is an arbitrary substitution (of variables with terms). And there is one
additional inference rule, the substitution rule

¥
o (6)

where £ is again an arbitrary substitution.
A nullary query (I1,) is an assertion that « is I7-deducible. It is easy to see
that, in Example[l] T'(1,4) is not II;-deducible.

Lemma 3. Let (II,v(Z)) be a Datalog query, H a set of atomic formulas, and
~(¢) the result of replacing the variables T with fresh constants ¢. Then

Proof. =. Use the substitution rule.
<. Given a derivation of v(¢), replace the constants ¢ with fresh variables g
and then use the substitution rule. O

3.2 Model-theoretical semantics

Definition 4 ([14]). An r-ary (abstract) global relation R of vocabulary T
associates with any given Y-structure A an r-ary relation RA on (the base set
of) A in such a way that

RnA=nRA

for every isomorphism 7 from A to another T-structure. O

Any first-order or second-order formula ¢ is, semantically, a global relation
A E ¢. Model-theoretically, a Datalog query @ = (II,~(Z)) is also a global
relation R; the vocabulary of R is the extensional vocabulary of @, and the
arity of R is the number of distinct variables in «y. A relation RA(Z) asserts that
A E ~v(Z) if A models the (closed form of the) facts of II and if the intensional
relations over A are as in the definition of A* in §2}

We illustrate that global relation R on the example of a binary query
(I11,T(x,y)) where IT; is the the program of Example [ll Let G be an arbitrary
directed graph (V, E) with distinguished (and not necessarily distinct) elements
1,2,3. If E(2,3) or Vo E(x,1) fails in G, then relation RG(z,y) is universally
true. If £(2,3) and Vz E(x,1) hold in G, consider the closed forms

p1 =V T(3,2)
p2 =Va,y (E(z,y) = T(z,y))
p3 = Vm,y, z ((T(l‘, Z) A T(Zvy)) - T(xvy))

of the rules of I1;. Interpret T as the least relation on V such that the expansion
G* = (V,E,T) satisfies p1, p2 and p3. The relation RG(z,y) is G* = T(z,y).



3.3 Relating the two semantics

Theorem 5. Let R be the global relation of a Datalog query (II,v(Z)), F the
collection of the facts of Il and H a set of atomic formulas with relation symbols
different from the intensional symbols of IT. The following claims are equivalent.

2. RA(Z) is universally true in every structure A satisfying F'U H.

Proof. Without loss of generality, we may assume that v(Z) is ground. Indeed,
instantiate the variables Z with fresh constants & Now use Lemma [ and the
obvious fact that RA(Z) is universally true in a structure A if and only if RA(¢)
holds in every expansion of A with constants ¢ (and the same base set).

1 — 2 is obvious.

2 — 1. We suppose that claim 1 fails and prove that claim 2 fails as well. Let T
be the extensional vocabulary of the query extended with that of H. Without
loss of generality, 7" contains at least one constant. Consider the T -structure A
on the T-constants where an extensional ground atomic formula « holds if and
only if it is an instantiation of a hypothesis or fact. It suffices to prove that RA
is false. Obviously the facts and hypotheses are universally true in A.

Let A’ be the expansion of A with the intensional relations of II where an
intensional ground atomic formula 8 holds if and only if it is IT-deducible from
H. This instantiates intensional variables to the least values satisfying the closed
forms of the rules of IT. Taking into account that - is not I7-deducible from H,
it follows that RA fails. ad

One case of interest is H = (). Another one is where H is the positive dia-
gram AT (A) of a structure A such that A models F' and every element of A is
distinguished (a constant). Here AT (A) is the set of all ground atomic formulas
in the vocabulary of A that are true in A.

4 Datalog and first-order logic

There is a bit of confusion in the literature about the relation of Datalog and first-
order logic. “Query evaluation with Datalog is based on first order logic” [23].
“Datalog is declarative and is a subset of first-order logic” [19]. In fact, Datalog
is quite different from first-order logic. Datalog is all about recursion, and first-
order logic does not have any recursion (though recursion is available in some
first-order theories, e.g. arithmetic). We say that a Datalog query and a first-
order formula are equivalent if their global relations coincide. More generally,
the query and formula are equivalent on a class C of structures if their global
relations coincide on C.

Theorem 6. If a Datalog query is equivalent to a first-order formula then the
query is bounded and equivalent to a positive existential first-order formula.



Theorem |§| is a straightforward consequence of the compactness theorem [2]
Theorem 5]. Unfortunately the compactness argument involves infinite structures
of little relevance to Datalog applications. The finite version of Theorem [6] was
more challenging.

Theorem 7 (Ajtai-Gurevich). If a Datalog query is equivalent to a first-order
formula on finite structures then, on finite structures, the query is bounded and
equivalent to a positive existential first-order formula.

Theorem [7| is fragile [2, §10] as far as extensions of Datalog are concerned.
It was generalized in [4] to some classes of finite structures. Later Benjamin
Rossman proved the powerful Homomorphism Preservation Theorem [21] that
implies Theorem [7]

5 Datalog and second-order logic

Theorem 8. Every Datalog query (I1,7) is equivalent to a second-order formula
@ of the form VX 3yp where X is a sequence of relation variables, § is a sequence
of individual variables and o is quantifier-free.

Again, the equivalence of a query and formula means that their global relations
coincide. The form VX3gy is known as the strict Vi form where “strict” refers
to the fact that the first-order part is existential. Strict V} formulas were studied
by logicians long before Datalog was introduced [20].

For illustration consider Datalog query (II1,T(a,b) where II; is the program
of Example [T] and a, b are fresh constants. Let F' be the formula

(VzE(1,2)) A B(2,3)

reflecting the facts of 117 and let p1, p2 and p3 be the closed forms of the rules
of II, as in Then the desired @ is (the strict V} formula equivalent to) the
formula

~F VYT ((p1 A p2 A p3) — T(a,b))

The converse of Theorem [§] is not true: non-3-colorability is expressible by
a strict V} formula while it cannot be expressed by any Datalog query unless P
= NP [6]. The converse can be obtained by severely restricting the form of the
quantifier-free formula .

6 Liberal Datalog

The version of Datalog considered above is known as pure Datalog. It has been
generalized in numerous ways. In particular, Constraint Datalog is popular; see
for example [19] and references there. One very different generalization started
with article [I4] where we defined and studied inflationary fixed points. Abiteboul
and Vianu used inflationary-fixed-point semantics to define an elegant version
of Datalog with negations [I] that was popularized by Ullman [22] and used e.g.
in [3]. One simple and most natural liberalization of pure Datalog is this:



(a) Make extensional atomic formulas negatable, so that the facts of a pro-
gram are extensional atomic formulas or their negations, and rules have the
form where aq, . .., ap are extensional atomic formulas or their negations
and formulas §; are atomic and intensional.

While the positivity of intensional formulas is essential for the least-fixed-
point construction, the requirement that extensional formulas be positive has
not been essential above. The whole §3| remains valid under liberalization (a).
Furthermore Theorem [5| and its proof remain valid if “H is a set of atomic
formulas” is replaced with “H is a set of atomic formulas or their negations.”
A new special case of interest is where H is the diagram A(A) of a structure A
on constants that models F. Here A(A) is the set of all ground atomic formulas
and their negations in the vocabulary of A that are true in A.

A further liberalization of Datalog was introduced in [16], by the name Liberal
Datalog, and was studied in [§]. In addition to (a), there are two additional
liberalizations in Liberal Datalog.

(b) The extensional vocabulary of a program may contain function symbols of
any arity. Intensional formulas may contain extensional function symbols.

(¢) Equality has its usual meaning and may occur in programs as an extensional
relation symbol.

Model-theoretically, liberal Datalog queries are global relations. Theorem
remains valid for Liberal Datalog queries [6] Theorem 5].

7 Datalog, Liberal Datalog, and existential fixed-point
logic

We have seen that Datalog has a trivial intersection with first-order logic
and constitutes only a sliver of second-order logic. Existential fixed-point logic
(EFPL) was introduced as the right logic to formulate preconditions and post-
conditions of Hoare logic [6]. The same authors continued to investigate EFPL
in [7I89].

Theorem 9 ([8]). Every global relation expressible by an EFPL formula is ex-
pressible by a Liberal Datalog query, and the other way round.

Q: If you want a logic with the expressivity of Liberal Datalog, why not
declare Liberal Datalog a logic in its own right?

A: In traditional logics, like first-order logic or second-order logic, logic
operators are explicit and can be nested. EFPL is traditional from that
point of view. While in Datalog, pure or liberal, the fixed-point operation
is implicit and can’t be nested, in EFPL it is explicit and can be nested.

For the purpose of the following theorem, equality is considered part of logic
and therefore is not counted in the definition of the vocabulary of an EFPL
formula.



Theorem 10 (Blass-Gurevich). Every global relation expressible by an EFPL
formula without negations or function symbols of positive arity is expressible by
a pure Datalog query, and the other way round.

We explain how to prove Theorem [I0] given the proof of Theorem [9} In the
proof of Theorem [9] given an EFPL formula ¢, we construct a Datalog query
@ with the same global relation, and the other way round. The vocabulary of ¢
coincides with the extensional vocabulary of @Q; if one of them has no function
symbols of positive arity, neither does the other. If the given ¢ has no negation
then the constructed @ has no negation, and the other way round. However, the
construction of ¢ from @ makes use of equality. Equality is legal in EFPL but
pure Datalog does not have it. The problem arises how to deal with the equality
of ¢ in the construction of @) from ¢. Pure Datalog does not have equality as
an extensional relation. But, since we need only positive occurrences of equality,
we can compute the equality as an intensional relation:

E(x,z) : —

The intensional relation E represents the equality of ¢ in the construction of Q.

8 Datalog, policies and primal logic

The advent of cloud computing forces us to be more careful with policies and
trust. Numerous policies, that might have been implicit and vague in the world
of brick and mortar, need be explicit, precise and automated in the cloud. Many
policy rules are expressible in Datalog.

X can read File 13 :- Alice owns File 13,
Alice and X are friends.

But there are common policy rules that are not expressible in Datalog, primarily
because they involve quotations and trust implications.

X can read File 13 :- Alice owns File 13,
Alice said Friends(A,X),
Alice is trusted on Friends(A,X).

where Friends(A,X) is a more formal version of Alice and X are friends
and Alice is trusted on Friends(A,X) abbreviates the implication

(Alice said Friends(A,X)) — Friends(A,X).

Primal infon logic, introduced in [I7], is a proof-theoretic extension of Datalog
that allows one to use quotations and nested implications. (Infons are statements
treated as pieces of information.)

In the rest of this section, formulas are by default quantifier-free first-order
formulas without equality or function symbols of positive arity. Datalog rules
will be viewed as implications so that a Datalog program is a finite set of
formulas.



8.1 Proof-theoretic semantics of Datalog

As we have seen in Datalog programs can be viewed as logic calculi, but there
is a broader proof-theoretic view of Datalog according to which Datalog itself is
a logic calculus. The logic calculus DL of pure Datalog has no axioms and just
three inference rules. One of them is the substitution rule @ The other two are
the the following conjunction introduction rule and implication elimination rule:

e P o w1
©AY 0 '

We write H Fpy, ¢ to indicate that hypotheses H entail formula ¢ in DL.

Theorem 11. For any Datalog query (I1,7), we have bt~y <= II Fpp, 7.

Proof. =. To simulate a rule of I, use conjunction introduction to derive the
body of the rule, and then use implication elimination to derive the head.

<=. Check by induction on the derivation length that IT entails only I7-derivable
atomic formulas and their conjunctions.

The entailment problem for the ground fragment of DL, obtained from DL
by removing the substitution rule, is solvable in linear time [I3].

8.2 Primal infon logic

The quote-free fragment of primal infon logic is obtained from DL by adding
an axiom T and the following conjunction elimination rules and implication
introduction rule:

eAY eAY ®
@ (0 v

To form quotations, primal infon logic has countably infinite lists of variables
and constants of type Principal. The logic uses unary connectives p saicﬂ where
p is a term of type Principal. A quotation prefix is a string of the form

p1 said pp said ... pi said.

Primal infon logic is given by the following logic calculus where pref ranges over
quotation prefixes.

! Originally primal infon logic had two kinds of quotations p said ¢ and p implied ¢
but later the second kind was removed.



Axioms pref T

Inference rules

pref (z Ay) pref (z A y)
prefx prefy

prefx prefy
pref (z Ay)

prefx pref (x — y)
prefy

prefy
pref (x — y)

The entailment problem for the ground fragment of primal logic, obtained
from primal logic by removing the substitution rule, is solvable in linear time
[15/12]. This is important because, while policy rules typically have variables,
deduction often deals with fully instantiated cases. An article [12] is being written
to become a standard initial reference for primal infon logic.

9 It all reduces to Datalog

In a way, pure Datalog reflects the essence of deductive systems. By default, this
section follows [10].

Definition 12. A Hilbertian system (or an abstract Hilbertian deductive system)
is given by a set F' of so-called formulas, a subset Ax C F' of so-called azioms,
and a set Ru of so-called rules of inference (P, «) where P is a finite subset of
FandyeF.

Q: Why these “so-called”?

A: There are Hilbertian systems that do not look at all like logics. For
example, let F' be the set of edges of a fixed digraph, Ax = ), and Ru
comprise the pairs ({(a,b), (b,¢)}, (a,c)). Yet we’ll call the elements of
F, Ax and Ru formulas, axioms and rules respectively.

Theorem 13. For every Hilbertian system S there is a (possibly infinite) Dat-
alog program II such that S-formulas are propositional symbols of II and

HFsy<~= Htpgn.
Definition 14. A Hilbertian system is substitutional if:

1. Formulas are certain finite strings in a specified alphabet.



2. The alphabet includes a countably infinite set of so-called wvariables, and
some (possibly none) of the non-variable symbols are so-called constants.
The variables and constants are terms.

3. If a is a formula then the result £« of replacing in « distinct variables x by
terms £(x) respectively is also a formula, and ({a}, £a) is a rule of inference.
Such rules are substitution rules.

4. If {ai,...,a,}, B) is a rule of inference that is not a substitution rule, then
({€an,...,Ean},&P) is also a rule of inference, for any substitution &. O

The requirement 4 is often superfluous. For example, the inference rules of
primal infon logic are closed under substitutions. Here is a simple example when
the requirement is essential. Consider a deductive system with axiom P(1), the
P(x)
Q(z)

substitution rule and a rule . One may expect to derive Q(1), but it is not

derivable in the system.

Theorem 15. For every substitutional Hilbertian system S there is a (possibly
infinite) Datalog program II such that IT treats any S-formula o with k distinct
variables as a relation symbol of arity k, and

HFsy<~= Htpgn.

Theorem 16. There is an algorithm that converts any instance of the deriv-
ability problem for primal infon logic into an instance of the derivability problem
for pure Datalog, with the same answer.

A more practical algorithm for the same purpose is constructed in [5].
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