
NOTE TO REVIEWERS

This technical report is an extended version of our submis-
sion to the CPP 2012 conference. It contains more detailed
explanations and more examples, as well as an explicit proof
of theorem 4 in the appendix.

The authors

1

DKAL?: Constructing Executable
Specifications of Authorization Protocols

Jean-Baptiste Jeannin1 Guido de Caso2 Juan Chen Yuri Gurevich Prasad Naldurg Nikhil Swamy
Cornell University1 Universidad de Buenos Aires2 Microsoft Research

Abstract—Many prior trust management frameworks provide
authorization logics for specifying policies based on distributed
trust. However, to implement a security protocol using these
frameworks, one usually resorts to a general-purpose program-
ming language. When reasoning about the security of the entire
system, one must study not only policies in the authorization
logic but also hard-to-analyze implementation code.

This paper proposes DKAL?, a language for constructing
executable specifications of authorization protocols. Protocol
and policy designers can use DKAL?’s authorization logic for
expressing distributed trust relationships, and its small rule-based
programming language to describe the message sequence of a
protocol. Importantly, many low-level details of the protocol (e.g.,
marshaling formats or management of state consistency) are left
abstract in DKAL?, but sufficient details must be provided in
order for the protocol to be executable.

We formalize the semantics of DKAL?, giving it both an
operational semantics and a type system. We prove various
properties of DKAL?, including type soundness and a decidability
property for its underlying logic. We also present an interpreter
for DKAL?, mechanically verified for correctness and security. We
evaluate our work experimentally on several examples.

Using our semantics, DKAL? programs can be analyzed for
various protocol-specific properties of interest. Using our in-
terpreter, programmers obtain an executable version of their
protocol which can readily be tested and then deployed.

I. INTRODUCTION

Despite many years of successful research in protocol
design, federated cloud services continue to be plagued by
flaws in the design and implementation of critical authorization
protocols. For example, recent work by Wang et al. (2011)
reveals authorization errors in a variety of federated online
payment services. Among other reasons, Wang et al. argue
that the ad hoc implementation of such services obscures the
delicate protocols on which they are based, making the design
and implementation of these protocols difficult to analyze
for vulnerabilities. We propose to address such difficulties
by providing a domain-specific language to concisely specify
authorization protocols so that the protocol design is evident
(and suitable for security analysis, both formal and informal),
and executable.

Our work derives from the long line of work on trust
management starting from the ABLP calculus (Abadi et al.
1991) and ranging to more recent efforts like DKAL (Gurevich
and Neeman 2008). From these, we borrow the insight that
an appropriate authorization logic is needed for specifying
complex, dynamic trust relationships that arise in typical
authorization scenarios. However, we contend that a practical

language for distributed authorization must go beyond logic-
related aspects of trust and provide a way to describe the
concrete message flows of a protocol.

To illustrate, consider the following simple scenario. An
online retailer W wishes to use a third-party payment provider
P (e.g., PayPal) to process payments on her website. Many
tools exist to help the retailer build her website to process
such payments. However, as Wang et al. report, these tools
are often buggy, with no clear specification of the protocol
they implement.

Informally, we would like to start by specifying that the
retailer W trusts P to process payments. Prior authorization
logics allow such trust relationships to be expressed concisely;
e.g., in infon logic (Gurevich and Neeman 2008), one might
write a policy for W of the form below:
∀c, oid, n. P said Paid(c, oid, n) =⇒Paid(c, oid, n)

expressing that W is willing to conclude that a principal c
paid n for order oid, if P said so.

However, the means to arrive at a specific authorization
protocol based on this trust relationship alone is unclear. Even
a simple protocol involves several rounds of communication
between a customer C, the website W , and the payment
provider P . For example, the protocol illustrated in Figure 1
involves five steps: (1) a customer C requests to purchase
some item i for a price n; (2) the retailer W requests C to
provide a certificate from PayPal (P) authorizing C’s payment;
(3) C forwards the payment request to P ; (4) P authorizes
the payment from C to W and issues a certificate confirming
the payment; (5) W , relying on a trust relationship with P ,
concludes that the payment has indeed been processed and
ends the protocol by returning a confirmation to C.

Prior work on trust management ignores the specifics of
such protocols. Typically, one is expected to implement a
protocol of one’s choice in a general-purpose programming
language, where one can make queries to a trust management
engine to determine if access to a protected resource is to
be permitted or not; e.g., this is the methodology of Sec-
PAL (Becker et al. 2010) and many other tools. While this
approach provides great flexibility, it also leaves the design
of the authorization protocol unclear, and opens the door to
vulnerabilities due to improper protocol design or other, more
mundane programming errors.

A. Specifying authorization protocols in DKAL?

To address these problems, we propose DKAL?, a domain-
specific language for executable specifications of authorization

Fig. 1: A simple protocol for processing online payments

protocols. We formalize the semantics of DKAL? and imple-
ment a verified interpreter for it using F? (Swamy et al. 2011),
a verification-oriented dialect of ML. DKAL? programs include
three conceptual components. First, we have the quantified
primal infon logic (QPIL) for expressing distributed trust
relationships. Next, we have a small rule-based programming
language to describe the message flow of a protocol. Finally,
DKAL? programs may embed expressions from F?, the host
language of our interpreter—one can use this facility to inter-
face with the external computational fabric, e.g., to evaluate
arithmetic expressions, connect to databases, etc. Thus, having
designed a protocol in DKAL?, one may readily obtain a full-
fledged secure implementation.

Figure 2 shows an example of DKAL? code, a policy speci-
fied by each of the three principals in our online retail scenario.
This will be our running example throughout the paper. DKAL?

programs are a collection of rules, each of which can be
thought of as handlers that cause specific actions to occur
in response to events that meet certain conditions. Actions
include sending messages (send), forwarding messages (fwd),
a logging facility (log), generating fresh identifiers (with fresh),
and introducing new information (learn) to the principal’s
QPIL knowledge base, permitting new facts to be derived.
Conditions have two forms: when e is satisfied if the principal
has received a message that matches the pattern constructed
by the term e; the condition if e is satisfied if the proposition
constructed by the term e is derivable in QPIL. Terms include
the form eval(e), where e is an F? expression evaluated by
the interpreter; variables (lower-case identifiers, e.g., i, n);
constants (upper-case letters, e.g., W, P); and constructed
terms (Buy(i, n), etc.). Variables are (implicitly) universally
quantified at the beginning of rules unless they have explicit
bindings.

Rules C1,W2, C3, P4,W5 correspond to the steps (1)-(5)
in Figure 1: (1) Rule C1 initiates the protocol in response
to an external event Click(i,n) issued by the customer C, by
sending a message C said Buy(i,n) to the website W . C also
logs a message Init(W,i,n) to indicate that she has initiated the
transaction. (2) After receiving the message C said Buy(i,n), W
applies rule W2 to request a payment certificate. W checks the
price of the item by calling an F? function (checkPrice), and
sends a message W said Pay(c,oid,i,n) to C requesting payment
for a new order oid containing i. W also logs a message to keep
track of the transaction currently underway. (3) Once C gets
such a message from W and checks her log for the message
Init(W,i,n), she applies rule C3 to forward a payment request
to P . (4) Rule P4 is P ’s policy that authorizes the payment
by sending a message P said Paid(c,oid,n) to the website W
(after checking and updating C’s balance, using F?). (5) If

(∗ CUSTOMER’s (C) policy ∗)
C1:
when C said Click(i, n) then
send W (C said Buy(i, n))
log C said Init(W, i, n)

C3:
when C said Init(w, i, n)
when w said Pay(C, oid, i, n) as m1
then send P (C said Auth(w, oid, n))

fwd P m1

(∗ PAYPAL’s (P) policy ∗)
P4 :
when c said Auth(w, oid, n)
when w said Pay(c, oid, i, n)
if eval(checkBalance ”c” ”n”) then
send w (P said Paid(c, oid, n))
where checkBalance = (∗ F∗ code ∗)

(∗ Website’s (W) policy ∗)
W2:
when c said Buy(i, n)
if eval(checkPrice(”i”,”n”)) then
with fresh oid
send c (W said Pay(c, oid, i, n))
log W said Pay(c, oid, i, n)
where checkPrice = (∗ F∗ code ∗)

W5:
when W said Pay(c,oid,i,n)
if Paid(c, oid, n) then
send c (W said Confirm(oid,i,n))

W6:
when P said x as i then
learn i

W7:
learn ∀p,oid,n.

P said Paid(p, oid, n)
=⇒Paid(p, oid, n)

Fig. 2: A DKAL? policy implementing the online retail protocol

W receives a message P said Paid(c,oid,n), she uses her trust
assumption in P (expressed in W6 and W7), and a decision
procedure for QPIL to conclude that Paid(c,oid,n) is derivable,
and sends a confirmation message to C (expressed in W5).

B. Contributions

This paper makes several technical contributions.

Design of DKAL?. We formalize the design of DKAL?. We
analyze the central entailment relation of QPIL, and prove
Theorem 3. We give an operational semantics and a type
system for DKAL? and prove Theorem 4, and Theorem 5,
which ensures that the execution of well-typed programs is
insensitive to the order of rule evaluation. Our semantics
provides the formal basis on which to analyze DKAL? policies
A verified implementation in F?. We provide an interpreter
for DKAL? in F?. We prove (mechanically checked by F?)
that our interpreter soundly implements the formal semantics
of DKAL?, including a verified implementation of a decision
procedure for QPIL. Additionally, our interpreter includes
verified implementations of a simple protocol based on public-
key cryptography for establishing message authenticity. Thus,
we obtain a mechanically checked security theorem, a cor-
respondence property on traces that ensures that a message
recipient only accepts authentic messages. Using refinement
type checking, we show how to securely embed and evaluate
F? terms within DKAL?, allowing a DKAL? protocol to easily
and safely interface with its environment.
Experimental evaluation. We report on a preliminary
experimental evaluation of DKAL? by using it to develop
a suite of 7 examples. While we expect to conduct further
experiments in the future, our experience indicates that
DKAL? specifications can be terse, conveying the important
high-level aspects of a distributed security protocol, while
leaving many of the low-level details necessary to produce
an executable implementation to our verified interpreter.

Limitations. We note a few limitations of our current work,

3

which we aim to alleviate in the future. We do not address se-
crecy of communications. Our authenticity property applies to
single communications only, rather than a session-like global
property (Bhargavan et al. 2009). We prove that there exists a
complete decision procedure for QPIL entailment, but we have
not proven the completeness of the decision procedure in our
implementation yet (we prove only its soundness). Finally, we
take DKAL? programs as specifications. As such, it is certainly
possible to write entirely insecure protocols in DKAL?. We
leave the analysis of DKAL? for protocol-specific security
properties to future work. However, by making the protocol
design evident, and by employing F? as our implementation
vehicle, we are optimistic that we can carry out property
checking using F?’s refinement type system.
Organization of the paper. Our presentation begins by formal-
izing DKAL? independently of its implementation language F?.
Section II defines QPIL, the authorization logic that underlies
DKAL?. Section III presents the design of the rule-based
programming language in DKAL?, including its operational
semantics and type system, and develops the metatheory of
DKAL?. We discuss the online retailer example through the
course of this section to illustrate various aspects of the design.
Section IV reviews F? and shows how we use it to model the
semantics of DKAL?. We discuss our implementation strategy,
including our approach for embedding F? terms in DKAL?

using eval. We present our verification results, including the
use of verified cryptography to establish the authenticity of
communications, and a verified implementation of a QPIL de-
cision procedure. We also discuss our experimental evaluation.
Section V discusses related work, and Section VI concludes.

II. QPIL: QUANTIFIED PRIMAL INFON LOGIC

We start by reviewing QPIL, Gurevich and Neeman’s primal
infon logic with quantifiers. Our formulation of QPIL differs
from prior works in that we pay particularly close attention to
binders, α-equivalence, and the uniqueness of names—all to
facilitate a mechanically verified implementation of decision
procedures for the logic. We use QPIL as the authorization
logic underlying DKAL?, although DKAL? is designed to be
parametric in the choice of the logic—other logics could just
as well be used with DKAL?, so long as they satisfy certain
weak admissibility constraints. We view QPIL as perhaps
the simplest modal logic that could be useful for common
authorization protocols.

A. Syntax

QPIL is designed around two basic concepts. The first
is infon, a formula which represents a unit of information
(which may be learned, communicated, etc.). The second
is evidence—an infon i may be accompanied by a term t
which serves as evidence for the validity of i. The form of
evidence used in QPIL is left abstract; e.g., an infon i may be
accompanied by a digital signature to serve as evidence that
it was communicated by a principal p; or, it may represent
a proof tree recording a derivation of i from some set of
hypotheses according to the inference rules of the logic.

The display below shows the syntax of QPIL. Predicates Q
and constants c are subscripted with their types, although we
elide the subscripts when the types are unimportant. Types
include booleans and integers (and other common types in
the implementation), principals, as well as a distinguished
type for evidence terms, ev. The terms in the logic include
variables x, y, z and constants c (tagged) with their types. Later
(Section IV) we add embedded F? terms to the term language.

Syntax of QPIL

Meta-variables: x, y, z variables;Qτ̄ predicates; cτ constants

type τ ::= bool | int | prin | ev
term p, t ::= x | cτ
infon i, j ::= > | Qτ̄ t̄ | i ∧ j | i⇒ j | p said i | Ev t i
q. infon ι ::= i | Ev t ι | ∀x:τ .i
type ctxt. Γ ::= · | x:τ | Γ,Γ
infon set M,K::= ι

Infons i include the true infon >; the application of a
predicate symbol Q to a sequence of terms t; a conjunction
form i ∧ j; an implication form i ⇒ j; the form p said i,
which is the modal operator of speech applied to an
infon; and finally justified infons, Ev t i, which associates
an evidence term t with an infon i; note that when a
principal sends Ev t i, he is merely asserting that t is
evidence for i, and the receiver of the message, if he
desires so, can check t. An example of an authorization
is the infon: Bob said CanRead(Alice,"file.txt"). QPIL
includes quantified infons ι, where an infon i may
be preceded by a sequence of binders for universally
quantified variables x:τ . The use of quantifiers
allows for more general and flexible policies such as:
∀(x:prin). Bob said Trusted(x) =⇒ CanRead(x, "file.txt").
Quantified infons may also be justified by associating them
with evidence using Ev t ι. Unless explicitly mentioned, we
blur the distinction between quantified infons and infons.

B. Typing

QPIL has three typing judgments (shown below): Γ ` ι for
quantified infons; Γ ` i for infons; and Γ ` t : τ for terms,
where the typing context Γ maps variables to their types.
Intuitively, Γ ` ι ensures that the variables of ι appear in
Γ at suitable types. The typing judgments also rely on a well-
formedness judgment for the context: we write Γ ok for an
environment where no variable appears twice, and Γ(τ) for
the type τ such that Γ contains x : τ .

Typing terms and infons

Γ ok
Γ ` cτ : τ

Γ ok
Γ ` x : Γ(x)

Γ ok
Γ ` >

Γ, x:τ ` i
Γ ` ∀x:τ .i

∀i.Γ ` ti : τi
Γ ` Qτ̄ t̄

Γ ` i Γ ` j
Γ ` i ∧ j

Γ ` i Γ ` j
Γ ` i⇒ j

Γ ` p : prin Γ ` i
Γ ` p said i

Γ ` t : ev Γ ` ι
Γ ` Ev t ι

4

The typing rules for terms are straightforward—constants
are typed using their subscripts, and variables by the typing
context. The rules for infons are straightforward, with only one
subtle point to mention. The last rule is overloaded to apply
to both justified infons and justified quantified infons.

C. Entailment

We define an entailment relation for QPIL, a Hilbert-style
calculus defining the inference rules of the logic. Our formu-
lation relies on the notion of a prefix π, a possibly empty
sequence of terms t of type prin. We write π i to mean
i when π is empty, or t said (π′ i) when π = t, π′. The
calculus includes two relations, K; Γ � ι for quantified infons
and K; Γ � i for infons. The context in each of these relations
includes an infostrate, K, a set of infons, representing a
principal’s knowledge, and a typing context Γ. We write K ok
for an infostrate where for each ι ∈ K we have · ` ι, i.e., K is
a set of well-typed closed infons. We write K; Γ ok for (K ok
and Γ ok).

Entailment relations: K; Γ � ι and K; Γ � i

K; Γ ok Γ ` π >
K; Γ � π > T

K; Γ ok ι ∈ K
ι ≡α ι′ Γ ` ι′

K; Γ � ι′
Hyp-K

K; Γ � π i K; Γ � π j

K; Γ � π(i ∧ j)
∧-I

K; Γ � π(i ∧ j)
K; Γ � π i

∧-E1

K; Γ � π(i ∧ j)
K; Γ � π j

∧-E2
Γ ` π i K; Γ � π j

K; Γ � π(i⇒ j)
⇒-WI

K; Γ � π(i⇒ j)
K; Γ � π i
K; Γ � π j

⇒-E
K; Γ � π (Ev t ι)

K; Γ � π ι
Ev-E

K; Γ, x:τ � i
K; Γ � ∀x:τ .i

Q-I
K; Γ � ∀x:τ .j ∀i.Γ ` ti : τi

K; Γ � j[t/x]
Q-E

The inference rule (T) allows well-typed infon π> to be
derived from any well-formed context. The rule (Hyp-K)
allows using infostrate hypotheses ι ∈ K, but only after
they have been suitably α-converted to ι′, so as to avoid the
bound names of ι′ clashing with the names in the context. The
premise Γ ` ι′ guarantees no name clashing. The definition
of alpha equivalence, ι ≡α ι′ is standard—we elide it due to
space constraints.

The rule (∧-I) is an introduction rule for conjunctions,
with (∧-E1) and (∧-E2) the corresponding elimination rules,
showing the modality π distributing over the conjuncts.

The rule (⇒-WI) is the weak introduction rule for impli-
cations, and the rule (⇒-E) is the usual elimination form.
The weak form of implication is characteristic of primal infon
logic—it allows deriving π(i⇒ j) only if π j can already be
derived. This may seem pointless, except for two reasons: (1)
this weak form of implication lends itself to an efficient linear-
time decision procedure, at least for the propositional primal
infon logic; and (2) in the case of authorization, a principal
may know the conclusion π j, but may be willing to share

only a weaker part π (i⇒ j) with another principal. As such,
we conjecture that the weak implication form makes primal
infon logic possibly the simplest logic that one might use for
distributed authorization.

The rule (Ev-E) is the elimination form for evidence—
note that the only way of introducing justified infons is by
hypothesis or by elimination of other infon forms. Finally, we
have the rules (Q-I) and (Q-E) for introducing and eliminating
quantifiers.

With these definitions, we can state and prove our first
lemma, namely that entailment derives only well-typed infons.
Lemma 1 (Entailment is well-typed): For all K,Γ, ι, if
K; Γ � ι then Γ ` ι.
Proof: By induction on the structure of entailment.

D. Decidability of QPIL

Finally, we show that there exists a complete decision
procedure for QPIL entailment. Due to space constraints, we
are unable to provide details—a companion technical report
contains the full development (Jeannin et al. 2012). We give
a flavor of the main result here.

Gurevich and Neeman (2008) present a linear-time algo-
rithm for the multiple derivability problem for propositional
primal infon logic (PIL). Given hypotheses K and queries i,
the algorithm finds which queries are derivable from K, i.e., it
computes the entailment K; · � i. (Note, in the propositional
case, the variable context Γ is always empty.) This algorithm
is linear in the size of the input sequence K, i. It relies on
a sub-formula property of PIL entailment, namely that the
derivation K; · � i only uses the sub-formulas of K, i. The
algorithm begins by computing the set of sub-formulas of K, i.
Each subformula also indexes other subformulas that may be
involved in the application of any one-step derivation rules.
These derivations are iteratively computed until a fixed-point
is reached.

The completeness of query derivation (multiple or other-
wise) for QPIL has not been studied before. We show an analog
of the sub-formula property for QPIL, namely that every QPIL
derivation respects local substitutions. If a substitution rule
is applied in any derivation, it is only applied to variables
occurring in formulas from what we call the extended locality
(XL) set of K and query ι. We define a judgment K; Γ �XL ι,
representing a derivation that uses only variables in the XL set.
The following lemma establishes that for any QPIL derivation,
there exists a derivation using only variables in the XL set,
and vice versa.
Lemma 2 (Extended locality): Let K be a set of QPIL infons,
Γ a variable context, and ι be a QPIL query. Then K; Γ � ι ⇔
K; Γ �XL ι.

Using this lemma, we can further show that QPIL has a
complete decision procedure, using an argument similar to the
proof of the subformula property for PIL.
Theorem 3 (A complete decision procedure for QPIL): Let
K be a set of QPIL infons, Γ a variable context, and ι be a
QPIL query. Then, there exists an algorithm to decide whether
K; Γ � ι is derivable.

5

Proof: (Sketch) From the extended locality lemma, we only
need to look at theory variables that occur in K and ι. We can
extend the algorithm for multiple derivability in propositional
PIL as follows: For finite domains, the original algorithm can
be used as a black-box by instantiating all variables that occur
to all theory constants in formulas from the XL set. The proof
of completeness for QPIL can therefore rely on the algorithm
for propositional PIL.

Note, while the quantifier instantiation strategy in our proof
may cause an exponential blowup in the size of the input, in
practice, this blowup can be controlled by relevant policy scop-
ing and intelligent search strategies. A goal-directed search can
be implemented starting with constants in the query ι. Further,
if ι contains only constants (which is usually the case when it
represents a concrete access control request), we observe that
the substitution rule is only applied to these constants.

Finally, we remark that while the existence of a complete
decision procedure for QPIL is a useful property, the rest of
DKAL? is designed so that it may also be used with other,
more powerful authorization logics, e.g., the full infon logic
with a more standard form of implication introduction.

III. THE DESIGN AND SEMANTICS OF DKAL?

We now define DKAL?, a rule-based language for speci-
fying the communication patterns in an authorization proto-
col. DKAL? artifacts are, simultaneously, programs, policies
and specifications—we use the terms interchangeably, unless
explicitly noted otherwise. This section introduces DKAL?’s
syntax and semantics, relying on our online retail scenario for
illustrative examples.

A. Syntax of DKAL?

The display below shows the syntax of DKAL?. A program
R is a finite set of rules, each of the form (C then A). The
semantics of DKAL? executes a program by evaluating the
guards C of each rule against a principal’s local configuration,
and applying the actions A of only those rules whose guards
are satisfied. The local configuration P of a principal p is
a triple (K,M,R). It includes (1) an infostrate, K, which
is a monotonically increasing set of infons, representing p’s
knowledge; (2) a message store, M (also a set of infons),
which p may use to retain messages that it receives; and, (3)
the program R itself. The global configuration G is the parallel
composition of configurations (p, P), one for each principal
p. We give a message-passsing semantics for DKAL? in which
the reduction of a local configuration P causes infons to be
sent to other principals.

Syntax of DKAL?

program R ::= C then A | R R | ·
local configuration P ::= (K,M,R)
global configuration G ::= (p, P) | G ‖ G
guards C ::= upon ι as x | if ι | C C | ·
actions A ::= send p ι | fwd p ι | drop ι

| learn ι | with fresh x A | A A
infon i ::= . . . | x
typing context Γ ::= . . . | x:infon | x:qinfon

Guards come in two flavors. The guard (upon ι as x) is a
pattern which checks whether a message matching ι is present
in the principal’s message store M and binds the message to
x if matched. We extend the syntax of infons i so that they
may contain pattern variables x. Evaluating an upon condition
requires computing a substitution σ for the pattern variables
such that σ ι is in the message store M . In order to ensure that
pattern variables are properly used, we extend our syntax of
typing environments Γ to include bindings for variables typed
as infons and quantified infons (qinfon).

Guards also include boolean conditions of the form (if ι).
Evaluating this guard involves a call to a decision procedure of
QPIL to check that the infon ι is derivable from the principal’s
knowledge K. If derivable, the actions of the rule are applied;
otherwise the rule is inactive. This kind of guard does not bind
pattern variables.

Actions include (send p ι), which sends ι to p authenticated
by the sender; (fwd p ι), which forwards a previously received
message to p; (drop ι), which deletes a message from M ;
(learn ι), which adds an infon to the knowledge K; and, finally,
a construct (with fresh x A) to generate fresh identifiers.

We view the language formalized here as the core of DKAL?.
When writing examples we use some syntactic sugar, which
can easily be macro-expanded into the core. In particular, the
when and log constructs (used in Figure 2) are desugared as
shown below, where Self is a principal constant for the local
principal. Note, we do not formalize the use of eval until
Section IV.

when ι then A = upon Ev x ι as m then (A, drop m)
for fresh x and m

log ι = send Self ι

B. Operational semantics of DKAL?

The operational semantics of DKAL?, deriving from seman-
tics of ASMs, are carefully set up to ensure a few properties.
We discuss these properties informally here, motivating vari-
ous elements of the design—we formalize these properties in
the metatheory study of Section III-D.
State consistency. We desire a semantics with a consistent
notion of state updates. To achieve this, we have a message
passing semantics for global configurations. But, the reduction
of each principal’s configuration P is given using a big-step
reduction in which all applicable actions from the rules in
P are computed atomically, with respect to an unchanging
local state. Big steps of local evaluation are interleaved with
messages being exchanged among the principals, modifying
their local states.
Determinism. We aim to ensure that the semantics of a
program is independent of the order of execution of the rules in
a program R. We achieve this by evaluating the set of actions
computed from a set of rules in a canonical order.
Authenticity. DKAL? semantics takes into consideration the
possible presence of network adversaries, and imperfect mes-
sage delivery—messages may not reach their intended re-
cipients. The reduction of global configurations models this
by allowing any principal to receive any message, even if

6

the message is meant for someone else. Our implementation
guarantees message authenticity, as developed in Section IV-D.

We begin by presenting the big-step evaluation of local
configurations, P ⇓p A, where a local configuration P for
a principal p evaluates to a set of actions A. The rule (Ev)
picks a rule C then A from the rule set and evaluates its
guard C. Guard evaluation produces a set of substitutions
σ̄ = {σ1, . . . , σn} of the free variables in C such that the
conditions σiC are satisfied. The actions [[σi A]] are added to
the actions computed from the evaluation of the other rules in
the program. Here, the function [[A]] interprets a set of actions
A by introducing fresh integer constants in the actions A, as
required by the (with fresh x A) construct.

Local rule evaluation: P ⇓p A

Ev
(K,M, (R1, R2)) ⇓p A′ holdspKM C = σ

(K,M, (R1, (C then A), R2)) ⇓p A′ ∪i [[σiA]]

EvEmp
(K,M, ·) ⇓p {}

[[·]] : A→ A
[[A]] = A when (with fresh x A′) 6∈ A
[[A,with fresh x A′]] = [[A]], [[A′[cint/x]]] for c fresh

holds : p×K ×M × C → 2σ

holdspKM (upon ι as x) = {(σ, x 7→ σι) |
σι ∈M ∧ ` σι ∧ domσ = FV(ι)}

holdspKM (if ι) = {id | K; · � ι}
holdspKM · = {id}
holdspKM (C1, C2) = {(σ2 ◦ σ1) |

σ1 ∈ holdspKM C1 ∧ σ2 ∈ holdspKM (σ1 C2)}

The evaluation of guards is given by the function
holdspKM C, which computes a set of substitutions. Evalu-
ation of multiple guards involves composing the substitutions
returned by the evaluation of each guard.

Evaluation of an (upon ι as x) guard returns every substitu-
tion σ such that a well-typed message σι can be found in the
store M . Our verified implementation ensures that messages
that match patterns are always properly justified, should they
contain any evidence.

For (if ι), we require that the infon ι be derivable from
the hypotheses in the infostrate K. Note that, unlike for the
evaluation of (upon ι as x), the semantics requires the infon ι to
be a closed term for rule evaluation to succeed. The reason is
that we aim to enforce a deterministic semantics. An if-guard
with a free variable may be handled by a decision procedure
that picks an arbitrary witness for the variable, but that leads to
non-determinism. Alternatively, one might give a semantics in
which the decision procedure is required to return all possible
satisfying assignments of the free variable. However, that is
problematic, both because the number of assignments may be
very large, and because this may require the use of a complete
decision procedure for the logic—for a logic more expressive
than QPIL, such a procedure may not exist.

We now define G −→ G′, a small-step reduction relation for
global configurations. The single rule in the semantics (GoP)
picks a principal p and evaluates the rules of p to obtain a set
of actions A, and then applies these actions atomically to the
configuration G. In order to ensure that the effect of applying

the actions is independent of the order of evaluation of the
rules, we require that all the (drop i) actions in A precede all
the other actions. The ordering among multiple drop actions,
and the ordering among all other actions is immaterial. For
this, we define a unary operator on actions, order(A), and use
it to reorder a set of actions A according to a partial order in
which all the (drop ι) actions come first.

The definition of app(G, p,A) applies a set of actions A
according to this partial order. We use app1(G, p,A) in the
base cases to apply a single action. As explained before, drop ι
and learn ι only affect the local principal p’s state, removing a
message from M , and adding an infon to K, respectively. The
action fwd q ι adds a message to a principal’s message store.
Finally, the action send q ι adds a justified infon Ev t ι to a
principal’s message store, i.e., the sent message is in a form
that can be authenticated by q. Note that, when p sends or
forwards a message and to model the network imperfectness,
the actual recipient q′ may not be the intended principal q.

Reduction semantics of global configurations: G −→ G′

GoP
P ⇓p A

G1 ‖ (p, P) ‖ G2 −→ app (G1 ‖ (p, P) ‖ G2) p (order(A))

order : A→ A
order(A) = A1, A2 where A1 = {drop ι|drop ι ∈ A} and A2 = A \A1

app : G→ p→ A→ G
app G p · = G
app (G1 ‖ G ‖ G2) p A = G1 ‖ (app1 G p A) ‖ G2

app G p (A,A′) = let G′ = app G p A in
let G′′ = app G′ p A′ in
G′′

app1 : (p× P)→ p→ A→ (p× P)
app1 (p, (K,M,R)) p (drop ι) = (p, (K, (M \ {ι}), R))
app1 (p, (K,M,R)) p (learn ι) = (p, ((K, ι),M,R))
app1 (q′, (K,M,R)) p (fwd q ι) = (q′, (K, (M, ι), R))
app1 (q′, (K,M,R)) p (send q ι) = (q′, (K, (M,Ev t ι), R))

C. Illustrating the semantics

We illustrate the operational semantics by considering the
evaluation of some steps of the protocol specified in Figure 2.
Initialization. Consider an initial configuration in which the
local message store M and infostrate K of C, W and P
are all initially empty. In this configuration, the only rule
which has a satisfiable guard is W7 which adds the infon
∀p,oid,n. P said Paid(p, oid, n) =⇒Paid(p,oid,n) to W ’s infostrate.
This rule is free to fire repeatedly, but it has no further action
on W ’s infostrate.
Customer starts the protocol. Next, suppose due to
some external event, e.g., the user clicking on a button,
a message Click(ITEM17,10) is added to C’s message
store. This message allows the rule C1 to fire, and
in a single big step, the reduction of C’s program
produces the actions A = {send W (C said Buy(ITEM17, 10)),
send C (C said Init(W, ITEM17, 10)), drop Click(ITEM17, 10)}.
In applying A to the global configuration, we apply the drop
action first, removing the Click message from C’s store—since
messages in the store serve as triggers for the rules, removing
the message ensures that this rule fires only once in response
to a user click. Next, by evaluating the first send action, we

7

send an infon Ev t (C said Buy(ITEM17, 10)) to W. At this
level of our formalization, the semantics permits any t:ev to
be communicated as evidence for the infon. As such, the
semantics as presented here is clearly insecure—a principal
p can freely forge an infon, e.g., q said IsAwesome(p), and
communicate this to other principals, who have no means
to tell this apart from authentic statements made by q. In
Section IV-D, we remedy this problem by showing how to
instantiate evidence using digital signatures and recovering
message authenticity.

Finally, we evaluate the second send action, adding the Init
message to C’s own store, indicating that the protocol, from
C’s perspective, is in the initialization state.
Payment certificate. After P authorizes the payment
and sends W a certificate P said Paid(C,OID,10) (suppose
OID is a fresh constant generated for this transac-
tion), rule W6 is fired and P said Paid(C,OID,10) is put
into W ’s infostrate. Now W5 fires because a message
W said Pay(C, OID, ITEM17, 10) is in W ’s message store,
and because Paid(C, OID, 10) can be derived from the
two infons ∀p,oid,n. P said Paid(p, oid, n) =⇒Paid(p,oid,n) and
P said Paid(C,OID,10) in the infostrate.

D. A type system for DKAL?

We provide a type system to ensure that the reduction
of DKAL? programs is well-behaved, i.e., that configurations
remain well-typed as reduction proceeds, and that that rule
evaluation is deterministic.

Arbitrary DKAL? programs may execute in undesirable
ways. For example, an ill-scoped program may inject ill-typed
infons into the infostrate, potentially allowing nonsensical
terms to become derivable. Consider the example program
upon (∀(p:principal). ALICE said x) as m then learn x. When
evaluating this program against a message store M that
contains the infon ∀(p:principal). ALICE said Good(p), the upon
condition is satisfiable, with σ = [x 7→ Good(p)]. However,
applying the action σ(learn x) results in adding the term
Good(p) to the infostrate, which is clearly ill-formed—the
variable p has escaped its scope.

Our type system is designed to rule out this and other
undesirable behaviors. Informally, our system ensures that
pattern variables whose first binding occurence appears under
a quantifier may not appear in a context outside the quantifier.
The type system contains three main judgments, one each for
programs (` R), actions (Γ ` A) and guards (Γ ` C : Γ′). It
also relies on an auxiliary judgment Γ ` ι Γ′, which infers
the set of pattern variables in scope from a set of guards.

The next display starts by showing the judgment ` R,
the typing rule for programs. Typing multiple rules involves
typing each rule independently. In the base case, typing a rule
C then A involves typing the guard C to produce a set of
binders Γ for the pattern variables that appear in C, and using
this context to type the actions A. Typing actions is given by
the judgment Γ ` A and is entirely straightforward.

The subtle elements of typing come into play when typing
the guards. The judgment Γ ` C : Γ′; Γ′′ informally states

that in a context Γ the guard C binds the pattern variables
Γ′ which may be used in the remainder of a rule. Variables
appearing in Γ′′ appear in C under a ∀ in an upon statement,
and as such cannot appear free later in the rule. This restriction
is made to keep these variables from escaping their scope. By
construction, Γ, Γ′ and Γ′′ have pairwise disjoint domains.
The first two rules show that typing a sequence of guards
involves typing each element and threading the set of pattern-
bound variables through. Side conditions ensure that variables
appearing under a ∀ statement do not appear later in the
condition. When typing an upon-guard, we type the pattern
ι, extracting a set of pattern variables Γ′ from it using the
relation Γ ` ι Γ′; Γ′′, and add the variable x to the output
set of pattern-bound variables. In contrast, when typing an if-
guard, we require the infon ι to be well-typed, and do not
allow it to bind any further pattern variables. Since C may
bind pattern variables for (quantified) infons, we extend the
judgment Γ ` ι with one more rule to allow typing such infon
pattern variables.

Typing DKAL? programs, actions, and guards

` R ` ·
` R1 ` R2

` R1 R2

` C : Γ; Γ′ Γ ` A
` C then A

Γ ` A Γ ` ι
Γ ` drop ι

Γ ` ι
Γ ` learn ι

Γ ` p : prin Γ ` ι
Γ ` send p ι

Γ ` p : prin Γ ` ι
Γ ` fwd p ι

Γ, x:int ` A
Γ ` with fresh x A

Γ ` A1 Γ ` A2

Γ ` A1 A2

Γ ` C : Γ′; Γ′′
Γ ` · : ·; ·

Γ ` C1 : Γ1; Γ′1 Γ,Γ1 ` C2 : Γ2; Γ′2
dom Γ′1 ∩ dom Γ2 = ∅ dom Γ′1 ∩ dom Γ′2 = ∅

Γ ` C1 C2 : Γ1,Γ2; Γ′1,Γ
′
2

Γ ` ι Γ′; Γ′′ x /∈ dom(Γ,Γ′,Γ′′)

Γ ` upon ι as x : Γ′, x:qinfon; Γ′′
Γ ` ι

Γ ` if ι : ·

Γ ` ι
Γ ok Γ(x) = infon or qinfon

Γ ` x

What remains now is the typing of patterns in upon-
conditions, shown in the display below. In general, the judg-
ments mirror the structure on infon typing, except these
rules infer the types of the variables in a term based on
their context, and impose additional constraints to ensure that
pattern variables do not escape their scope. We start with the
typing of ι-patterns, the judgment Γ ` ι Γ′; Γ′′, indicating
that the pattern ι binds the pattern variables Γ′, and disallows
later use of variables appearing in Γ′′. By construction, Γ, Γ′

and Γ′′ have pairwise disjoint domains. The second rule shows
that pattern variables that are bound under a quantifier may not
be used in the remainder of a rule, since this (as our example
illustrates) may cause variables to escape their scope. When
typing a justified infon term appearing in a pattern, we require

8

as usual that the evidence t be typed as ev.

Typing patterns: Γ ` ι Γ′; Γ′′, Γ ` i Γ′ and Γ ` t : τ Γ′

Γ ` i Γ′

Γ ` i Γ′; ·
Γ, x:τ ` i Γ′

Γ ` ∀x:τ .i ·; Γ′

Γ ` t : ev Γ′ Γ,Γ′ ` ι Γ′′; Γ′′′

Γ ` Ev t ι Γ′,Γ′′; Γ′′′

Γ ok
Γ ` > ·

Γ ok Γ(x) = infon

Γ ` x ·
Γ ok x 6∈ dom Γ

Γ ` x x : infon

Γ ` p : prin Γ′ Γ,Γ′ ` i Γ′′

Γ ` p said i Γ′,Γ′′

Γ ok Γ0 = Γ ∀i ∈ {1 . . . n}.Γ0 . . .Γi−1 ` ti : τi Γi

Γ ` Qτ̄ t̄ Γ1 . . .Γn

op ∈ {∧,⇒} Γ ` i Γ′ Γ,Γ′ ` j Γ′′

Γ ` i op j Γ′,Γ′′

Γ ok
Γ ` cτ : τ ·

Γ ok Γ(x) = τ

Γ ` x : τ ·
Γ ok x 6∈ dom Γ

Γ ` x : τ x : τ

The typing of infon patterns Γ ` i Γ′ is shown next.
This is straightforward except for the variable case. Here, a
variable x appearing where an infon is expected is typed as
an infon, and we propagate a binder for x:infon in the output,
if it does not already appear in the context.

Finally, we have the typing of terms in patterns, Γ ` t :
τ Γ′, which is also easy, following the same behavior
for variables as in the typing of infon variables. Note, in this
judgment, the type τ is provided as input from the context.

In order to state and prove our main type-soundness theo-
rem, we define (below) a notion of well-formed configurations.
We write G ok{p1,...,pn} for a well-formed global configu-
ration involving the principals p1 . . . pn. This is a structural
property on global configurations, requiring at most one local
configuration per principal pi. When the names of principals
is immaterial we simply write G ok

Well-formed configurations

K ok ` R
(K,M,R) ok

· ` p : prin P ok

(p, P) ok{p}

· ok∅
G1 okp1 G2 okp2 p1 ∩ p2 = ∅

G1 ‖ G2 okp1∪p2

The well-formedness of a local configuration relies on the
well-typedness of the infostrate K and rules R. Note that
a message store M is free to contain ill-typed terms—this
captures the notion that a message store contains messages
from all principals, including the adversary, who is free to
send arbitrary messages, not just well-typed ones.

The following theorem ensures that well-formedness of a
configuration is preserved under reduction. Note, the corre-
sponding progress property (that a well-formed configuration
can always make a step) is trivial, since identity steps (G −→
G) are always possible.
Theorem 4 (Type soundness): Given a configuration G such

that G ok, if G −→ G′ then G′ ok.
Proof: By induction over the structure of the of the local
configuration that is evaluated.

The next theorem ensures that the order of evaluation of
rules in a local configuration does not matter.
Theorem 5 (Determinism of local rule evaluation): Given a
configuration G, a local configuration (p, P) such that G ‖
(p, P) ok and A1, A2 such that P ⇓p A1 and P ⇓p A2; then
app((G ‖ (p, P)), p, A1) = app((G ‖ (p, P)), p, A2).

IV. A VERIFIED INTERPRETER FOR DKAL?

In this section, we describe our verified interpreter for
DKAL?, implemented in F?, a variant of ML with a similar
syntax and dynamic semantics but with a more expressive
type system. Its type system allows the programmer to write
down precise specifications using dependent types where types
depend on values. F?’s type checker makes use of an SMT
solver in an attempt to automatically discharge proofs of these
specifications. F? enables general-purpose programming, with
recursion and effects; it has libraries for concurrency, network-
ing, cryptography, and interoperability with other .NET lan-
guages. After typechecking, F? is compiled to .NET bytecode,
with runtime support for proof-carrying code.

Space constraints preclude a thorough review of F?—we
refer the reader to Swamy et al. (2011) for details. Instead, we
present selected elements of the mostly ML-like code of our
interpreter (slightly simplified for the paper), discussing F?-
specific constructs as they arise. The full code of our verified
interpreter is available from http://dkal.codeplex.com.

We highlight three key elements of our interpreter:
A verified decision procedure for QPIL. We formalize the QPIL
entailment relation using a collection of inductive types in F?.
We then implement a unification-based, backwards chaining
decision procedure for QPIL and prove it sound, i.e., that it
only constructs valid entailments.
Authenticity of infons. Whereas the previous sections left
the evidence terms associated with an infon abstract, in our
interpreter we concretize evidence terms by representing them
using digital signatures. By relying on previously developed
verified libraries for cryptography, we prove a correspondence
property on execution traces of DKAL? configurations.
Secure embedding of F? in DKAL?. We show how to securely
implement the (eval e) construct, where the term e is an F?

expression embedded within DKAL?. By relying on the type
checker of F?, we show that embedded terms can safely be
executed without breaking the invariants of the rest of the
interpreter. This mechanism signficantly broadens the scope
of DKAL?, allowing programmers to drop into a powerful
general-purpose programming language when needed, and
allowing a DKAL? protocol to be seamlessly integrated within
the context of a larger secure system.

A. Formal syntax and typing of QPIL

We begin by discussing the abstract syntax and typing
judgments used throughout our interpreter. Our interpreter for
DKAL? is based on a prior, ad hoc implementation of DKAL in

9

F#—as such, our verified interpreter inherits some idiosyncra-
cies from the DKAL system, so as to facilitate interoperability.
The most significant of these inherited features is the definition
of the abstract syntax of DKAL?, shown in the listing below.
As is usual in ML, we define the syntax using a collection of
algebraic types. We separate the syntax of quantified infons
(polyterm) from infons, but, unlike in Section II, we use a single
type term to represent both terms t and infons i.
type term =
| Const : constant → term
| Var : var → term
| App : constructor → list term → term

and constant =
| Bytes : bytes → constant
| Prin : principal → constant
| Int : int → constant
| ...

and var = {name:string; typ:tau}
and tau = PrinT | BytesT | IntT | EvT | InfonT | QInfonT | ...
and constructor = Evidence | SaidInfon | AndInfon | ...
| Rel : string → list tau → constructor

type polyterm =
| Term : term → polyterm
| Ev : term → polyterm → polyterm
| Forall : vars → term → polyterm
| PolyVar : var → polyterm

The type term includes constants, variables, and constructed
terms. Constants include basic constructs like byte arrays,
principal constants, etc. Variables var are pairs of a vari-
able name (represented as a string) and its type typ, rep-
resenting the types τ of Section II. Constructed terms are
built using the App constructor. We illustrate using a few
examples. We represent the DKAL? infon P said i as the term
(App SaidInfon [Const (Prin "P"); I]), where I is the representation
of i. As another example, we represent a tuple of integers,
of any size, as the term (App Tuple [Const (Int 1); Const (Int 2)].
Finally, a relation in DKAL? Buy(1, 2) is represented as the
term (App (Rel "Buy"[IntT;IntT]) [Const (Int 1); Const (Int 2)]).

Quantified infons are represented by the type polyterm,
which includes term (corresponding to infons i), polyterm with
evidence (corresponding to Ev t ι), prenex-quantified infon
terms (Forall), and variables of type QInfonT.

The representation above is flexible in that it allows
terms and infons to be represented by a single type term,
but it allows malformed terms to be constructed, e.g.,
(App AndInfon [Const (Int 1)]). We recover well-formedness by
expressing the typing judgment for QPIL using the inductive
types shown (partially) below.
type constructor typing :: constructor ⇒ list tau ⇒ tau ⇒ P =
| CT Said : constructor typing SaidInfon [PrinT; InfonT] InfonT
| CT And : constructor typing AndInfon [InfonT; InfonT] InfonT
| . . .

type typing :: vars ⇒ term ⇒ tau ⇒ P =
| Ty Int : G:vars → x:int →wfG G → typing G (Const (Int x)) IntT
| Ty Var : G:vars→ v:var→Mem v G→wfG G→ typing G (Var v) v.typ
| Ty App : . . .

type polytyping :: vars ⇒ polyterm ⇒ P = . . .

The inductive type constructor typing is used to
give types to values of type constructor. Its kind
(constructor ⇒ list tau ⇒ tau ⇒ P) indicates that it constructs
a proposition (of kind P) from three term arguments of

type constructor, list tau and tau respectively. Values of type
(constructor typing c tl t) are witness that a constructor c can
be applied to terms of type tl, to construct a term of type t.
For example, using the constructor CT Said, we assert that
the SaidInfon constructor can be applied to a principal and an
infon to build an infon. The definition of CT Said shows the
use of F?’s dependent function types. These have the form
x:t → t′, where x names the formal parameter of type t and
is in scope in the return type t′.

We also show the signatures of typing, which corresponds
to the judgments Γ ` t : τ and Γ ` i of Section II. We show
the two simple rules for illustration—the third rule, for typing
App terms is longer, but essentially straightforward, through
the use of the constructor typing type. The last inductive type
polytyping corresponds to the judgment Γ ` ι.

We also define functions to decide typability of terms and
polyterms. We show the signatures of these below, dependent
functions in F? that given a context g:vars and a t:term or
p:polyterm, returns a suitable typing derivation. In both cases,
these functions are partial (e.g., they may raise exceptions if
the term is untypeable). The F? type system requires partial
functions that construct proof terms to be explicitly annotated
as being partial—hence the Partial tag on the return type.

val doTyping: g:vars → t:term →Partial (ty:tau ∗ typing g t ty)
val doPolyTyping: g:vars → p:polyterm →Partial (polytyping g p)

B. Verifying a decision procedure for QPIL entailment

Next, we turn to our mechanical formalization of QPIL
entailment and the implementation of its decision proce-
dure. We begin by showing the definitions of two mutually
recursive inductive types, entails and polyentails. The type
entails K G i corresponds to the judgment K; Γ |= i and the
type polyentails K G i corresponds to the judgment K; Γ |= ι
(from Section II).

type prefix = list term
logic function Prefix : prefix → term → term
assume ∀i. (Prefix [] i) = i
assume ∀p pi i. (Prefix (p::pi) i) = (Prefix pi (App SaidInfon [p; i]))

type entails :: infostrate ⇒ vars ⇒ term ⇒ P =
| Entails And Elim1: K:infostrate →G:vars
→ i:term → j:term → pi:prefix
→ entails K G (Prefix pi (App AndInfon [i; j]))
→ entails K G (Prefix pi j)
| . . .

and polyentails :: infostrate ⇒ vars ⇒ polyterm ⇒ P =
| . . .
| Entails Hyp Knowledge :

K:infostrate →G:vars → okCtx K G
→ i:polyterm{In i K} → i’:polyterm
→ alphaEquiv i i’ → polytyping G i’
→ polyentails K G i’

The code above illustrates two features of F?. First, we
define the notion of an infon i with a quotation prefix π
(written π i in Section II). A quotation prefix is simply a list of
terms and we define a function symbol Prefix to attach a prefix
to term. This function is axiomatized by the assume equations,
allowing the SMT solver underlying F?’s typechecker to reason
about applications of the Prefix function symbol. Using this

10

construct, we can define the constructor Entails And Elim1,
which corresponds to the rule (∧-E1).

Next, we show the definition of a constructor
Entails Hyp Knowledge. Again, the correspondence with
the rule (Hyp-K) is mostly straightforward, with the relation
okCtx representing the well-formedness of the context and
alphaEquiv corresponding to the relation ≡α. The premise
ι ∈ K from (Hyp-K) is represented by the ghost refinement
type i:polyterm{In i K}, another feature of F?. This is the type
of a polyterm i for which the property In i K is derivable by the
SMT solver, without requiring the programmer to supply a
(lengthy) constructive proof.

With the above types as our specification, we implement and
prove sound a unification-based, goal-directed proof search
procedure to (partially) decide QPIL entailment. Our algorithm
is implemented by the function derivePoly, whose signature is
shown below. The type says that in an infostrate K, given a
quantified infon goal with free variables included in the set
U, if successful in proving the goal, the function returns a
substitution s whose domain includes the variables in U such
that the subsitution s applied to the goal is derivable from K.

val derivePoly: K:infostrate →U:vars → goal:polyterm
→ option (s:substitution{Includes U (Domain s)} ∗

polyentails K [] (PolySubst goal s))

A limitation of our current work is that we do not prove
our decision procedure complete. However, as discussed in
Section II-D, we aim to use the insights behind Theorem 3 to
extend our implementation to include a complete algorithm.

C. Main interpreter loop

The top-level of our interpreter is the infinite loop shown in
the code below. At a high level, given a program represented
by a list of rules rs, the interpreter computes and applies all
enabled actions, and then, unless the actions cause a change
to the local state, blocks waiting for new messages before
looping.

let rec run (rs:list rule) =
let actions = allEnabledActions rs in
let stateChanged = applyAllActions actions in
if stateChanged then run rs
else (block until messages received(); run rs)

Conceptually, the function allEnabledActions implements the
local rule evaluation judgments P ⇓p A, while applyAllActions
implements message dispatch over the network, corresponding
to the global transition step in the semantics of Section III.
Recall that in our semantics the local configuration of a
process, in addition to the rule set, involves two components:
the infostrate K and the message store M . We represent each
of these using mutable state and globally-scoped references.
Each intepreter also has a single global constant, me:principal,
the name of principal on whose behalf the interpreter runs.

The rules themselves are represented using the abstract
syntax shown below.

type condition =
| If : polyterm → condition
| Upon : polyterm → var → condition

type action = | . . . |
| Send : term → polyterm → action

type rule = Rule : list condition → list action → rule

We also axiomatize rules corresponding to the holds func-
tion of Section III, and prove that the interpreter can apply
only actions that have satisfiable guard conditions. As such,
we prove a soundness property for our interpreter—the set
of actions executed by the interpreter is a subset of the
actions that may be executed in the operational semantics
of Section III. A limitation, as in the case of the decision
procedure, is that we do not prove completeness of our
interpreter, i.e., we do not prove that all enabled actions are
indeed computed and applied.

D. Authenticity of communications

As discussed earlier, the semantics of DKAL? presented in
Section III is clearly insecure—a principal p can freely forge
an infon. However, our setup hints at a solution: justified
infons, terms of the form Ev t i carry evidence terms t that
can be used to convince a recipient of the authenticity of the
infon. In this section, we instantiate t using digital signatures.

Our goal is to prove an authenticity property by analyzing
execution traces of a DKAL? protocol running in the presence
of a Dolev-Yao network adversary. Informally, we relate an
event recording the receipt of a message Ev t (q said ι) by
an honest participant p at step k in an execution trace, to a
corresponding event at step k′ < k recording the sending of the
message Ev t (q said ι) by q, unless the signing key of q has
been compromised, i.e., a standard correspondence property
on traces (Woo and Lam 1993) to establish the authenticity of
communications.

We set up the verification of this property following a
methodology due to Gordon and Jeffrey (2003), and later
in RCF (Bengtson et al. 2008) and F?. The basic idea is to
augment the dynamic semantics of the programming language
with a facility to accumulate protocol events in an abstract
log, and to prove trace properties by analyzing the abstract
log. The semantics of F? is equipped with just this facility:
the reduction semantics of an F? program takes the form of a
small-step relation (A, e) → (A′, e′), where an expression e
reduces to e′, while accumulating a set of events in an abstract
log, which transitions from A to A′. Among the expression
forms of F? is a construct assume φ , which adds the formula
φ to the log, thus recording φ as a protocol event.

Broadly, our verification strategy is to record the sending of
messages by adding an event (Sent p i) to the log when p sends
a message i, and when receiving a message, through the use
of a verified library of cryptographic primitives, we attempt to
prove that the corresponding Sent event is in the log, unless
the key of p has been leaked to the attacker. The listing below
shows the declarations of predicate symbols Sent and Leaked—
their kinds shows the use of F?’s E-kind, indicating that these
predicates will be used purely to mark a protocol events, rather
than as propositions with constructive proofs.

type Sent :: principal ⇒ polyterm ⇒ E
type Leaked :: principal ⇒ E

11

We give a flavor of the main elements in our proof below—
the constructions are essentially standard; the reader may
consult Swamy et al. (2011) for more details about our
cryptographic libraries.

We start with the type of evidence used in our infon terms,
a pair of a principal name and a byte string represent a digital
signature of the infon it witnesses. The definition of CT Ev
below shows that we use the Evidence constructor to build a
term of type EvT from a principal and a byte string.
type constructor typing :: constructor ⇒ list tau ⇒ tau ⇒ P = . . .
| CT Ev : constructor typing Evidence [PrinT; BytesT] EvT

The code below shows a fragment of the API exposed by
F?’s crypto library. It begins by defining an abstract predicate
Serialized t x b to relate values of type x:t to their serialized
representation as a byte string b. It then defines the type of
digital signatures dsig, and the type of private and public keys.
The type of a key carries three indexes, e.g., privkey t Q p,
where t is a type, Q is a predicate on t-kinded values, and p is
the name of the principal owning the key. Using the rsa sign
function and its private key, a principal p can sign a byte-
string representation of a value of type x:t{Q x}, obtaining a
signature dsig for it. Conversely, using rsa verify with a public
key, a principal can check if a claimed signature for some data
x:t is authentic, obtaining the property Q x, unless the signing
key of p has been compromised. The final funtion in the API
below allows the private key of an principal p to be leaked to
an adversary q—however, the type of leak ensures that each
key compromise is logged using the Leaked p event.
type Serialized :: α ::∗ ⇒ α⇒ bytes ⇒ E
type dsig = bytes
type privkey :: α ::∗ ⇒ (α ⇒ E) ⇒ principal ⇒ ?
type pubkey :: α ::∗ ⇒ (α ⇒ E) ⇒ principal ⇒ ?
val rsa sign: p:principal → privkey α ’P p → x:α

→ b:bytes{Serialized α x b && ’P x} → dsig
val rsa verify: p:principal → pubkey α ’P p → x:α

→ b:bytes{Serialized α x b} → s:dsig
→ r:bool{r=true ⇒ (’P x || Leaked p)}

val leak: p:principal → q:principal → privkey α ’P p
→ :privkey α (fun ⇒ True) q{Leaked p}

For use in our particular scenario, we provide each principal
with keys to sign their own infons, and to authenticate the
infons sent by others—these keys can be retrieved using the
functions lookup privkey and lookup pubkey shown below. The
predicate CanSign p used to index the keys of a principal p is
defined so that p can only sign infons of the form p said i.
type CanSign (p:principal) (x:polyterm) =

(∃ (i:term). x=(Infon (App SaidInfon [p;i]))) && Sent p x
val lookup privkey : p:prin → option (privkey polyterm (CanSign p) p)
val lookup pubkey : p:prin → pubkey polyterm (CanSign p) p

We also implement a marshaling layer for infons, and verify
this implementation by relating these functions to a function
Repr which axiomatizes the representation of a term as a byte
string. We use this function to give an interpretation to the
Serialized predicate.
logic function Repr : polyterm → bytes
assume ∀(p:polyterm). (Crypto.Serialized p (Repr p))
val polyterm2bytes : x:polyterm → b:bytes{(Repr x)=b}
val bytes2polyterm : b:bytes → option (x:polyterm{(Repr x)=b})

Finally, using all these elements, we can show a (simpli-
fied) fragment of applyOneAction, a function called from the
main loop of the interpreter. We focus on the case where a
message is signed and sent. We check that the message to
be signed of the right shape; lookup the signing key; mark
the protocol event; marshall the message to be signed; call
rsa sign (requiring the typechecker to prove the pre-condition
CanSign p x); and, finally, package the message together with
its evidence and send it to q.
let applyOneAction = function | . . .
| Send q ((App SaidInfon [p;i]) as x) where p=me →

let Some sk = lookup privkey me in
assume(Sent p i); (∗ mark protocol start event ∗)
let b = polyterm2bytes x in
let dsig = rsa sign me sk x b in
Net.send q (Ev (mkEvidence p dsig) x)

let receiveMesage () = match bytes2polyterm (Net.receive ()) with
| Some (Ev (App Evidence [Prin p; Bytes dsig]) x) →

let pk = lookup pubkey p in
if rsa verify p pk x b dsig
then assert ((Sent p x) || (Leaked p)); (∗ protocol end ∗) else . . .

On the receiver’s side, when receiving a message with an
evidence term, we check the evidence by calling rsa verify to
verify the signature and asserting that either Sent p i is in the
log or Leaked p. From the type safety of F? (which ensures that
the assertion never fails at runtime), we obtain authenticity by
typing and our desired correspondence property.

E. Embedding F? in DKAL?

Our interpreter provides a simple and elegant solution
to extend DKAL? with more general-purpose programming
facilities. The example in Section I embeds an F? expression
checkBalance "c""n" within a DKAL? protocol using the eval
construct. When evaluating the if-condition, the interpreter
executes the eval’d term by calling the F? function checkBalance
defined along with the policy. Once in F?, we have the power
of a full-fledged programming language at our disposal—we
query a database to check if the customer has sufficient funds,
update the database, and return the result (an infon) to the eval
context.
let checkBalance c n (env:env) : t:term{typing [] t Infon} =

match env[c], env[n] with
| Const (Prin p), Const(Int n) →

DB.transaction(fun () →
let b = lookupBalance p in
if b >= n then (updateBalance p (b − n); App TrueInfon [])
else (App FalseInfon []))

Implementing eval is relatively straightforward. We parse
the concrete syntax of DKAL? into the abstract syntax of
our interpreter, leaving the eval’d terms as F? concrete-syntax
expressions. We extend the type of DKAL? terms with one addi-
tional constructor. The Eval constructor takes two arguments: a
type t:tau indicating the type that the eval’d term should reduce
to, and a function from variable environments to terms. The
refinement type given to the function ensures that the term it
returns has the expected type.
type term = . . .
| Eval : t:tau → (env → tm:term{typing [] tm t}) → term

and env = map string term

12

Of course, one may be concerned that eval’ing an arbitrary
F? term may be dangerous, e.g., it may inappropriately access
internal data structures of the interpreter, or it could accept
improperly signed messages, etc. However, because the eval’d
term is statically typed by F?, we ensure that it never breaks
any such critical invariants.

When evaluating the F? function, the interpreter passes in a
variable environment as an argument, which contains bindings
for each of the pattern variables in scope at the point where
the eval’d term is defined. Aside from the mild inconvenience
of passing parameters to F? in this dictionary style, we find
the programming pattern quite natural. In the future, we plan
to exploit this idiom at a larger scale, aiming to build and
deploy full-fledged cloud services using this DKAL?/F? hybrid
language.

F. Experimental evaluation

The table below shows 7 examples we developed using
DKAL?. Each example involves one or more principals. Con-
figuration files contain cryptography keys and communication
ports for principals. Each principal stores her policies in
a DKAL? file. The DKAL? file is compiled to F? for the
interpreter to evaluate the rules. We measure the sizes of
configuration files (column Cfg), the DKAL? files (column DK.),
and the resulting F? files (column F?). All numbers are line
counts of files.

Name Descript. Cfg DK. F?

Hello world Two parties exchange hello messages. 13 14 45
Ping-Pong Two parties bounce messages. 13 10 54
File system A system restricting file accesses. 15 18 89
Calculator Integer alrithmetic. 27 27 115
Turing Machine A simulator of Turing machines. 22 40 121
Rumors Four principals spread messages. 32 44 144
Retail Our online retail example in the Intro. 25 59 195

These examples cover very diverse scenarios, ranging from
simple message exchanges, to authorization, arithmetic, sim-
ulating turing machines, and online retailing. The diversity
demonstrates DKAL?’s practicality. “Hello world” is the sim-
plest, with two parties exchanging messages once. “Ping-
pong” has more rounds of communication, with two parties
bouncing messages back and forth. “File system” checks
file access permission. A user U sends a justified message
U said Ask(‘‘f.txt’’, U, ‘‘read’’) to the file system to request file
access. The file system checks if the access is permitted
according to the file system’s knowledge. “Calculator” imple-
ments integer arithmetic, demonstrating the eval construct in
DKAL?. A user sends an integer expression to the calculator.
The calculator has embedded F? functions to compute the
results and sends the results back. “Tur. Mach.” simulates
turing machines. It uses DKAL? policies to control state
transitions. “Rumors” involves trust management among four
parties. “Retail” is our example in Section I.

V. RELATED WORK

The design of DKAL? is informed by a long line of
work on abstract state machines (ASMs), also called evolv-
ing algebras or dynamic structures (Gurevich 1995), and
especially by the work on applications of the specification

language AsmL (Gurevich et al. 2005) and the ASM-based
Spec Explorer tool (CACM Staff 2011). ASMs have been
successfully used for executable specifications of software and
model-based testing. We intend to benefit not only from the
ASM methodology but also from ASM tools, especially Spec
Explorer, to design, analyze and deploy secure distributed
authorization protocols.

More directly, DKAL? derives from its predecessor Eviden-
tial DKAL (Blass et al. 2011). Evidential DKAL extends the
authorization logic DKAL (Gurevich and Neeman 2008) with
a construct similar to our Ev t ι. The authors of Eviden-
tial DKAL also suggest incorporating the authorization logic
within an ASM-based language to specify message flows. Our
work improves on Evidential DKAL in a number of ways.
First, we formulate QPIL in a manner suitable for mechanical
verification—the prior formulation is informal in its treatment
of quantifiers and variables. Next, although Evidential DKAL
suggests incorporating an ASM-based language, it does not
formalize this language at all—our semantics is novel. Of
course, our verified implementation and embedding of F? in
DKAL? is new. Indeed, in the process of our verification work,
we encountered and fixed several bugs in the prior formulation,
including one serious bug related to ill-scoped variables.

Our authorization logic QPIL is related to many prior logics
used in a variety of trust management systems. These are too
numerous to discuss exhaustively here—Chapin et al. (2008)
provide a useful survey. However, one trust management
system does bear mentioning. SD3 (Jim 2001) focus on the
problem of deciding authorization by means of solving a
query on a distributed database. A salient feature of SD3
is its certified evaluator, which is related to our verified
decision procedure for QPIL. Both systems not only decide
the validity of a query, but also construct a proof witness.
Because it is implemented in an ad hoc manner, SD3 includes
a proof-checking pass to ensure that the constructed witness is
indeed a well-formed proof. In contrast, our implementation,
by virtue of F?’s strong type system, statically guarantees that
the constructed witness is always a valid proof without need
for a separate proof-checking pass.

Another line of related work includes programming lan-
guages that are combined with authorization logics. For ex-
ample, Aura (Jia et al. 2008) is a dependently typed func-
tional programming language whose type system embeds the
authorization logic DCC (Abadi 2006). Aura programmers are
meant to build constructive proofs of authorization properties
before performing security-sensitive operations. Our approach
is perhaps the opposite. We provide a decision procedure
for an authorization logic within the runtime of a high-
level protocol-specification language, but allow terms from
a dependently typed functional programming language to be
embedded within the specification.

Finally, our approach to embedding F? terms inside DKAL?

and then compiling the result to F? for interpretation is a weak
form of meta-programming. In a sense, our approach is related
to template Haskell (Sheard and Jones 2002) in that after code
generation, we typecheck the resulting program as a normal

13

F? program before interpretation. However, unlike template
Haskell, we do not support execution of embedded F? code
when generating F? from DKAL?. As such, our approach also
resembles the facility provided by many C compilers which
allow inlining assembly instruction in source programs, which
are carried through verbatim by the compiler, although, of
course, in DKAL?, the inlined F? expressions are type checked
before execution.

VI. CONCLUSIONS

We have shown DKAL?, a language that allows to both
specify and execute distributed authorization protocols. A
DKAL? program is a set of rules, each rule specifying some
actions to take when receiving some messages matching a
pattern. We have formalized DKAL?, giving it an operational
semantics and a type system. We have also built a DKAL?

interpreter, mechanically verified for correctness and security.
Protocol designers can use our formalization to analyze their
authorization policies, while programmers can use our verified
interpreter to deploy them.

REFERENCES

M. Abadi. Access control in a core calculus of dependency.
SIGPLAN Not., 41(9):263–273, 2006. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1160074.1159839.

M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin.
A calculus for access control in distributed systems. In
CRYPTO, pages 1–23, 1991.

M. Becker, C. Fournet, and A. Gordon. SecPAL: Design and
semantics of a decentralized authorization language. Journal
of Computer Security, 18(4):619–665, 2010.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis. Refinement types for secure implementations.
In CSF, 2008.

K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J.
Leifer. Cryptographic protocol synthesis and verification for
multiparty sessions. In CSF, 2009.

A. Blass, Y. Gurevich, M. Moskal, and I. Neeman. Evidential
authorization. In S. Nanz, editor, The Future of Software
Engineering, pages 73–99. Springer, 2011.

CACM Staff. Microsoft’s protocol documentation program:
interoperability testing at scale. Commun. ACM, 54(7):
51–57, July 2011. ISSN 0001-0782. doi: 10.1145/
1965724.1965741. URL http://doi.acm.org/10.1145/

1965724.1965741.
P. Chapin, C. Skalka, and X. Wang. Authorization in trust

management: Features and foundations. ACM Computing
Surveys (CSUR), 40(3):9, 2008.

A. D. Gordon and A. Jeffrey. Typing correspondence asser-
tions for communication protocols. Theor. Comput. Sci.,
300(1-3):379–409, 2003.

Y. Gurevich. Evolving algebra 1993: Lipari guide. Specifica-
tion and Validation Methods, 1995.

Y. Gurevich and I. Neeman. DKAL: Distributed-knowledge
authorization language. In 21st IEEE Computer Security
Foundations Symposium, pages 149–162. IEEE, 2008.

Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence
of AsmL. Theor. Comput. Sci., 343(3):370–412, 2005.

J.-B. Jeannin, G. de Caso, J. Chen, Y. Gurevich, P. Nal-
durg, and N. Swamy. DKAL?: Constructing executable
specifications of authorization protocols (extended version).
Technical report, Microsoft Research, 2012. Available from
http://research.microsoft.com/fstar.

L. Jia, J. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr,
and S. Zdancewic. Aura: A programming language for
authorization and audit. In ICFP, 2008.

T. Jim. SD3: A trust management system with certified
evaluation. In Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on, pages 106–115.
IEEE, 2001.

T. Sheard and S. P. Jones. Template meta-programming
for haskell. In Proceedings of the 2002 ACM SIGPLAN
workshop on Haskell, Haskell ’02. ACM, 2002.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan,
and J. Yang. Secure distributed programming with value-
dependent types. In ICFP, pages 266–278, 2011.

R. Wang, S. Chen, X. Wang, and S. Qadeer. How to shop for
free online - security analysis of cashier-as-a-service based
web stores. In IEEE Symposium on Security and Privacy,
pages 465–480, 2011.

T. Y. C. Woo and S. S. Lam. A semantic model for authentica-
tion protocols. In Proceedings of the 1993 IEEE Symposium
on Security and Privacy, SP ’93, pages 178–, Washington,
DC, USA, 1993. IEEE Computer Society. URL http:

//dl.acm.org/citation.cfm?id=882489.884188.

APPENDIX

A. Soundness of the type system

In this appendix we prove theorem 4. Let us first introduce a
notion of well-typedness for substitutions: given a substitution
σ and type environment Γ, we write ` σ : Γ whenever
domσ = dom Γ, and for all x ∈ domσ, ` σ(x) if
Γ(x) = infon and ` σ(x) : Γ(x) otherwise.
Lemma 6 (Substitution lemma for terms): If ` σ : Γ and
Γ,Γ′ ` t : τ then Γ′ ` σ t : τ .
Proof: If t = cτ , σ t = cτ and Γ′ ` cτ : τ .

If t = x, σ t = σ(x) and τ = Γ(x), and since ` σ : Γ,
Γ′ ` σ t : τ .
Lemma 7 (Substitution lemma for infons): If ` σ : Γ and
Γ,Γ′ ` i then Γ′ ` σ i.
Proof: By structural induction on the derivation of Γ ` i.

If ι = > the result is trivial.
If ι = i ∧ j, then Γ,Γ′ ` i and Γ,Γ′ ` j, therefore by

induction hypothesis Γ′ ` σ(i) and Γ′ ` σ(j), leading to
Γ′ ` σ(i ∧ j). The remaining cases are similar, some needing
to use lemma 6.
Lemma 8 (Substition lemma for quantified infons): If ` σ :
Γ and Γ ` ι then ` σ ι.
Proof: By structural induction on the derivation of Γ ` ι.

If ι = ∀x : τ .i, then Γ, x : τ ` i, which ensures that none
of the variables in domx : τ appears in Γ. Therefore σ ι =

14

∀x : τ .σ(i), and using lemma 7, x : τ ` σ(i), therefore ` σ ι.

Lemma 9 (Substitution lemma for actions): If ` σ : Γ,Γ′

and Γ ` A then ` σ A.
Proof: By structural induction on A. All cases are similar to
the i∧ j case of the proof of lemma 7, and some may refer to
lemmas 6 and 7. The variables appearing in Γ′ are irrelevant
since they do not appear in A, and thus are never replaced.

Lemma 10 (Substitution lemma for conditions): If ` σ : Γ
and Γ ` C : Γ′; Γ′′ then ` σ C : Γ′; Γ′′.
Proof: By structural induction on C. All cases are similar to
i ∧ j case of the proof of lemma 7, and some may refer to
lemmas 6 and 7.
Lemma 11 (Free variables):
If Γ ` t : τ Γ′ then FV(t) ⊆ dom Γ ∪ dom Γ′;

if Γ ` i Γ′ then FV(i) ⊆ dom Γ ∪ dom Γ′;
if Γ ` ι : Γ′; Γ′′ then FV(ι) ⊆ dom Γ ∪ dom Γ′ ∪ dom Γ′′;
if Γ ` C : Γ′; Γ′′ then FV(C) ⊆ dom Γ ∪ dom Γ′ ∪ dom Γ′′;
if Γ ` A then FV(A) ⊆ dom Γ;
and in all cases, Γ, Γ′ and Γ′′ have pairwise disjoint domains.
Proof: Easy induction on the structure of each premise.
Lemma 12 (Soundness of): If Γ ` σ i and Γ ` i Γ′

then ∀x ∈ dom Γ′, x ∈ domσ and Γ ` σ(x) if Γ′(x) = infon,
or Γ ` σ(x) : Γ′(x) otherwise.

If Γ ` σ ι and Γ ` ι Γ′; Γ′′ then ∀x ∈ dom Γ′,Γ′′,
x ∈ domσ and Γ ` σ(x) if (Γ′,Γ′′)(x) = infon, or Γ `
σ(x) : (Γ′,Γ′′)(x) otherwise.
Proof: The first result is by structural induction on the
derivation of Γ ` i Γ′.

In the cases where Γ′ = · and Γ′′ = ·, the result is trivial.
If i = x, Γ′ = x : infon with x 6∈ dom Γ, and Γ′′ = ·, then

dom Γ′ = {x} and we already know Γ ` σ x. The case where
ι = x and Γ′ = x : τ with x 6∈ dom Γ is similar.

If i = j1 op j2, there exists Γ1,Γ2 such that Γ′ = Γ1,Γ2,
Γ ` j1 Γ1 and Γ,Γ1 ` j2 Γ2. Since Γ ` σ(j1 op j2),
Γ ` σ(j1) and Γ ` σ(j2). By induction hypothesis on j1,
the conclusion is true for all x ∈ dom Γ1, and by induction
hypothesis on j2, it is also true for all x ∈ dom Γ2. Since
Γ′ = Γ1,Γ2, this concludes this case. The other remaining
cases are similar.

The second result is by structural induction on the derivation
of Γ ` ι Γ′; Γ′′.

If ι = ∀x : τ .i, then Γ′ = ·. Invoking the first result on i
allows to conclude.

If ι = Ev t ι, the case is similar to i = j1 op j2 in the
previous theorem.
Lemma 13 (Substitutions generated by hold are well-typed):
If S ok, K ok, ` C : Γ; Γ′ and σ, ε ∈ holdspKM C, then
` σ : Γ,Γ′.
Proof: By structural induction on C.

If C = · or C = if ι, then σ = id, i.e., ` σ : ·. Because the
typing on guards if purely syntactic, it is necessary that Γ = ·
and Γ′ = ·, therefore ` σ : Γ,Γ′.

If C = upon ι as x then there exists Γ′′ such that
Γ = Γ′′, x : qinfon, and σ′ such that σ = σ′, x 7→ σ′ι, with

` σ′ι, ` ι Γ′′; Γ′, x 6∈ dom(Γ′′,Γ′) and domσ′ = FV(ι).
We now need to prove ` σ′ : Γ′′,Γ′. From lemma 11
we know that FV(ι) ⊆ dom(Γ′′,Γ′), and from lemma 12,
we know that dom(Γ′′,Γ′) ⊆ domσ′, therefore domσ′ =
FV(ι) = dom(Γ′′,Γ′). Again using lemma 12, we know
that ∀x ∈ domσ′, ` σ′(x) if (Γ′′,Γ′)(x) = infon, or
` σ(x) : (Γ′′,Γ′)(x) otherwise. This means that ` σ′ : Γ′′,Γ′,
which concludes this case.

If C = C1 C2, then there is Γ1, Γ′
1, Γ2 and Γ′

2 such that
Γ = Γ1,Γ2, Γ′ = Γ′

1,Γ
′
1, ` C1 : Γ1; Γ′

1, Γ1 ` C2 : Γ2; Γ′
2

and dom Γ′
1 ∩ dom Γ′

2 = ∅, and σ1, σ2 such that σ = σ2 ◦
σ1, σ1 ∈ holdsp S KMC1 and σ2 ∈ holdsp S KM(σ1 C2).
By induction hypothesis on σ1, ` σ1 : Γ1,Γ

′
1. Now using

lemma 11, FV(C2) ⊆ dom(Γ1,Γ2,Γ
′
2), and the domains of

Γ1,Γ2,Γ
′
2 on one side, and Γ′

1 on the other side, are disjoint.
Therefore, if σ′

1 is the substitution σ1 restricted to dom Γ1,
then σ1 C2 = σ′

1 C2 and ` σ′
1 : Γ1. Using lemma 10, leads

to ` σ′
1 C2 : Γ2; Γ′

2, i.e., ` σ1 C2 : Γ2; Γ′
2. By induction

hypothesis on σ2, ` σ2 : Γ2,Γ
′
2. Now Γ1, Γ2, Γ′

1 and Γ′
2 have

disjoint domains, therefore σ1 and σ2 have disjoint domains
too and ` σ2 ◦ σ1 : Γ,Γ′.
Lemma 14 (Soundness of app): If G ok and ` A then
app(G, p,A) ok.
Proof: app G p A consists in applying all the individual
actions one by one, starting with all the drop actions. If we can
prove the lemma for individual actions, a simple recurrence on
the sequence of actions will prove the lemma for all actions.

Let us now prove it for individual actions: we prove that if
(p, (K,M,R)) ok{p} and ` A, and if app1 (p, (K,M,R)) q A
exists, then app1 (p, (K,M,R)) q A ok{p}. If A is a drop ι
the result is trivial. If it is a learn ι, from ` A we know that
` ι, therefore (K, ι) ok. If it is a fwd q ι or a send q ι, it is
trivial too.
Proof of the Soundness Theorem: G −→ G′ therefore there
exists G1, G2, p, P and A such that P ⇓p A, G = G1 ‖
(p, P) ‖ G2, and G′ = app(G, p, order(A)). G ok, Therefore
there exists p1 and p2 disjoint from each other and from p
such that G1 okp1 , G2 okp2 and (p, P) ok{p}. Let S,K,M,R
such that P = (S,K,M,R), and let us prove that ` A0 for
all A0 ∈ A, by induction on the structure of R such that ` R.

If R = · then A = {}, therefore the result is vacuously true.
If R = R1, (C then A1), R2 then A = A′ ∪i [[σiA1]] where

by induction hypothesis all the elements of A′ already verify
the desired property, and the σi ∈ holdsp S KMC. Because
` C then A1, there exists Γ such that ` C : Γ; Γ′ and Γ `
A1. Since S ok and K ok, for any of the σi we can apply
lemma 13 which leads to ` σi : Γ,Γ′. Applying lemma 9
leads to ` σi A1. Applying lemma 9 again for actions with a
fresh x leads to ` [[σi A1]].

Therefore ` A0 for all A0 ∈ A. Since the set of actions in
A and order(A) are the same, ` A0 for all A0 ∈ order(A).
We conclude by applying lemma 14.

15

