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Volume 41, Number 2, June 1976 

THE DECISION PROBLEM FOR STANDARD CLASSES 

YURI GUREVICH1 

?0. Introduction. The standard classes of a first-order theory T are certain 
classes of prenex T-sentences defined by restrictions on prefix, number of monadic, 
dyadic, etc. predicate variables, and number of monadic, dyadic, etc. operation 
variables. In [3] it is shown that, for any theory T, (1) the decision problem for 
any class of prenex T-sentences specified by such restrictions reduces to that for 
the standard classes, and (2) there are finitely many standard classes K1, * *., Kn 
such that any undecidable standard class contains one of K1, K. These results 
give direction to the study of the decision problem. 

Below T is predicate logic with identity and operation variables. The Main 
Theorem solves the decision problem for the standard classes admitting at least 
one operation variable. 

?1. Standard classes. From now on we restrict the terms "formula" and 
" sentence" to formulas and sentences in the language of first-order predicate logic 
including identity and operation variables. A prefix is a word in the alphabet 
{V, ]}. Vn and ]n are the words consisting of n occurrences of V and of n occurrences 
of ], respectively, where n is a natural number. w denotes the countable cardinal 
and the set of natural numbers. Now let w be a word in the four-letter alphabet 
{V, ], V@, 9 3w}. The set P(w) of prefixes is defined thus: 

p(Vn) = {Vi: O < i < n}, p(3n) = {Hi O < i < n}, 
P(VW) = {VI:0 < i < w}, P(]W) = {]i:O < i < 

P(wlw2) = {u1u2: Ul e P(wl) and u2 e P(w2)}. 

For example, p(]wV2]w) = {]iVjik: i, j] k E w and j < 2}. 
A place sequence is a function s:{1, 2, * *} > {0, 1, * ..., w} such that {n:sn # O} 

is finite. The classes R(s) and F(s) are defined as follows. Let ra(n) and fa(n) be 
the number of n-place predicate variables and of n-place operation variables, 
respectively, in a formula a.. Then a. belongs to R(s) iff 

>.{ra(i):i > n} < >1{si:i > n} 
for each n, 1 < n < w, and a. belongs to F(s) iff 

I{fa(i):i > n} < >{si:i > n} 

Received September 10, 1974; revised April 14, 1975. 
1 I am grateful to Dr. Avraham Feintuch for correcting my English, and to the two referees 

who greatly improved earlier versions of this paper. The results of this paper were obtained 
in 1971, and were included (save for the theorem of Shelah in ?2, which was mentioned as a 
hypothesis) in an article accepted for publication by the Institute of Philosophy of the Soviet 
Academy of Science. That article has not appeared. 
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for each n, 1 < n < w. Also P(all) denotes the set of all prefixes; R(all) and F(all) 
denote the class of all formulas. 

Let w be a word in the aforementioned four-letter alphabet or the word "all". 
Let s and t be place sequences or the word "all". The class K(w, s, t) consists of all 
prenex sentences oa such that the prefix of oa belongs to P(w) and a. E R(s) n F(t). 
A standard class is a class of the form K(w, s, t). 

Note. The elaborate definitions of R(s) and F(s) are needed because (n + i)- 
place variables can serve as n-place ones. If the inequalities of the definitions are 
replaced by ra-(n) < sn and fa(n) < sn then the Main Theorem below will not 
hold. 

Below 0, 1 n, 1 c and 21 denote the place sequences (0, 0, * ), (n, 0.. 0 .), 
(W, 0 . 0 ... ), and (0, 1, 0, 0,. ..), respectively. 

We say that a class K of formulas is decidable if both satisfiability and finite 
satisfiability (that is, satisfiability in a finite model) are decidable for formulas in 
K. K is conservative [8] if there exists an algorithm a. '> a' which associates a 
formula a' E K with each formula a in such a way that a is satisfiable (finitely 
satisfiable) iff a' is so. We say that a is an infinity axiom if it has only infinite models. 

Let Lo be the class of all formulas without the identity sign. In accordance with 
the Main Theorems in [2] and [3] every K = K(w, s, t) n Lo is either decidable 
(and contains no infinity axioms) or conservative, and there is a simple criterion 
for determining whether or not K is decidable. In [1] it is proved that K(3WV23w, 
all, 0) n Lo is decidable (and contains no infinity axioms) and the same is claimed 
for K(3WV2]w, all, 0). This claim would settle the decision problem for all classes 
K(w, s, 0), since it implies that K(w, s, 0) and K(w, s, 0) n Lo are either both 
decidable (and contain no infinity axioms) or both conservative (see [2]). As far as 
I know no proof of the claim has been published. 

?2. MAIN THEOREM. Let K be a standard class K(w, s, t), where t is a nonzero 
place sequence or the word "all". Then either K is decidable and included in at least 
one of the classes 

K(]w, all, all), K(all, 1'?, 11), K(]WV]W, all, 11) 

or else K is conservative and includes at least one of the classes 

K(V, 0, 12), K(V, 0, 21), K(V2, 21' 11). 

Note. The infinity axiom Vx3y3z(x = fy A x = fz A y # z) belongs to 
K(all, 1, 11) r) K(]WV]W, all 1'). 

PROOF OF THE MAIN THEOREM. It is enough to check that the first three classes 
are decidable and the other three are conservative. 

The decidability of K(3w, all, all) is almost obvious. Let a = 3x, ... 3XmB be a 
sentence in this class, where B is quantifier-free. Without loss of generality we may 
assume that each atom of B is in one of the following forms: xi = xj,f(xi1, ..., xi) 
- xj, or p(xi1, ... 9, xin). For example, instead of 3x3y(fgx # y) we may consider 
the logically equivalent formula 3x3y3z(gx = z A fz # y). But then if B is con- 
sistent in propositional logic with identity then a. has a model of power < m + 1. 

The decidability of K(all, 1w, 11) follows from [7]. Let a. be a sentence in this 
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class and let p1, , po, be the predicate variables in a. The sentence a is not satis- 
fiable if Vp1... Vp*, - a is a theorem of the second-order theory of a unary 
function with a countable domain. This theory is decidable according to Theorem 
2.4 in [7]. Further, a is not finitely satisfiable if 

]PoVX(Po(x)) - VP1 ... VP*n a 

is a theorem of the weak second-order theory of a unary function. The latter theory 
is decidable according to Corollary 2.5 in [7]. 

The decidability of K(]WV]3, all, 11) was proved recently by Saharon Shelah 
(unpublished). 

We show that K(V, 0, 12) is conservative in ?3 below. In [6] it is announced that 
the dual class K(3, 0, 12) is a reduction class for validity. 

We also show in ?3 that K(V, 0, 21) is conserative; cf. [5]. 
In accordance with [3], the subclass of K(V2, 21, 11) consisting of sentences 

without the identity sign is conservative. Hence K(V2, 21, 11) is conservative. 

?3. K(V, 0, 12) and K(V, 0, 21). First we show K(V, 0, 10) to be conservative by 
encoding the domino problem (see [8]). A domino type is a quadruple D= 
(left(D), top(D), right(D), bottom(D)) of natural numbers. A domino set is a finite 
set of domino types. Let P be a domino set. A function C: w x w => P is called a 
P-covering if, for every x and y, 

right(C(x, y)) = left(C(x + 1, y)) and top(C(x, y)) = bottom(C(x, y + 1)). 

A P-covering is called periodic with period m if C(x, y) = C(x + m, y) = C(x, y + m) 
for all x and y. 

PROPOSITION 3.1 (SEE [4]). There is an algorithm a => Pa, which associates a 
domino set Pa with each formula a in such a way that a is satisfiable (finitely satis- 
fiable) iff there exists a Pa-covering (a periodic PO-covering, respectively). 

If P = {Di, * * , Dn} is a domino set, let P(x) be the conjunction of the following 
formulas, where f, g, hi,,., hn are monadic operation variables: 

fgh = gfx, V {hix = x: 1 < i < n}, 

A{hix = x- hjx x: 1 < i < j < n}, 
V {hix = X A hofx = fx: right(D2) = left(D,)}, 

A {hix = x A hjgx = gx: top(Di) = bottom(Dj)}. 

LEMMA 3.1. If there exists a P-covering (a periodic P-covering) then VxP(x) is 
satisfiable (finitely satisfiable, respectively). 

PROOF. Here and below I MI denotes the universe of a model M. 
Let C: w x w > P be a P-covering (a periodic P-covering with period m). Let 

R be the ring of integers (the ring of residue classes mod m or, if m = 1, the ring 
of residue classes mod 2). A model (a finite model) M for VxP(x) is constructed as 
follows: 

JMI = IRI x IRI, f(a, b) = (a + 1, b), g(a, b) = (a, b + 1), 

h2(a, b) =f(a, b) if C(a, b) = Di 
Ban arbitrary element of I M I distinct from (a, b) if C(a, b) : Di. Q.E.D. 
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LEMMA 3.2. If VxP(x) is satisfiable (finitely satisfiable) then there exists a P- 
covering (a periodic P-covering, respectively). 

PROOF. Let M be a model for VxP(x). Pick an arbitrary a E IMI and define C 
as follows: C(k, 1) = Di iff M k hifkgla = fkgla. Then C is a P-covering. More- 
over, if M is finite then C is periodic. Q.E.D. 

THEOREM 3.1. K(V, 0, 1) is conservative. 
PROOF. The algorithm a> VxPa(x) is a desired conservative reduction to 

K(31, 0. 1'?). Q.E.D. 
THEOREM 3.2. K(V, 0, 12) is conservative. 
PROOF. Let a = VxB(x) be a sentence in K(V, 0, 1w) containing the operation 

variables f * ,..,fm. Then let a.' be the sentence 

Vx[f1x = hgx A f2x = hg2x A ... A fmx = hgmx A B(hx)]. 

It is enough to prove that a.' is satisfiable (finitely satisfiable) iff a is so. For clearly 
there is an a"' in K(V, 0, 12) such that (i) a.' logically implies a", and (ii) any model 
for a." becomes a model for a.' by the addition of appropriate assignments to the 
operation variablesf1,... ,fm, 

If M' is a model for a.' then a. holds in the submodel M of M' such that IM = 

{ha:a E IM'j}. Now let M be a model for a. A model M' for a' is constructed as 
follows: 

M' = JMj x {0, 1, * * m}, 
g(ai) = (a, i + 1) for i < m and g(a, m) = (a, 0), 
h(a, 0) = (a, 0) and h(a, i) = (fa, 0) for i > 0, 
f (a, j) = hgt(a, j) and in particular f(a, 0) = (fia, 0). Q.E.D. 
THEOREM 3.3. K(V, 0, 21) is conservative. 
PROOF. Let a. = VxB(x) be a sentence in K(V, 0, 12) containing the operation 

variables g, h. Then let a' be 

Vx[fx = F(x, x) A gx = F(x, fx) A hx = F(fx, x) A B(gx) A B(hx)]. 

As in the preceding proof it suffices to prove that a' is satisfiable (finitely satisfiable) 
iff a is so. 

If M' is a model for a.' then a holds in the submodel M of M' such that IMJ = 

{ga:a e IM'I} U {ha:a E JM'J}. 
Let M be a model for a and let R be the ring of residue classes mod 3. a.' holds in 

any algebra M' such that: 

IM'I = IM x IRI, F[(a, n), (a, n)] = (a, n + 1), 
F[(a, n), (a, n + 1)] = (ga, 0), F[(a, n + 1), (a, n)] = (ha, 0), 

f(a, n) = (a, n + 1), g(a, n) = (ga, 0), h(a, n) = (ha, 0). Q.E.D. 
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