
Evidential Authorization?

Andreas Blass,1 Yuri Gurevich,2 Micha l Moskal2 and Itay Neeman3

1 Mathematics, University of Michigan, Ann Arbor, MI, USA
2 Microsoft Research, Redmond, WA, USA

3 Mathematics, UCLA, Los Angeles, CA, USA

To Bertrand Meyer, the Eiffel tower of program correctness.

Most fascinating is a feature that would make any journalist tremble. Tuyuca
requires verb-endings on statements to show how the speaker knows

something. Diga ape-wi means that the boy played soccer (I know because I
saw him), while diga ape-hiyi means the boy played soccer (I assume).

English can provide such information, but for Tuyuca that is an obligatory
ending on the verb. Evidential languages force speakers to think hard about

how they learned what they say they know.

—The Economist, January 1, 2010

Abstract. Consider interaction of principals where each principal has
its own policy and different principals may not trust each other. In one
scenario the principals could be pharmaceutical companies, hospitals,
biomedical labs and health related government institutions. In another
scenario principals could be navy fleets of different and not necessar-
ily friendly nations. In spite of the complexity of interaction, one may
want to ensure that certain properties remain invariant. For example, in
the navy scenario, each fleet should have enough information from other
fleets to avoid unfortunate incidents. Furthermore, one want to use auto-
mated provers to prove invariance. A natural approach to this and many
other important problems is to provide a high-level logic-based language
for the principals to communicate. We do just that. Three years ago two
of us presented the first incarnation of Distributed Knowledge Autho-
rization Language (DKAL). Here we present a new and much different
incarnation of DKAL that we call Evidential DKAL. Statements com-
municated in Evidential DKAL are supposed to be accompanied with
sufficient justifications. In general, we construe the term “authorization”
in the acronym “DKAL” rather liberally; DKAL is essentially a general
policy language. There is a wide spectrum of potential applications of
DKAL. One ambitious goal is to provide a framework for establishing
and maintaining invariants.

Keywords: access control, authorization, distributed knowledge, evi-
dential, justification, logic-level communication

? Blass was partially supported by NSF grant DMS-0653696. Part of the work reported
here was performed during visits of Blass and Neeman to Microsoft.



1 Introduction

Logic-based authorization made its debut in the early 1990’s with the Speaks-For
calculus [17,1]. The first paper on Distributed-Knowledge Authorization Lan-
guage (DKAL) was published in 2008 [12]. In the interim, substantial progress
had been achieved in logic-based authorization. For brevity, let us just refer
to the article [5] on SecPAL (Security Policy Authorization Language) and an
informative survey of related work there.

DKAL started as an attempt to extend SecPAL but then the two languages
diverged. The main motivation of DKAL was reflected in its title: distributed
knowledge. The challenge was how to reason about communicating principals,
each computing his own knowledge. The most conspicuous innovation of DKAL
vis-à-vis SecPAL was the introduction of logic-level targeted communication
among the principals involved in the given scenario. Each principal computes
his4 own knowledge, acts on it, and communicates directly with other princi-
pals. No intermediaries are necessary. Autonomous communicating principals
had been considered in the literature, in particular in [3] and [8]. Yet, as far as
we know, DKAL is the only language in the literature with specific logic-level
rules for sending and accepting communications. Many logic-based authoriza-
tion languages presume the existence of a central engine where all the reasoning
occurs. For example, in the world of SecPAL, a central engine controls the re-
sources and serves as the only knowledge manager. The only communications
in the language of SecPAL are assertions of the form (P says ϕ), meaning that
P says ϕ to the central engine. In the SecPAL implementation, different central
engines do exchange information but at a lower level that is not covered by the
language.

Is it important to exchange information among knowledge managers at the
logic level? The answer to this question depends on what your goals are. Logic-
level communication facilitates reasoning about decentralized systems (see a lit-
tle example in [15]) and enables automation of such reasoning. It allows you to
address new challenges. Imagine a collective of communicating principals in a
paranoid world where trust is in short supply. Each principal computes his own
knowledge, and not only his data but also his policy is subject to change. And
yet some invariant needs to be maintained. For example, there might be just two
principals. One of them is a government agency that fiddles with its policy, and
the other is a company with continually evolving procedures. The invariant is
that the company complies with the agency’s requirements. Another example is
an e-health ecosystem, and among the invariants are preservation of the safety
and the privacy of the patients. Note that logic-level communication may be
used to alter authorization policies in a controlled way; a step in that direction
was done in [14]. In particular, this enables policy bootstrapping: One principal

4 Of course, principals do not have to be people. They may be computers, govern-
ments, government agencies, companies, universities, etc. But it is convenient to use
anthropomorphic terminology.

2



creates another principal and supplies the newborn with some initial policy, and
then the newborn pulls necessary policy extensions from various quarters.

One interesting outcome of logic-level communication is the reemergence of
quotations. Quotations were used in Speaks-For but not in recent pre-DKAL
logic-based authorization languages. In particular, they are absent in SecPAL.
There, communications go to the central engine and are cryptographically signed.
Thus, nested quotations are superfluous. What is the point of my telling the cen-
tral engine that you said ϕ? It knows. You said ϕ to it. But in the world where
everybody computes his own knowledge, nested quotations are ubiquitous. For
example, imagine a committee that conducted a secret vote with different mem-
bers of the committee residing in different locations. The secretary confirms that
two members of the committee said Yes. In a similar vein, targeted communica-
tion between principals makes little sense in the world of SecPAL.

In truly decentralized situations, a principal who wants his communications
to be believed may need to provide evidence along with the communications.
Such evidence may consist merely of signed statements from others but may also
involve deductions. This is especially important when the recipient, say a smart
card or computer server, needs to be virtually stateless (as far as the interaction
in question is concerned) and therefore unable to do much fact checking but
can verify justifications that are sent to it. In this paper, we present a version of
DKAL, Evidential DKAL, that is geared toward applications where justifications
are necessary5.

We hasten to add that not all applications are of this sort. Imagine that you
work for the 911 emergency service. You would not demand that accident reports
be cryptographically signed. But you might have rules for assessing the credibility
of such reports, even anonymous ones. In general, there are various kinds of
applications and ways to assess evidence. In some cases you may rely on a rating
system of sorts; in other cases you may decide on the basis of preponderance of
evidence. Even gossip may sometimes be informative. For simplicity we treat in
this paper only the case where all communications come with justifications; we
postpone the general case to future work.

Another innovation of DKAL concerned authorization logic. The Speaks-For
calculus is a logic of its own. Later logic-based authorization languages built
on Datalog. Datalog achieves its computational efficiency by forbidding the use
of functions (it is a purely relational logic apart from constraints formulated
in some efficiently decidable theory) and by imposing safety requirements. In
essence, the efficiency of Datalog (with or without constraints) results from its
small world, consisting of just the constants that appear explicitly. In [12], the
underlying logic is an extension of Datalog in which functions are allowed. So
the world is no longer small, but restrictions were imposed on the ranges of some
variables (so-called regular variables), and then difficult proofs showed that the
efficiency is not lost. Subsequently, [14] incorporated the discovery of a strong
connection with traditional constructive logic and modified the formulation of
DKAL to make the connection conspicuous. In addition it showed that a useful

5 For evidentiality in natural languages, see [2].

3



fragment of DKAL logic is decidable in linear time. This modification eventually
allowed us to separate concerns and consider logic separately from the rest of
the system. Here we treat the underlying logic and additional application-specific
assumptions as a parameter.

The present paper is organized as follows. Section 2 introduces an example
that will be used throughout the paper. Section 3 is an informal presentation
of some of the central ideas of DKAL, which will be developed formally in sub-
sequent sections. The world of DKAL consists of communicating agents. In ac-
cordance with the access control tradition, the agents are called principals. The
principals perform various computations. Each principal has its own computa-
tion state that, in general, evolves in time6. Conceptually, the state splits into
two parts: substrate and infostrate. Section 4 is devoted to the substrate, and
Section 6 is devoted to the infostrate. Between these two, Section 5 is about the
logic of DKAL. Section 7 formalizes the policies for the example of Section 2.
The final Section 8 is about future work.

Acknowledgment

We are indebted to Roy DSouza, a partner architect at Microsoft, for numerous
helpful conversations and for pioneering the use of DKAL in cloud federation
scenarios, in particular for compliance. Roy’s projects gave the impetus for the
development of evidential DKAL.

2 Clinical Trials Scenario, Informal Description

As a running example in this paper, we shall use a partial description of a
clinical trial of a new drug. In Section 7, the relevant policies will be written out
systematically. In the present section, we describe the background situation and
the policies of the parties under consideration.

2.1 Background

A pharmaceutical company developed a certain drug and tested it internally.
Before bringing the drug to market, however, it is necessary to conduct a clini-
cal trial, an external study of the safety and efficacy of the drug. Clinical trials
are overseen by government regulatory bodies, such as the U.S. Food and Drug
Administration (FDA), which eventually decide whether the drug can be mar-
keted.

Although the pharmaceutical company pays for the clinical trial, it does not
conduct the trial itself — partly to avoid an appearance of impropriety and partly
for the sake of efficiency. The company hires an accredited contract research
organization to organize and manage the clinical trial. This trial organizer hires

6 Our notion of state is influenced by the theory of abstract state machines [11] but
we do not presume that the reader is familiar with abstract state machines.

4



sites, like hospitals or clinical labs, to take part in the clinical trial. A site finds
appropriate patients and designates physicians, bioscientists, etc., to work on
the clinical trial. We presume that the clinical trial employs cloud computing.
Patient records and other data relevant to the trial are kept in the cloud, and
access to them is controlled by a special key manager.

The conduct of a clinical trial involves the interaction of a great many entities,
known as principals in the context of access control. These include government
agencies (e.g. FDA), the pharmaceutical company, the trial organizer, the sites,
the physicians, the bioscientists, the auditors, and others [10]. A complete de-
scription of the policies of all these principals is a major project which we do not
undertake here; rather, we use a small part of such a description as an illustration
of how policies are handled in DKAL.

2.2 Policies

The policies we use for our example are the ones involved when a physician wants
to read the record of a particular patient. These records are stored in the cloud,
indexed by patient ID numbers, and, as indicated above, access to patient records
is controlled by a key manager. This key manager’s role is to check that an access
request is legitimate and, if it is, to reveal the necessary cryptographic key to the
requester. The legitimacy of a physician’s request for the record of a particular
patient depends on several factors. We deal with the simple situation where the
physician is requesting access to the record of one of his own patients in the trial.
Some information in a patient’s record should remain inaccessible even to his trial
physician, for example, whether the patient is receiving the drug being tested or
a placebo. For brevity, we use “record” to mean the part of a patient’s record
that should be accessible to his trial physician. (Real policies would also have to
cover the case where, in an emergency, a physician — any physician — attending
the patient may need the full record, including the information that is ordinarily
inaccessible.) The key manager does not simply accept the physician’s word that
this is his patient but requires certification from the site (in this case a hospital
or clinic) that assigned that patient (or, more precisely, that patient’s ID) to
this particular physician. But the key manager may know only the organizers
of trials, not the sites they hire. The key manager therefore requires additional
certification, from the trial organizer, that the site in question is a legitimate
site, is working on this trial, and is authorized to assign, to a physician of its
choice, the patient ID number involved in the physician’s request.

It is generally desirable for the key manager to be almost stateless, i.e., to
remember very little information. He needs to know the trial organizers and to
have a current revocation list (in case an organizer, site, or physician has lost
some rights), but he should not have a large database. The less information the
key manager keeps, the less the cloud’s customers will worry about their infor-
mation being compromised by bribed technicians, court subpoenas, and similar
disasters. Furthermore, the scalability of the system is improved by keeping the
key manager’s state (including his cache) small.

5



Thus, our scenario features four of the principals involved in a particular
clinical trial called Trial1:

– Org1, the contract research organization conducting Trial1.
– Site1, one of the sites hired by Org1 for Trial1.
– Phys1, one of the physicians working at Site1 on Trial1.
– KeyManager for Trial1.

We shall discuss and formalize in DKAL the policies that these principals
should follow so that, when an authorized physician wants to get a patient
record, he gets a key for it, but unauthorized principals don’t get keys. (The key
manager, who has all the keys, counts as authorized.)

Informally, the essential parts of these policies are as follows. Org1 sends, to
each site selected for Trial1, a (cryptographically signed) certification that it
has been hired to work on Trial1 and has been allocated a certain range of pa-
tient ID numbers. Furthermore, Org1 sends each of these sites a signed statement
delegating to the site the authority to grant access to patient records whose ID
numbers are in that range. Site1, in turn, having received its range [N1,N2] of
patient ID numbers, sends each of its chosen physicians a signed authorization
to access records with ID numbers in a certain sub-interval of [N1,N2]. Fur-
thermore, Site1 forwards to its physicians, including Phys1, the statement from
Org1 delegating this access authority to Site1. When Phys1 needs to see the
record of a patient whose ID number N is in Phys1’s assigned interval [P1,P2],
he sends a request to KeyManager, accompanied by the statements from Org1
and Site1 granting that authority, plus verifications of the arithmetical facts
that the patient ID is in the range assigned to him by Site1 (so that Site1’s
authorization applies) and in the range assigned to Site1 by Org1 (so that Org1’s
delegation of authority applies), plus a proof that these arithmetical facts and
the two signed statements establish that he has authority, from Org1, to access
the record in question.

Finally, KeyManager’s policy includes verifying proofs sent to him as well as
signatures on documents, trusting Org1 on such authorizations, and sending the
correct key to the requester. (For details, see Section 7.)

3 The World of One DKAL Principal

The part of the world seen by a particular principal can be described as fol-
lows. First, there are various facts, which we regard as being recorded in some
database(s). In what follows, when we refer to databases, we mean collections
of relations, not the additional machinery, such as search and query mecha-
nisms, associated with full-scale databases. For brevity, we also stretch the term
“database” to include temporary storage. For example, when a physician receives
a key from the key manager, he should not, in view of security considerations,
record the key in anything as permanent as what is usually called a database.
Rather, he should keep a temporary record of it for as long as it takes him to
use the key; then he should destroy it. Since this sort of temporary storage will

6



play the same role as databases in our discussion, and since we don’t want to
repeatedly write “databases or temporary storage,” we let “databases” refer to
both of these.

A principal’s data are relations in these databases plus some functions, e.g.
standard arithmetical operations, given by algorithms. Some of the relations and
functions may be public, with the same contents for all principals. Others may be
private for a specific principal. Intermediate situations are also possible, where
several but not all principals share some relations and functions.

These relations form what we call the substrate of a principal. The public
part of a substrate would ordinarily also include things generally available in
computing systems, such as numbers and the arithmetical operations on them. In
our clinical trial scenario, the publicly available substrate would tell, for example,
which contract research organizations are conducting which trials. A contract
research organization’s substrate would tell which sites are to participate in
which trials as well as which patient ID numbers have been allocated to each
site. The sites, in turn, would have in their substrates information about the
physicians they hired and the patient ID numbers assigned to each physician.

A principal can, in general, obtain and update values of functions in his
substrate, but this ability may be limited in several ways. In the first place,
some entries may be undefined for the principal — for example, record keys
that have not been given to him. Let us suppose that principals use a substrate
function Key for temporary storage of keys. Then this function would ordinarily
be defined at only a small number of arguments in any particular principal’s
substrate (except in the key manager’s substrate).

Furthermore, some parts of the substrate, in particular public parts, may be
designated as static, i.e., not susceptible to updating

Another part of a principal’s world, the part directly concerned with knowl-
edge and communication, is the infostrate. It contains the principal’s knowledge
assertions, which incorporate the knowledge initially available to the princi-
pal and the knowledge obtained from communication. In addition, it contains
knowledge that the principal has deduced from these together with facts from
the substrate. (Actually, there is more to the infostrate, including the principal’s
policies for sending and accepting communications; see Section 6 for a complete
description.)

As we shall see below, the mathematical framework of DKAL treats a princi-
pal’s substrate and infostrate rather differently. Nevertheless, in real-world situa-
tions, there may be some arbitrariness in deciding where a particular aspect of a
principal’s world should reside. Communications are definitely in the infostrate,
and public databases are definitely in the substrate, but between these there are
less definite situations. Intuitively, if a principal learns some information from a
communication and soon uses it for further communication, this would belong
in the infostrate, but if the information is recorded, perhaps in a table, for later
use, then the table belongs in the substrate. Ultimately, though, decisions about
what goes into the substrate and what goes into the infostrate will be governed

7



by pragmatic considerations including ease of analysis (which may, of course,
benefit from conformity to intuition).

3.1 Substrate Functions and Infon Relations

We adopt several conventions concerning substrates and infostrates.
The substrate of any principal is assumed to be a typed, purely functional,

first-order structure, except that the functions may be partial7. That is, the sub-
strate is a finite system of nonempty sets together with some (possibly partial)
functions between them. Each function has a specified number of arguments, of
specified types, and a specified type for its output. One of the built-in types is
Boolean, with just two elements, true and false. Although officially a substrate
has only functions, not relations, Boolean-valued functions amount to relations.
So in effect we have arbitrary (multi-sorted) first-order structures. Constants
are, as usual, regarded as 0-ary functions. Note that, since functions are allowed
to be partial, there may be ground terms that are not assigned any value by the
usual definition.

A participant’s infostrate, in contrast, does not involve function symbols
but resembles a relational structure, with the same underlying sets (of various
types) as the substrate. Instead of relations, though, it has infon relations that
assign infons (rather than truth values) to tuples of elements of the appropriate
types. Infon formulas are built from infon relations, constants, and variables
according to rules that will be spelled out in Section 5. These infon formulas do
not have truth values in the usual sense; rather, their values are infons, which we
think of as items of information. They are not true or false, as in classical logic,
but are known or not known by principals. Infons are the entities that can be
communicated from one principal to another. Each principal in a DKAL system
has a policy, including

– what sorts of communications to accept, and from whom,
– what communications to send, and to whom, and
– what changes to make in its state.

All of these specifications can use information from this principal’s substrate and
from the principal’s knowledge and roster8.

The knowledge mentioned here arises from the principal’s original knowledge
assertions, the communications that the principal has received and accepted,
and information from the substrate.

7 For readers familiar with the abstract state machine literature, we point out the
following difference. Suppose that f is a partial function undefined at an argument
ā. The abstract state machine convention is that f(ā) = undef where undef is a first-
class element, so that e.g. f(ā) = f(ā) evaluates to true. In a DKAL substrate there
is no value for f(ā), nor for any term that includes it as a subterm. In particular,
the value of the equation f(ā) = f(ā) is undefined.

8 The roster is actually part of the substrate, but we mention it here for emphasis.

8



The roster consists of the elements of the substrate that the principal is aware
of. The official definitions of “knowledge” and “roster” will be given in Sections 4
and 6.

In practice, it is difficult to separate “knowledge” and “policy” as described
above. For example, if a principal decides to trust another on some infon (i.e.,
“if so-and-so tells me x then x”) is this trust assertion a matter of knowledge or
of policy? Furthermore, it has become traditional in logic-based authorization to
use the word “policy” in a broad sense that includes some of what we have called
knowledge, at least the explicit knowledge assertions of a principal. Accordingly,
we shall from now on use “policy” in this broader sense. In particular, the for-
malization of our example in Section 7 will include, in the principals’ policies,
several trust assertions.

A crucial aspect of infons (or, more precisely, of the infon formulas that denote
them) is that, in addition to atomic infon formulas (asserting an infon relation
of some named substrate elements) and combinations via “and” and “implies”,
they can also assert that some principal said (or implied) some other infon. In
this way, communications from one principal can enter into the knowledge of
another.

3.2 Notational Conventions

In this paper, we choose our notations for function names, infon relations, and
variables in accordance with the following conventions. All of these symbols are
in the typewriter typeface.

Function symbol: String of letters and digits, beginning with a capital letter
and containing at least one lower-case letter.

Infon relation: One or more strings of letters, each string starting with a lower-
case letter. (The “or more” is to allow writing some arguments between the
parts of the infon relation.)

Variable: Nonempty strings of capital letters, possibly followed by digits.

In addition, we use obvious notation for arithmetical operations and proposi-
tional connectives.

Here are some examples. Variables in our examples will include TRIAL, SITE,
N1, and PERSON.

Function names will include constants (recall that these are nullary functions,
i.e., taking no arguments), such as Trial1, Org1, and Phys1. They also include
unary functions, such as Org (as in Org(TRIAL)) and Key (as in Key(RECORD)),
and functions of two or more arguments like Record (as in Record(N, TRIAL)).

Infon relations include the binary participates in and ternary
participates in at as physician, as in SITE participates in TRIAL and
PERSON participates in TRIAL at SITE as physician.

There is a special infon relation, asinfon, which takes one argument of
Boolean type and returns an infon whose intended meaning is that the argu-
ment is true. That is, it converts classical truth values (things that can be true

9



or false) into infons (things that can be known by principals). An example, using
the availability of elementary arithmetic and propositional logic in the substrate,
is asinfon(N1 ≤ N and N ≤ N2).

3.3 Disclaimer

Our primary goal in this paper is to describe the communication and inference
mechanisms of DKAL. That is, we shall be interested primarily in infostrate
phenomena. To better expose these essential ingredients of DKAL, we shall omit
from our examples various things that, though important in reality, would only
clutter the example and obscure the main points we wish to make. In particular,
we shall not deal here with the updates that principals may perform in their
substrates. (Some special updates of substrates, namely additions to principals’
rosters, occur automatically as an effect of communication; these are included
in the discussion in Section 6.)

Principals’ policies may evolve. For example, companies may have to change
their policies (keeping a log, of course, to show what their policy used to be)
when a government agency changes its rules. They may have to delete or modify
some of their knowledge assertions, acquire new knowledge assertions, amend
some of their communication rules, etc. We postpone to a future treatment the
issue of policy evolution, except that we define, in Subsection 6.3, how accepted
communications become new knowledge assertions. For the sake of simplicity,
we do not treat in this paper deletions or modifications of knowledge or re-
moval of elements from rosters. Nor do we treat explicit additions, deletions or
modifications of communication rules or filters.

Furthermore, although DKAL is a typed system, whose types always include
the types of Boolean values, of integers, and of principals, and usually include
many other application-specific types, we shall omit explicit indications of types
in our examples, trusting in the reader’s common sense to correctly understand
the types of the expressions we write.

4 Substrate

In logic terms, the substrate of a principal is a multi-type (also called multi-
sorted) first-order structure where relations are viewed as Boolean-valued func-
tions. Accordingly the Boolean type, comprising two elements true and false,
is ever present. Other ever present types are the types of principals and integers.
The substrate vocabulary contains the names of the substrate functions. Con-
stants are (the names of) nullary functions. Terms over the substrate vocabulary
are produced as usual (in first-order logic) from variables by means of (repeated
applications of) function names. In particular, constants are terms.

It is convenient to see the substrate as a collection of (types and) partial
functions. For instance, the substrate of principal Org1 contains a binary function
Status(SITE,TRIAL) one of whose values is Unnotified. The intended meaning
of Unnotified is “chosen to work on this trial but not yet notified”. Another

10



binary function in the substrate of Org1 is Patients(SITE,TRIAL), which gives
the range of patients’ identification numbers assigned to the SITE at the TRIAL.

Some substrate functions, like Status or Patients, are finite and can be
given by tables. In general, a substrate function f is given by an algorithm
(which can be just a table lookup). For example, integer multiplication is given
by an algorithm and so is integer division. We presume that, given a tuple ā of
arguments of appropriate types, the algorithm first decides whether f is defined
at ā. If f(ā) is undefined, the algorithm reports that fact and halts. Otherwise
it proceeds to compute f(ā). Thus the algorithm never “hangs”. For example,
given (1, 0), the algorithm for integer division will report that 1/0 is undefined.

Equivalently one can think of a substrate as a relational database. Total
Boolean-valued functions are relations. Any other function f , of arity j, gives
rise to a (j + 1)-ary relation (the graph of f) with a functional dependency that
says that the first j columns determine the last column. For example, the binary
function Status(SITE,TRIAL) gives rise to a ternary relation, with attributes
for sites, trials and statuses, where the values of SITE and TRIAL determine the
value of STATUS.

4.1 Canonic Names, and Term Evaluation

We presume that every element in the substrate of a principal A has a canonic
name that is a ground term. We identify these elements with their canonic names.
It is presumed that canonic names are obviously recognizable as such. For ex-
ample, A’s canonic name for a principal P could be a record identifying P , e.g.
via his public cryptographic key, and giving his address. The canonic name for
an integer could be its binary notation.

Quisani9: What if the substrates of two principals A and B share an
element? Can the two names differ? For example, is it possible that A
uses binary notation for integers while B uses decimal?

Authors: No. We presume names have been standardized for common
substrate elements.

Q: I see a possible problem. Elements of different types might have the
same canonic name. For example, if you had identified principals by just
their cryptographic keys, those could also be the binary notations for
integers.

A: Canonic names are ground terms and thus have definite types.

To evaluate a ground term t at a state S means to produce the canonic
name for the element JtKS denoted by term t at S. The principal may be unable
to evaluate a ground term. For example, in a physician’s substrate the func-
tion Key(RECORD) is defined for few, if any, records. For a particular record, say

9 Quisani is an inquisitive friend of ours.

11



Record(10,Trial1) of patient 10 in Trial1, the physician may be unable to eval-
uate the term Key(Record(10,Trial1)). The values of Key that a physician can
evaluate, i.e., the ones that are defined in his substrate, are (in our scenario) the
ones which he has gotten from the key manager (and has recorded and not yet
destroyed).

4.2 Roster

Intuitively the roster of a principal A is the finite collection of elements known
to principal A. The roster splits into subrosters, one subroster for every type.
The subroster of type T consists of elements of type T . Formally, the subrosters
are unary relations.

Unsurprisingly, the Boolean subroster consists of true and false, and the
principal subroster of A contains at least (the canonic name of) A.

Roster may not be closed under substrate functions. For example, even if
the substrate has a principal-to-principal function Manager, the principal sub-
roster may contain some employee John but not contain (the canonic name for)
Manager(John). In particular the integer subroster contains only finitely many
integers.

5 Logic

5.1 Infons

Traditionally, in mathematical logic, declarative statements represent truth val-
ues. In DKAL, as explained in Section 3, we view declarative statements as
containers of information and call them infons [12]. This has a relativistic as-
pect. Indeed, the world of DKAL consists of communicating principals, and each
principal lives in his own state. As a result, one question, whether a given state-
ment ϕ is absolutely true or absolutely false, is replaced with as many questions
as there are principals: Does a given principal know ϕ?

In the first part of the present section, we fill in details about infons, making
precise what was outlined in Section 3.

Recall the connection between truth values and infons, given by the asinfon
construct.

Q: I guess a principal A knows asinfon(b) if and only if the Boolean
value b is true.

A: That is the idea but one has to be a bit careful. It may be infeasible
for the principal A to carry out the evaluation. For example,

3333

+ 8888

is prime

has a well defined Boolean value but A may not know it.

12



5.2 Infons as formulas

Traditionally, statements are represented by formulas. In the previous DKAL
papers, we treated infons as objects and represented infons by terms; in partic-
ular we had infon-valued functions. In the meantime we realized that infons can
be naturally represented by formulas, and that is what we do in this paper.

Q: Since you are interested in statements like “a principal A knows infon
formula ϕ”, you may want to work in epistemic logic where formula
KA(ϕ) means exactly that A knows ϕ.

A: It is convenient to have the knowledge operator KA implicit when
you work in the space of A.

Q: Explicit knowledge operators allow you to nest them, e.g. KAKB ϕ.

A: Allow or provoke? In the world of DKAL, A never knows what B
knows, though A may know what B said.

A principal’s vocabulary is the union of his substrate and infostrate vocabu-
laries.

Substrate Vocabulary Recall that a principal’s substrate is a many-typed
structure of sets (interpretations of type symbols) and partial functions (inter-
pretations of function symbols). We assume that the number of these symbols
is finite. Every function symbol f has a type of the form T1 × . . . × Tj → T0

where j is the arity of f and the Ti are type symbols. Constants are nullary func-
tion symbols. The types of Boolean values, integers and principals are always
present. Recall that relations, e.g. the order relation ≤ on integers, are treated
as Boolean-valued functions.

For every type, there is an infinite supply of variables of that type. We use
numerals and standard arithmetical notation. In addition we use strings for the
names of variables and functions; see Section 3 for our conventions concerning
these strings and for examples of their use.

Infostrate vocabulary Traditionally, relations take values true and false.
Infon relations, which constitute, a principal’s infostrate vocabulary, are similar
except that their values are infons. Their arguments come from the substrate of
the principal. Each infon relation has a particular type for each of its argument
places. So infon relations assign infons to tuples of elements of the appropriate
types.

Atomic infon formulas Prefix or infix notation is used for infon relations.
Here are some examples.

SITE participates in TRIAL
SITE is allocated patients N1 to N2 in TRIAL
asinfon(N1 ≤ N and N ≤ N2)

13



Composite infon formulas These are built from atomic formulas by means of
conjunction ∧, implication→, and two unary connectives p said and p implied
for every term p of type principal. To make complicated implications easier to
read, α→ β can be written as

if
α

then
β

Here’s an example:

if
asinfon(N1 ≤ N and N ≤ N2) and
SITE implied PERSON may read Record(N,TRIAL)

then
Org1 implied PERSON may read Record(N,TRIAL)

Syntactic sugar Implications

(p said ϕ)→ ϕ,
(p implied ϕ)→ ϕ

are abbreviated to
p is trusted on saying ϕ,
p is trusted on implying ϕ.

In fact, these abbreviations are so common that they are often further abbre-
viated to p tdonS ϕ and p tdonI ϕ respectively. We note that a similar
abbreviation, A controls s for (A says s) → s, was used in [1, page 7].

5.3 Logics and Theories

In [13], two of us introduced and investigated propositional infon logics, in par-
ticular primal infon logic where the derivation problem, whether a given formula
ϕ follows from a given set Γ of formulas, is solvable in linear time. Primal in-
fon logic with (universally quantified) variables is obtained from propositional
primal logic by adding the substitution rule. The derivation problem for primal
logic with variables remains feasible (though not linear time) [6,7]. Furthermore,
security policies involve arithmetic, etc. Instead of pure infon logic, we should
be working with infon theories.

Separation of concerns The previous versions of DKAL had a built-in version
of infon logic. Here we work with infon theories, and — to separate concerns —
we view infon theory as a parameter. In the rest of the article:

– infon logic is primal logic with variables or some extension of it that is a
sublogic of classical first-order logic, and

14



– infon theory includes the theory of arithmetic in the infon logic.

Infon theory is to be given by some axioms. There is considerable flexibility in
the choice of axioms. In particular there is no need to minimize the system of ax-
ioms. In fact, for our purposes a rich system of axioms may be more appropriate.
It is, however, necessary that the axioms be efficiently recognizable.

When we say that a set Γ of infon formulas entails an infon formula ϕ we
mean that Γ entails ϕ in the fixed infon theory.

From time to time, a DKAL principal may need to compose a proof in the
infon theory. In difficult cases he may use an automated or interactive prover
to compose proofs. In any case, the methods used for proof composition, even if
formally specified, belong to a level of abstraction lower than what we consider
in this paper.

Remark 1. The current implementation of DKAL [9] employs primal infon logic
with variables and uses the SQL database engine. The infon theory uses ground
arithmetical facts that are checked by means of the SQL engine.

Remark 2. In this and the previous subsections, we speak about infon theory
used by principals. A more powerful theory may be needed for the analysis of
security policies and their interaction.

5.4 Justifications

1. If ϕ is an infon formula in one of the following two forms
1a. A said α,
1b. β → A implied α,
then a cryptographic signature of principal A under (a strong hash of) the
whole formula ϕ, accompanied with the canonic name of A, is a justification
for ϕ. The signature is specific for (the hash of) ϕ; thus changing the formula
would (with overwhelming probability) make the signature invalid10.

2. Let ϕ be an arbitrary infon formula. A justification for ϕ is a derivation of
ϕ in the fixed infon theory from hypotheses of the form 1a or 1b together
with justifications by signatures for all the hypotheses11.

Q: You mention a cryptographic signature under a formula ϕ. Do you
mean that ϕ needs to be encrypted?

A: Not necessarily. This depends on the purpose and may vary even
within one application.

Q: In connection with case 1b, what if A wants β to be checked by a
particular principal B, essentially delegating the matter to B?

10 In case 1a, our notion of justification is similar to Binder’s notion of certificate [8].
11 Proof-carrying communications, in higher-order logic, were used by Appel and Felten

[3]. In contrast, the current implementation [9] of DKAL uses logic that is decidable
and in fact feasible.

15



A: He may replace β with (B said β) or with (B implied β) depend-
ing on whether he intends to allow B to delegate the matter further.

Q: What about asinfon formulas? How can they be justified?

A: Only by a derivation in the infon theory, as in item 2 above. Some
of them may happen to be axioms.

Q: So many asinfon formulas may not be justifiable.

A: That’s right. First, the substrates of different principles may disagree.
Second, even in the case when only public relations are involved, where
all principals agree, things might change over time. But the infon theory
should be global (for all principals) and permanent (for all time).

6 Infostrate

The infostrate of a principal A is determined by the substrate and these:

– Knowledge assertions,
– Communication rules,
– Filters.

6.1 Knowledge

At each state, each principal has a finite set of knowledge assertions, which are
infon formulas in the vocabulary of the principal enriched by his roster. This
set is composed of original knowledge assertions that the principal always had
and other knowledge assertions that he acquired from communications. In our
example, Site1 has an original knowledge assertion

Org(TRIAL) is trusted on saying SITE participates in TRIAL

and he learns

Org1 said Site1 participates in Trial1

A knowledge assertion of a principal may have free variables. Its instances in
a particular state are obtained by replacing variables with the principal’s roster
elements of the corresponding types.

Knowledge assertions constitute one source of the principal’s knowledge. An-
other source is his substrate. If the principal successfully evaluates to true a
ground substrate term t of Boolean type then he learns asinfon(t). Further, the
principal may use the fixed infon theory to derive additional infon formulas from
his knowledge assertions and substrate facts. We shall say that a principal knows
an infon formula ϕ at a state S if there is a feasible derivation of ϕ in the infon
theory from that principal’s knowledge assertions and substrate information.

16



Q: This “feasible” is vague. If it takes the principal two minutes to
deduce ϕ, fine. But if ϕ happens to be P=NP and if it happens to be
deducible with a few years’ effort, must he deduce that?

A: Well, there may be situations where even two minutes is too long
a time. But your point is well taken. The decision how much work and
time to put into deducing ϕ depends on the scenario at hand.

6.2 Communication

The infostrate of a principal A may (and typically does) contain communication
rules. These rules may cause A to send communications to various principals. We
presume in this paper that communications automatically come with identifica-
tions of the senders. The recipients filter their communications; a communication
may be accepted or rejected.

Communications of one principal to another may or may not be accompanied
by a justification of their contents. In the future, a communication accompanied
by a justification of its content will be called justified. As we already said in the
introduction, both kinds of communications are important but, in this paper,
we restrict attention to justified communication.

The work in this paper is independent of the mechanisms by which principals
communicate. The mechanisms could include message passing, shared memory,
bulletin boards, etc. In particular, even when one principal sends a communi-
cation to just one other principal, we do not presuppose that it is necessarily
message passing.

The communication rules of any principal A have two possible forms:

(Send)
if π
then send [justified] to r

ϕ

and

(Post)
if π
then post [justified] to x

ϕ

Here π and ϕ are infon formulas, r is a principal term, and x is a variable of type
principal not occurring in π. We call π the premise; both r and x are recipient
terms; and ϕ is the content of the rule. Further, justified is optional.

Q: What’s the difference between sending and posting, apart from the
restriction, in posting, that x is a variable not in the premise?

A: Intuitively, posting does not require the sender to know all the re-
cipients. Formally, the difference will become clear when we talk about
how to instantiate variables.

17



The variables that occur in a communication rule split into two categories.
The variables that occur in the premise or in the recipient term are intended to
be instantiated by principal A, the sender, before he sends anything out. In the
case of (Send), all these variables are instantiated by elements of A’s roster. In
the case of (Post), the variables in the premise π are instantiated by elements
of A’s roster but the recipient variable x is thought of as instantiated by all
elements of its type in A’s substrate.

Q: Now the difference is clear, but what is this “thought of”? That seems
like an evasion. I think I see the problems that you try to evade. One is
that there could be a huge number of elements of the type of x. Another
is that, even if there are only a few elements, A may not know them all.

A: You are right. These are the problems. We don’t intend for A to
actually send individual messages to all these recipients, whether there
are many of them or few. Rather, he should post the content ϕ where
the intended recipients can read it or download it, etc.

For simplicity, in the rest of the paper, we consider only (Send) rules, always
justified. Our example in Section 7 will have only such rules.

The variables of a communication rule that occur only in the content are
called verbatim variables. They are sent out uninstantiated, verbatim, and will
be instantiated by the receivers using elements of their rosters.

Q: Obviously a variable v of type T is instantiated by elements of type
T . Suppose that v is one of those verbatim variables. Clearly the sender
has the type T ; otherwise he would never have such a variable. What
about the receiver? He also needs T in order to instantiate v properly.
How does the sender know that the receiver has T?

A: The language does not guarantee that the sender knows this. If the
receiver does not have T , the communication is unintelligible to him and
therefore rejected12.

Q: OK, let us assume that the sender and receiver both have type T
in their vocabularies. Should it be the same type in the semantic sense;
that is, should T have the same elements in both substrates?

A: Not necessarily. Consider the type Secretary. The secretaries on the
sender side and those on the receiver side may be different but the sender
may consciously have in mind the receiver’s secretaries.

Q: What if the receiver has type T but it is not at all the type that the
sender had in mind? For example, being the government, the receiver
thinks that “secretary” means a member of the president’s cabinet.

12 The mechanism of rejection is filters; see below. A filter admits only those commu-
nications that match some pattern. An unintelligible communication will not match
any pattern.

18



A: Too bad. This communication will be misunderstood.
Q: OK, this clarifies the situation for types. Something else bothers me.
Suppose the content contains f(v) where v is a verbatim variable or,
more generally, f(t) where t contains a verbatim variable. The sender
can’t evaluate this, so the recipient must. How does he interpret the
symbol f?
A: The situation for such function symbols is the same as for types of
verbatim variables. The recipient must have f in his vocabulary, with
the same type as the sender’s f ; otherwise the communication is unin-
telligible. And if the recipient’s interpretation of f is seriously different
from what the sender intended, then the communication may be misun-
derstood.

In a state S of principal A, the communication rule (Send) may result in
a number of communications to various principals. A sender substitution ζ for
(Send) instantiates the variables in the premise π and the recipient term r (that
is, all non-verbatim variables) with canonic names from the current roster. If
A can evaluate the infon formula ζ(π) and knows the resulting infon, and if
he can evaluate ζ(r), then he applies ζ to the content ϕ and evaluates the
ground terms in the resulting infon formula. If the evaluation fails because of an
undefined term, that instance of (Send) produces no communication. Suppose
the evaluation succeeds, and let’s call the resulting infon formula ζ(ϕ). Thus
ζ(ϕ) is obtained from ϕ by substitution followed by evaluation. If A is able
to construct a justification for ζ(ϕ) then communication ζ(ϕ), complete with a
justification, is sent to principal ζ(r).

Q: This “able to construct” sounds vague to me.
A: You are right. It is vague in the same sense as “feasible”. The effort
devoted to constructing justifications would depend on the scenario at
hand.
Q: OK. But now what if the sender has two (or more) justifications for
the content ϕ? Which one does he send?
A: DKAL imposes no restrictions on the choice of justification.

For some applications, we would want to allow, in the content ϕ of (Send),
verbatim function symbols. These would not be evaluated during the computa-
tion of ζ(ϕ), even if all their arguments have been successfully evaluated. Rather
they would be sent as is, to be evaluated later. For example, an executive A
tells another executive B: “Have your secretary call my secretary to set up an
appointment”. The first occurrence of “secretary” needs to be verbatim if A
does not know B’s secretary. The second occurrence of “secretary” should not
be verbatim. Verbatim function symbols are introduced in [14]. We will not use
them in our example in Section 7. Note, however, that our communication rules
do contain occurrences of function symbols that the sender will not evaluate,
namely ones whose arguments cannot be evaluated because they involve verba-
tim variables.

19



Speeches A send rule of principal A of the form

if π
then send [justified] to r

A said ψ

may be abbreviated to

if π
then say [justified] to r

ψ

6.3 Filters

A principal filters his incoming communications. He may have several filters,
and a communication will be accepted provided at least one of the filters admits
it. In the world of Evidential DKAL where all communications are justified, a
filter has the form

(Filt)
if ρ
then accept if justified from s

Ψ

Here ρ is an infon formula, called the premise, and s is a principal term, called
the sender term. Further, Ψ is a pattern, which is defined as follows. An atomic
pattern is an atomic infon formula or an infon variable. Patterns are either atomic
patterns or built from them exactly as composite infon formulas are built from
atomic infon formulas, that is, by means of conjunction, implication, p said,
and p implied.

The part “if justified” in (Filt) means that the communication must be ac-
companied by a justification which the recipient should verify before accepting
the communication.

Suppose principal B receives a communication ϕ from another principal A.
First, B adds (the canonic name of) A to his roster, unless it is already there. (B
may want to remove A from the roster later on, but he should have A on the roster
at least while processing ϕ.) Second, for each of his filters F , the principal B tries
instantiating the variables in the premise ρ and the sender term s, using elements
of his roster. He wants an instantiation η such that he knows η(ρ) and such that
η(s) evaluates to A. For each instantiation η that succeeds in this sense, he checks
whether the communication ϕ matches the pattern η(Ψ) in the following sense.
He can get ϕ from η(Ψ) by replacing infon variables with infon formulas and
replacing the remaining variables with terms of the same types. Third, for each
instantiation η that has succeeded so far, B verifies the justification of ϕ. If the
verification also succeeds, then he adds ϕ to his knowledge assertions, and he
adds to his roster all the canonic names that he can obtain by evaluating ground
terms that occur in ϕ.

20



Q: Is verifying a justification also a vague notion?

A: No, the recipient must really verify the justification. Notice though
that the work required is bounded in terms of the size of the communi-
cation ϕ plus the justification.

Q: Right. In fact, it seems to be bounded just in terms of the justification.

A: Not quite. Recall that the justification could be a signature on a hash
of ϕ. Verifying it would require computing the hash of ϕ from ϕ.

Q: You showed how filters look in Evidential DKAL. I guess that in
general not-necessarily-evidential DKAL they look the same except that
if justified may be omitted and then the recipient does not have to
check a justification.

A: Not quite. There is an additional difference. The content ϕ does not
automatically become a knowledge assertion of the recipient. The filter
may give other ways to accept a communication. For example, the 911
operators should not automatically believe every anonymous report they
get, but they should not completely ignore a report either.

In the present paper, for brevity, we make the following simplifying assump-
tion. Each principal has exactly one filter, namely

if asinfon(true)
then accept if justified from x

Ψ

where x is a principal variable and Ψ is an infon variable. In other words, all
communications in the vocabulary of the recipient are accepted subject to the
verification of justification.

7 Clinical Trial Scenario: Policies

The clinical trial scenario was described informally in Section 2. Here we formu-
late the relevant parts of the policies of Org1, Site1, Phys1 and KeyManager in
DKAL. For brevity, we do not declare the types of the variables, leaving it to
the reader’s common sense to interpret variables correctly. We also remind the
reader that we use “record” to mean the part of a patient’s medical record that
should be accessible to his trial physician; Record(N, TRIAL) refers to the record,
in this sense, of the patient with ID number N.

21



7.1 Policy of Org1

if
asinfon(Org(TRIAL) = Org1)
asinfon(SiteStatus(SITE,TRIAL) = Unnotified)
asinfon(SitePatients(SITE,TRIAL) = [N1,N2])

then
say justified to SITE

SITE participates in TRIAL
SITE is allocated patients N1 to N2 in TRIAL

send justified to SITE
if

asinfon(N1 ≤ N and N ≤ N2)
SITE implied PERSON may read Record(N,TRIAL)

then
Org1 implied PERSON may read Record(N,TRIAL)

Q: You surely intend that the sites, chosen by Org1 to participate in
a particular trial, are notified about that just once. But what prevents
Org1 from executing the rule over and over again?

A: Currently the rule has one say and one send commands. To make our
intention explicit, we can add a third command, namely an assignment
that changes the value of SiteStatus(SITE,TRIAL).

Q: Changes it to Notified? Or maybe the new value should be Pending,
which later is changed again to reflect the site’s reaction.

A: That’s the thing. Communication rules may have side effects, in the
form of substrate updates, which detailed policies would specify. That
would involve decisions that are irrelevant to us here. Accordingly, we
omit in this example the explicit updates of the substrate13. Concerning
Org1, we just assume that, for each clinical trial and each site chosen
by Org1 to participate in the trial, the communication rule is executed
exactly once.

Q: Concerning the syntax of the rule, I see that the two keyword pairs
if . . . then are used for two different purposes.

A: Yes, one if starts the premise of the rule, and the corresponding then
starts the body. Another pair is syntactic sugar in an infon formula; it
is used to render an implication in a form that is easier to read. As
long as we’re talking syntax, let’s also clarify another point. When two
or more infon formulas are exhibited, one after the other without con-
nectives between them, we mean the conjunction. The premise above is
the conjunction of three infon formulas. The content of the say is the

13 Related issues are addressed in [4].

22



conjunction of two infon formulas, and the premise of the implication is
the conjunction of another pair infon formulas.

Q: Now let me look into the necessary justifications. Isn’t it true that
all that is needed is two signatures of Org1?

A: Yes. One signature goes with the say justified command, and the
other with the send justified command. In the second case, a signature
suffices because the content has the form α→ Org1 implied β.

7.2 Policy of Site1

Org(TRIAL) is trusted on saying
SITE participates in TRIAL

Org(TRIAL) is trusted on saying
SITE is allocated patients N1 to N2 in TRIAL

if
Site1 participates in TRIAL
Site1 is allocated patients N1 to N2 in TRIAL
asinfon(PhysStatus(PHYS,Site1,TRIAL) = Unnotified)
asinfon(PhysPatients(PHYS,Site1,TRIAL) = [P1,P2])
asinfon(N1 ≤ P1 and P2 ≤ N2)

then
say justified to PHYS

PHYS participates in TRIAL at Site1 as physician
PHYS is allocated patients P1 to P2 in TRIAL at Site1

send justified to PHYS
if asinfon(P1 ≤ N and N ≤ P2)
then Site1 implied PHYS may read Record(N,TRIAL)

send justified to PHYS
if

asinfon(N1 ≤ N and N ≤ N2)
Site1 implied PERSON may read Record(N,TRIAL)

then
Org(TRIAL) implied PERSON may read Record(N,TRIAL)

Q: It is presumed I guess that, for each trial that Site1 participates in,
Site1 chooses appropriate physicians and then notifies them just once.

A: Exactly.

Q: Now again let me look into the three justifications. The first two are
simply Site1’s signatures. What about the third?

A: Here Site1 is simply forwarding, literally, what it received from Org1,
with the original signature of Org1. That’s it.

23



Q: Literally? One discrepancy is that there was a variable SITE in Org1’s
communication rule. I do not see it in the forwarded version.

A: That variable occurred also in the premise of Org1’s rule. So it was
instantiated. The actual communication from Org1 to Site1 has Site1
in its place.

Q: There is another discrepancy. The last line of Site1’s rule has
Org(TRIAL) where Org1’s policy has Org1.

A: The variable TRIAL occurs also in the premise of Site1’s rule, so it
will be instantiated. Let’s suppose that Org1 nominated Site1 to par-
ticipate in Trial1 and assigned to it a range N1 to N2 of patient IDs.
We presume that function Org is public. In particular, Site1 can eval-
uate Org(Trial1) to Org1. Accordingly, it trusts Org1 on saying that
Site1 participates in Trial1 and is allocated the range N1 to N2. So, in
its communication rule, Site1 can instantiate TRIAL to Trial1. Then
Org(TRIAL) that you asked about will be instantiated to Org(Trial1)
and will be evaluated to Org1.

7.3 Policy of Phys1

SITE is trusted on saying
PHYS participates in TRIAL at SITE as physician

SITE is trusted on saying
PHYS is allocated patients P1 to P2 in TRIAL at SITE

KeyManager is trusted on saying
key of Record(N,TRIAL) is K

if
Phys1 participates in TRIAL at SITE as a physician
Phys1 is allocated patients P1 to P2 in TRIAL at SITE
asinfon(P1 ≤ N and N ≤ P2)
asinfon(NeedInfo(N))

then
send justified to KeyManager

Phys1 said Phys1 requests to read Record(N,TRIAL)
Org(TRIAL) implied Phys1 may read Record(N,TRIAL)

Q: I understand that Phys1 sends to KeyManager the conjunction of two
infon formulas. For the first conjunct, you could have used the say com-
mand with the content Phys1 requests to read Record(N,TRIAL).
Wouldn’t that look more natural?

24



A: Maybe, but it would require separating the two conjuncts. If the
implementation then sends them separately, the KeyManager would have
to remember one conjunct until he gets the other.

Q: All right. Now let’s look at the justification. The variables N and
TRIAL are instantiated, say to 10 and Trial1, and of course Org(TRIAL)
then evaluates to Org1. Phys1 needs to justify a conjunction which he
can do by justifying both conjuncts. The first conjunct is easy. It can be
justified by Phys1’s signature. How does he justify the second conjunct?

A: He needs to deduce the second conjunct in the fixed infon theory
from the following infon formulas. First there is Org1’s signed statement

(1) if asinfon(N1 ≤ N and N ≤ N2)
SITE implied PERSON may read Record(N,TRIAL)

then Org1 implied PERSON may read Record(N,TRIAL)

Second there is Site1’s signed statement

(2) if asinfon(P1 ≤ N and N ≤ P2)
then Site1 implied PHYS may read Record(N,TRIAL)

Finally, there are the arithmetical facts (with no variables!)

(3) asinfon(N1 ≤ 10 and 10 ≤ N2)
asinfon(P1 ≤ 10 and 10 ≤ P2)

for which Phys1 can easily supply proofs in the infon theory.

Q: Aren’t N1, N2, P1, P2 variables?

A: They have been instantiated but, by slight abuse of notation, we
continue to use the same symbols.

Q: In order to combine (1)–(3), I guess, Phys1 will need to apply the sub-
stitution rule of infon logic: N becomes 10, SITE becomes Site1, PERSON
and PHYS become Phys1, and TRIAL becomes Trial1.

A: Right. And once that’s done, all that remains is to apply modus
ponens a few times.

7.4 Policy of KeyManager

if
PERSON said PERSON requests to read Record(N,TRIAL)
Org(TRIAL) implied PERSON may read Record(N,TRIAL)
asinfon(Key(Record(N,TRIAL)) = K)

then
say justified to PERSON

key of Record(N,TRIAL) is K

25



Q: Why require that KeyManager’s communication be justified? The
person, say Phys1, gets the key. It is more important that the key is
encrypted.

A: Yes, the key should be encrypted. One can argue that a signature of
KeyManager under the infon is useful. In any case, we agreed to restrict
attention to justified communication in this paper.

Q: It seems artificial that the key manager sends an infon to Phys1
rather than just the key.

A: It makes sense to indicate what the key is for, especially because
Phys1 might have asked for several keys at once, and the key manager
obliged.

8 Future work

It is about time that logic-based authorization graduates from academic labs to
industrial applications. There is a great need for specification-level authorization,
and many organizations, e.g. the technical committees for TSCP [19] and for
XACML [20], understand that. Other potential users of these methods may not
yet even be aware of them. Logic-based authorization should be prepared to meet
the evolving needs of the customers. The languages should be both sufficiently
rich and user-friendly.

We are actively working on a number of extensions of DKAL. Here we men-
tion just three of them.

One pressing issue for DKAL is the need to manage substrates in a high-level
transparent way. Essentially the same issue is discussed in [4]. We intend to use
the abstract state machine (ASM) approach that has been used for some time
at Microsoft [16,18] and elsewhere. We view a principal’s substrate as an ASM
state. The notion of communication rule should be expanded to a notion of rule
that allows, in addition to send and post commands, arbitrary ASM rules to
update the substrate.

Similarly, we need to expand the communication mechanism of DKAL so
that it can be used to modify not only a principal’s knowledge assertions but
also his communication rules and filters (and ASM rules).

And, as we mentioned in the introduction, we also need to bring non-justified
communication into the current framework.

26



References

1. Mart́ın Abadi, Michael Burrows, Butler Lampson, Gordon Plotkin: A Calculus for
Access Control in Distributed Systems. ACM Trans. on Programming Languages
and Systems, 15:4, 706–734 (1993)

2. Alexandra Y. Aikhenvald: Evidentiality. Oxford University Press (2004)
3. Andrew W. Appel, Edward W. Felten: Proof-Carrying Authentication. In: 6th

ACM Conference on Computer and Communications Security, 52–62 (1999)
4. Moritz Y. Becker: Specification and Analysis of Dynamic Authorisation Policies.

In: 22nd IEEE Computer Security Foundations Symposium, 203–217 (2009)
5. Moritz Y. Becker, Cédric Fournet, Andrew D. Gordon: SecPAL: Design and Se-

mantics of a Decentralized Authorization Language. Journal of Computer Security
18:4, 597–643 (2010)

6. Lev Beklemishev, Yuri Gurevich: Infon Logic (tentative title). In preparation
7. Andreas Blass, Yuri Gurevich: Hilbertian Deductive Systems and Horn Formulas

(tentative title). In preparation
8. John DeTreville: Binder, a Logic-Based Security Language. In: IEEE Symposium

on Security and Privacy, 105–113, (2002)
9. DKAL at CodePlex. http://dkal.codeplex.com/, viewed July 6, 2010.

10. Shayne Cox Gad (ed.): Clinical Trials Handbook. Wiley (2009)
11. Yuri Gurevich: Evolving Algebra 1993: Lipari Guide. In: Specification and Valida-

tion Methods, Oxford University Press, 9–36 (1995)
12. Yuri Gurevich, Itay Neeman: DKAL: Distributed-Knowledge Authorization Lan-

guage. In: 21st IEEE Computer Security Foundations Symposium, 149–162 (2008)
13. Yuri Gurevich, Itay Neeman: Logic of Infons: The Propositional Case. ACM Trans.

on Computational Logic, to appear. See http://tocl.acm.org/accepted.html.
14. Yuri Gurevich, Itay Neeman: DKAL 2 — A Simplified and Improved Authorization

Language. Microsoft Research Technical Report MSR-TR-2009-11 (2009)
15. Yuri Gurevich, Arnab Roy: Operational Semantics for DKAL: Application and

Analysis. In: 6th International Conference on Trust, Privacy and Security in Digital
Business, Springer LNCS 5695, 149–158 (2009)

16. Yuri Gurevich, Benjamin Rossman, Wolfram Schulte: Semantic Essence of AsmL.
Theoretical Computer Science 343:3, 370–412 (2005)

17. Butler Lampson, Mart́ın Abadi, Michael Burrows, Edward P. Wobber: Authenti-
cation in Distributed Systems: Theory and Practice. ACM Trans. on Computer
Systems 10:4, 265–310 (1992)

18. Spec Explorer. Development http://msdn.microsoft.com/en-us/devlabs/

ee692301.aspx and research http://research.microsoft.com/en-us/projects/

specexplorer/, viewed July 6, 2010
19. TSCP, Transglobal Secure Collaboration Program,

http://tscp.org/, viewed July 6, 2010
20. XACML, Extensible Access Control Markup Language,

http://xml.coverpages.org/xacml.html, viewed July 6, 2010

27

http://dkal.codeplex.com/
http://tocl.acm.org/accepted.html
http://msdn.microsoft.com/en-us/devlabs/ee692301.aspx
http://msdn.microsoft.com/en-us/devlabs/ee692301.aspx
http://research.microsoft.com/en-us/projects/specexplorer/
http://research.microsoft.com/en-us/projects/specexplorer/
http://tscp.org/
http://xml.coverpages.org/xacml.html

	Evidential Authorization
	Introduction
	Clinical Trials Scenario, Informal Description 
	Background
	Policies

	The World of One DKAL Principal
	Substrate Functions and Infon Relations
	Notational Conventions
	Disclaimer

	Substrate
	Canonic Names, and Term Evaluation
	Roster

	Logic
	Infons
	Infons as formulas
	Logics and Theories
	Justifications

	Infostrate
	Knowledge
	Communication
	Filters

	Clinical Trial Scenario: Policies
	Policy of Org1
	Policy of Site1
	Policy of Phys1
	Policy of KeyManager

	Future work


