
Operational Semantics for DKAL:

Application and Analysis

Yuri Gurevich1 and Arnab Roy2,�

1 Microsoft Research Redmond
gurevich@microsoft.com

2 Stanford University
arnab@cs.stanford.edu

Abstract. DKAL is a new expressive high-level authorization language.
It has been successfully tried at Microsoft which led to further
improvements of the language itself. One improvement is the separa-
tion of concerns between static core policies and dynamic workflow; im-
portant safety properties can be proved from the core policies alone,
independently from the workflow. Another improvement is true decen-
tralization; different principals live in different worlds exchanging in-
formation by means of communication and filtering assertions. We also
present some complexity results.

1 Introduction

Preamble. Distributed Knowledge Authorization Language (DKAL) is a new
high-level authorization language for distributed systems [6,7]; it is based on
liberal datalog [6,3] and is considerably more expressive than other high-level
authorization languages in the literature. The first practical application of DKAL
was to the problem of automating source asset management (SAM) at Microsoft.
We partook an active role in that endeavor. The automation problem involves
more than DKAL and is still work in progress. While the trial has been successful,
the application provoked improvements of DKAL that became a part of a larger
revision of DKAL [7]. In this paper we present some lessons learned during
the first practical application of DKAL and the improvements that we made
to DKAL. In addition, we present some related theoretical results. We presume
some familiarity with [6]; otherwise this paper is self-contained.

Source asset management (SAM). Large software companies have many part-
ners, contractors and subcontractors who need to access the sources of the various
software products produced by the company. The ever-growing number of such
requests necessitates clear access control policies regulating who is entitled to use
what sources, where, for how long, and so on. The company also needs processes
in place to efficiently implement those policies. DKAL enables formulating rich
and sophisticated policies that result in simpler audit and feasible automation.
� The work was done in the summer of 2008 when the second author was an intern at

Microsoft Research.

S. Fischer-Hübner et al. (Eds.): TrustBus 2009, LNCS 5695, pp. 149–158, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

150 Y. Gurevich and A. Roy

Lessons. The most important lesson that we learned working on SAM was a sep-
aration of concerns: static core policies on one side, and dynamic workflow on the
other side. The workflow includes the procedural aspects of access decisions; the
idea is to ensure the flexibility of the the way access decisions are made. It may be
quite complex, but the policies should be succinct and easy to understand. Fur-
thermore, the policies should guarantee important safety properties of the access
decision process for any workflow. Various compliance requirements and regula-
tions typically can be formulated as safety properties. It is desirable that the poli-
cies alone guarantee the compliance with those requirements and regulations thus
eliminating the need to understand large amounts of procedural code.

The other important lesson was that in the case of automated access control
regulated by clear access control policies, it is crucial for auditing purposes to
properly log all human judgments. No set of policies and processes makes in-
dustrial access control deterministic. The inherent non-determinism is resolved
by human judgments in making and delegating access decision. Logging these
judgments is necessary for auditing purposes as it allows the auditor to under-
stand who made what decisions and whether they had the right to do so (either
originally or by delegation).

Operational semantics. As a result of the lessons learned, we improved the op-
erational semantics of DKAL achieving true decentralization. In SecPAL [2],
the precursor of DKAL, principals are distributed but their sayings are collected
and processed together. In DKAL 1 [6], principals compute their own knowledge,
yet some vestiges of a centralized approach remain, e.g. the global state. Now
different principals live in different worlds exchanging information by means of
communication and filtering assertions. Information exchange is allowed to be
flexible, separating policy and workflow. Additionally, logging the right informa-
tion is a natural byproduct of the way operational semantics is defined.

Complexity. We explored two communication models for defining workflows and
proved that deciding reachability questions is possible in polynomial time in
certain cases whereas deciding invariants is coNP-complete.

2 Related Work

Several languages have been developed in recent years to express authorization
policies. The late genealogy of DKAL consists primarily of Binder, Delegation
Logic and SecPAL. Binder [5] builds directly on Datalog, extending it with an
import/export construct says that connects Datalog policies of different prin-
cipals and makes the issuer of an imported assertion explicit. Delegation Logic
[9,10] does not have explicit issuers for all assertions but it has constructs specific
to authorization including ones for delegation, representation and thresholds.

SecPAL [2] has both explicit issuers and specific authorization constructs de-
signed with distributed systems in mind. The number of constructs is deliberately

Operational Semantics for DKAL: Application and Analysis 151

kept low, but the language is expressive and captures numerous standard autho-
rization scenarios. One important construct is can say: if A says B can say foo and
if B says foo then A says foo. The can-say construct can be nested. The semantics
is defined by means of a few deduction rules but, for execution purposes, SecPAL
reduces to safe Constraint Datalog. Nesting of the can-say construct gives rise to
relations whose arity depends on the nesting depth.

DKAL [6] extends SecPAL in many directions as far as expressivity is con-
cerned. But it is quite different and builds on Liberal Datalog [6,3]. In particular
DKAL allows one to freely use functions; as a result, principals can quote other
principals. Contrary to SecPAL, communication in DKAL is targeted. Targeted
communication plugs an information leak in SecPAL [6, §4] and improves the lia-
bility protection. The additional expressivity is achieved within the same bounds
of computational complexity as that of SecPAL.

The main novelty of this paper is that we take workflow into account and deal
explicitly with the runtime evolution of policies. In this connection we extend
DKAL with the from construct. In [6], the sender directs communication to
particular receivers but the receivers are passive. The from construct allows the
receivers to filter incoming information. A limited policy evolution is possible in
SecPAL: policy statements can be revoked but revocation is governed by static
rules.

There has been work on the analysis of dynamic evolution of authorization
policies in the Trust Management framework [11]. The approach there has been
to specify statically what kind of policy rules can be added or removed. They
analyzed reachability and invariant checking. We do that too in our framework.
The richness of DKAL compared to the simpler TM language makes these ques-
tions even more interesting.

Modeling access control policies has been a scientifically very fruitful area
with a considerable amount of literature, [1,4] to cite two. Since we focus on
operational semantics in this paper, we skip a detailed discussion of the literature
on policy modeling itself. Interested readers are referred to [6].

3 Operational Semantics

We refine the computation mechanism of DKAL, making explicit the transaction
of information that was only partially explicit in [6]. Also we model situations
where principals may listen only to information that they want to listen to by
introducing a from construct.

We use the following form of DKAL’s TrustApplication rule:

x ≤ (p said x + p tdon x)

Here tdon alludes to “trusted on.” (For experts on DKAL: we deprecate pred-
icate knows0 and function said0, and we rename tdon0 and tdon to tdon and
tdon∗ respectively.)

152 Y. Gurevich and A. Roy

3.1 Terminology

Every principal has an immutable, or at least stable, core policy and a dynamic
policy where it can assert communication statements. We use the following no-
tation:

Πp Core policy of p.
Δp Dynamic policy of p.
Kp {x : Πp ∪Δp � x, no free variables in x}, Kp is the knowledge of p.

3.2 Communication Rules

The main rule is COM. In simple form it says that if a principal A says an infon
x to a principal B and if B is willing to accept x then x gets transmitted and
B learns that A said x. In general, the rule is more complicated and involves a
substitution η such that ηx is ground.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A to q : x← x1, x2, · · · , xm, δ) ∈ ΠA ∪ΔA

(B from p : y) ∈ ΠB ∪ΔB

{ηx1, ηx2, · · · , ηxm} ⊆ KA, SubstrateA � ηδ

ηp = A, ηq = B, ηx = ηy, no free variables in ηx

ΔB + = A said ηx
(COM)

The last line means that ΔB is augmented with infon A said ηx. In practical
implementations, any such communication resulting from this rule will be logged.

COM can be generalized to express common scenarios more succinctly. One
such scenario is that if a principal B accepts an infon x, then it accepts infons
of the form

z1 tdon z2 tdon . . . zk tdon x.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(A to q : z1 tdon z2 tdon . . . zk tdon x

← x1, x2, · · · , xm, δ) ∈ ΠA ∪ΔA

(B from p : y) ∈ ΠB ∪ΔB

{ηx1, ηx2, · · · , ηxm} ⊆ KA, SubstrateA � ηδ

ηp = A, ηq = B, ηx = ηy, no free variables in ηx and ηzi’s
ΔB + = A said ηz1 tdon ηz2 tdon · · · ηzk tdon ηx

(TCOM)

4 Example

Alice wants to download an article from the Chux (an allusion to Chuck’s) store.
Publishing house Best owns the copyright and delegates downloading permission
to Chux. Chux has the policy that anybody meeting certain approval criteria
can download the article. All this gives rise to the following core policies.

Operational Semantics for DKAL: Application and Analysis 153

Πbest : best to p : chux tdon p canDownload article
Πchux : chux to q : q canDownload article← approve(q, article)
Πalice : alice : best tdon∗ alice canDownload article

Alice starts the process by issuing a dynamic from assertion.

alice asserts from r : alice canDownload article. (1)

Assuming the relation approve(alice, article) is true, we have this evolution:

By (1), Δalice + = alice from r : alice canDownload article.
(2)

By (2), Πbest, TCOM Δalice + = best said chux tdon

alice canDownload article. (3)
By (2), COM Δalice + = chux said alice canDownload article. (4)

By (3, 4), Πalice Πalice ∪Δalice � alice knows

alice canDownload article. (5)

We now add more details to the previous example. Chux lets a customer down-
load an article if she authorizes the right amount of money for payment and has
a perfect payrate. Chux trusts his accountant ac.Chux on customer’s payrate.

Πchux : chux to a : a canDownload s← a authorized $k to chux for s,

a hasPayRate Perfect, price(s) = k.

chux : accounts.Chux tdon a hasPayRate e.

chux : a tdon a authorized $k to chux for s.

chux from a : a authorized $k to chux for s.

Πac.Chux : ac.Chux to chux : a hasPayRate e← a hasPayRate e.

The last assertion is not a tautology. If accounts.chux knows that a has PayRate
e then it says that to Chux.

Alice starts by authorizing payment to Chux for the article and then asks
for the article. Chux then asks whether Alice has perfect payrate. The dynamic
assertions are as follows:

alice asserts to chux : alice authorized $40 to chux for article.
alice asserts from r : alice canDownload article.
chux asserts from a : alice hasPayRate e.

If the price of the article is $40 and Alice has a perfect payrate, we can again
infer using the operational semantics that Alice knows she can download the
article.

154 Y. Gurevich and A. Roy

5 Modeling Source Asset Management

In this section we explore the application of DKAL to a practical problem in
large software companies, namely Source Asset Management (SAM). This en-
compasses formulating a policy and processes for making code access decisions.

A Project Manager in a large software company A wants a codeset to be ac-
cessed by staff at another company. In A, the codeset is owned by an Information
Asset Owner (IAO) who usually delegates such access decisions to a Source Rep.
The access decision takes into account the codeset, the company to access the
codeset, the type of permission — read/write or read-only.

In our DKAL model, authorizations are managed by Authorization Managers
(AMs) of the respective companies. AMs are automated tools modeled as prin-
cipals. As far as code authorization is concerned, the AM of the company is (or
represents) the company itself. The Project Manager, IAO and Source Rep are
also modeled as principals. The policy of the authorization manager A-AM of A
may be as follows:

ΠA-AM : p tdon q canGet(codeset, parameters)← assetOwner(p, codeset).
p tdon q tdon r canGet(codeset, parameters)←

p tdon r canGet(codeset, parameters), p is the manager of q.

p tdon q canAccess(code, parameters)←
p is a Project Manager, r canGet(codeset, parameters),
r is the AM of q, code is in codeset.

p tdon q tdon r canAccess(code, parameters)←
p tdon q canAccess(code, parameters).

The canGet function specifies access permission to a set of source code files,
whereas the canAccess function specifies access permission to a particular source
code file.

Consider a scenario where A wants to allow a vendor B an access to a codeset,
and where B-AM has the policy

ΠB-AM : A-AM tdon B-AM canGet(codeset, parameters).
A-AM tdon q canAccess(code, parameters).

Suppose that Alan, Alfred, Andrew, Anthony and Alice work for A, and let Alan
� Alfred � Andrew � Anthony where p � q means p is the manager of q. The
role of Alice in the hierarchy will not matter. Suppose further that Alan is the
IAO of drivercodes, a codeset that is to be given access to by B. A simplified
workflow for the access decision may be as follows:

Access decision starts; Anthony goes to A-AM to request that B be given
access to drivercodes.

A-AM asserts from p : B-AM canGet(drivercodes, params1).

Operational Semantics for DKAL: Application and Analysis 155

Decision is escalated to Andrew, and then to Alfred.
Alfred asserts to A-AM : B-AM canGet(drivercodes, params1).
Alan asserts to A-AM : Alfred tdon B-AM canGet(drivercodes, params1).

A-AM communicates decision to B-AM.
A-AM asserts to B-AM : B-AM canGet(drivercodes, params1).

A developer Bruce in B needs a portion of drivercodes called gfx. Policy of Bruce
is as follows:

Πbruce : B-AM tdon Bruce canAccess(code, parameters).

A typical workflow to acquire this code would be as follows:

Bruce asks for access to the code.
Bruce asserts from p : Bruce canAccess(gfx, params1).

In the workflow, this goes to B-AM. B-AM forwards the query along.
B-AM asserts from p : Bruce canAccess(gfx, params1).

In the workflow, query goes to A-AM, which again forwards the query.
A-AM asserts from p : Bruce canAccess(gfx, params1).

The workflow “chooses” who to ask about the query. It happens to be
Alice. She decides to grant the code access to Bruce.

Alice asserts to A-AM : Bruce canAccess(gfx, params1).
Anthony confirms that Alice has the authority to grant access.

Anthony asserts to A-AM : Alice tdon Bruce canAccess(gfx, params1).
A-AM infers that Bruce can access the code and informs B-AM accordingly.

A-AM asserts to B-AM : Bruce canAccess(gfx, params1).
B-AM trusts A-AM on such statements and concludes that Bruce can
access the code. B-AM communicates the decision to Bruce.

B-AM asserts to Bruce : Bruce canAccess(gfx, params1).
Bruce concludes that he can access the code.

As you can imagine, the workflow can proceed in myriad possible ways. Yet, the
core policies of A-AM, B-AM and Bruce lets us state the following theorem,
which holds independent of the workflow.

Theorem 1 (Safety of SAM Policy)

1. If B-AM knows B-AM canGet(codeset, parameters)
then B-AM knows A-AM said B-AM canGet(codeset, parameters)

2. If Bruce knows Bruce canAccess(code, parameters)
then Bruce knows B-AM said Bruce canAccess(code, parameters)

Proving invariant relations of this nature is hard in general, as we will find out
in the next section.

156 Y. Gurevich and A. Roy

6 Complexity Analysis of Safety Properties

6.1 Unrestricted Communication in Restricted DKAL

In this subsection we consider a restricted, yet useful fragment DKAL− of DKAL
which is DKAL without variables, without +, canActAs, canSpeakAs, exists,
tdon∗ and without substrate constraints in the rules. Note that attributes allow
us to deal with roles even in the absence of canActAs, canSpeakAs. As opposed
to canActAs and canSpeakAs, attributes take parameters. In the restricted frag-
ment, we have three forms of infons. Firstly, there are primitive infons of the
form Attribute(a1, . . . , ar) where elements ai are regular. Secondly, we have said
infons of the form p said x. Thirdly, we have tdon infons of the form p tdon x.

The communication is unrestricted in the following sense. We are interested in
the consequences of the core policy of a given principal, say A, without restricting
information that A can learn from other principals.

To simplify exposition, we let ΣA be the set of said infons derived by the
COM rule from ΔA and communications to A by other principal. For example,
if (B to A : x) ∈ ΔA and (A from B : x) ∈ ΔB then (B said x) ∈ ΣA.
From the perspective of knowledge, it is sufficient to work with ΣA, since the
from and to statements by themselves do not add any knowledge for A; it is
only when we combine corresponding from and to statements by the COM rule
that additional knowledge is derived.

One interesting property is the reachability relation which is defined as follows:
an infon I is reachable from a core policy ΠA if there exists a set ΣA such that
ΠA ∪ΣA � A knows I.

Theorem 2 (Reachability)
The reachability relation for DKAL− is polynomial time computable.

Proof. Without loss of generality, we may assume that initially ΣA is empty. We
transform the total policy ΠA ∪ΣA of A in ways that preserve the reachability
status of the given infon I.

Remove Some Said infons from Core Policy

1. Remove any rule (p said x) ← x1, . . . , xk from ΠA and add the assertion
(p said x) to ΣA.

2. If an infon p said x occurs in the body of a rule R in ΠA, remove the infon
from the body of R and and add the assertion (p said x) to ΣA.

The new policy Π1
A ∪ Σ1

A has the following property. In any core rule y0 ←
y1, . . . , ym, every infon yi is either primitive or a tdon infon. Obviously, ΠA∪Σ1

A �
A knows I if and only if Π1

A ∪Σ1
A � A knows I.

Augment tdon Rules. For any core rule p1 tdon p2 tdon . . . tdon pj tdon x
← x1, . . . , xk where x is primitive or a said infon, do the following. Add core
rules

Operational Semantics for DKAL: Application and Analysis 157

p2 tdon p3 tdon . . . pj tdon x← p1 tdon p2 tdon . . . pj tdon x

p3 tdon . . . pj tdon x← p2 tdon p3 tdon . . . pj tdon x

. . .

pj tdon x← pj−1 tdon pj tdon x

x← pj tdon x

Also add the following assertions to ΣA:

p1 said p2 tdon . . . pj tdon x

p2 said p3 tdon . . . pj tdon x

. . .

pj−1 said pj tdon x

pj said x

This way we obtain Π2
A ∪Σ2

A. Observe that ΠA ∪ Σ2
A � A knows I if and only

if Π2
A ∪Σ2

A � A knows I.

Any said infon p said x is reachable from any ΠA with a witness ΣA asserting
(A from p : x) and Σp asserting (p to A : x). So we may assume that I is
primitive or a tdon infon. Recall that the DKAL derivability relation is poly-
nomial time. Thus it suffices to prove that I is reachable from ΠA if and only
if Π2

A ∪ Σ2
A � A knows I. The if part is obvious. It remains to prove the only

if part.
We claim that A cannot derive a new primitive or tdon infon as a result of

learning any additional information, that is as a result of extending Σ2
A with

any additional assertion R of said infon p said x (after using the COM rule
with corresponding from and to assertions). Indeed, there are no said infons
in the bodies of the rules in Π2

A ∪ Σ2
A. So adding R triggers no rule. Further,

if Π2
A ∪ Σ2

A � p tdon x (x can be an infon of any type) then, by the second
transformation above, Π2

A ∪ Σ2
A � x. So adding R does not help either. But

these are the only ways that a said assertion can be helpful.

We say that (A knows I1) −→ (A knows I2) is an invariant for a core policy
ΠA if ΠA ∪ ΣA � A knows I1 implies ΠA ∪ ΣA � A knows I2 for any set ΣA.
This gives rise to a binary invariant relation Inv(I1, I2) for DKAL− .

Theorem 3 (Invariant Checking)
Computing the invariant relation for DKAL− is coNP-complete.

The proof is in [8].

6.2 Restricted Communication in Unrestricted DKAL

In this subsection we analyze the complexity of deciding classes of safety prop-
erties for unrestricted DKAL. The core policy does not have any from rules.

158 Y. Gurevich and A. Roy

The workflow interacts with the DKAL inference machine through from asser-
tions only. The content of from assertions is unrestricted within the bounds of
syntactic well-formedness.

Since the to assertions can only be derived from the core policy, we need to
look at the union of the policies of all the principals

⋃
α Πα in order to analyze

reachability and invariant checking. We assume that the number of variables in
each rule in each policy is fixed a-priori and that α ranges over all principals in
the system. We have the following results which are proved in [8].

Theorem 4 (Reachability Checking)
The reachability relation for DKAL is polynomial time computable.

Theorem 5 (Invariant Checking)
Computing the invariant relation for DKAL is coNP-complete.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Sys-
tems 15(4), 706–734 (1993)

2. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and Semantics of a De-
cetralized Authorization Language. In: 20th IEEE Computer Security Foundations
Symposium (CSF), pp. 3–15 (2007)

3. Blass, A., Gurevich, Y.: Two Forms of One Useful Logic: Existential Fixed Point
Logic and Liberal Datalog. Bulletin of the European Association for Theoretical
Computer Science 95, 164–182 (2008)

4. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
1996 IEEE Symposium on Security and Privacy, pp. 164–173 (1996)

5. DeTreville, J.: Binder, a Logic-Based Security Language. In: IEEE Symposium on
Security and Privacy, pp. 105–113 (2002)

6. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.
In: 21st IEEE Computer Security Foundations Symposium (CSF 2008), pp. 149–162
(2008)

7. Gurevich, Y., Neeman, I.: DKAL 2 — A Simplified and Improved Authorization
Language. Microsoft Research Tech Report MSR-TR-2009-11 (February 2009)

8. Gurevich, Y., Roy, A.: Operational Semantics for DKAL: Application and Analysis.
Microsoft Research Tech Report MSR-TR-2008-184 (December 2008)

9. Li, N.: Delegation Logic: A Logic-Based Approach to Distributed Authorization,
Ph.D. thesis, New York University (September 2000)

10. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation Logic: A Logic-Based Approach
to Distributed Authorization. ACM Trans. on Information and System Security
(TISSEC) 6(1), 128–171 (2003)

11. Li, N., Winsborough, W.H., Mitchell, J.C.: Beyond Proof-of-Compliance: Safety
and Availability Analysis in Trust Management. In: Proceedings of 2003 IEEE
Symposium on Security and Privacy, May 2003, pp. 123–139 (2003)

	Operational Semantics for DKAL: Application and Analysis
	Introduction
	Related Work
	Operational Semantics
	Terminology
	Communication Rules

	Example
	Modeling Source Asset Management
	Complexity Analysis of Safety Properties
	Unrestricted Communication in Restricted DKAL
	Restricted Communication in Unrestricted DKAL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

