
A Note on Nested Words

Andreas Blass∗ Yuri Gurevich†

Abstract

For every regular language of nested words, the underlying strings
form a context-free language, and every context-free language can be
obtained in this way. Nested words and nested-word automata are gen-
eralized to motley words and motley-word automata. Every motley-
word automation is equivalent to a deterministic one. For every reg-
ular language of motley words, the underlying strings form a finite
intersection of context-free languages, and every finite intersection of
context-free languages can be obtained in this way.

1 Introduction

In [1], Rajeev Alur and P. Madhusudan introduced and studied nested words,
nested-word automata and regular languages of nested words. A nested
word is a string of letters endowed with a so-called nested relation. Alur
and Madhusudan prove that every nested-word automaton is equivalent to a
deterministic one. In Section 2, we recall some of their definitions. We quote
from the introduction to [1].

“The motivating application area for our results has been soft-
ware verification. Given a sequential program P with stack-based
control flow, the execution of P is modeled as a nested word with
nesting edges from calls to returns. Specification of the program
is given as a nested word automaton A, and verification corre-
sponds to checking whether every nested word generated by P is

∗Math Dept, University of Michigan, Ann Arbor, MI 48109; ablass@umich.edu
†Microsoft Research, Redmond, WA 98052; gurevich@microsoft.com

1



accepted by A. Nested-word automata can express a variety of
requirements such as stack-inspection properties, pre-post condi-
tions, and interprocedural data-flow properties.”

In Section 3, we show that all context-free properties, and only context-
free properties, can be captured by a nested-word automaton in the following
precise sense. For every regular language of nested words, the underlying
strings form a context-free language, and every context-free language can be
obtained in this way. We continue the quotation from [1].

“If we were to model program executions as words, all of these
properties are non-regular, and hence inexpressible in classical
specification languages based on temporal logics, automata, and
fixpoint calculi (recall that context-free languages cannot be used
as specification languages due to nonclosure under intersection
and undecidability of key decision problems such as language in-
clusion).”

Intersections of context-free languages naturally arise in applications.
Think of multi-threaded programs for example. In Section 4, we general-
ize nested words to motley words: strings with several nested relations. We
introduce motley-word automata and use the nested-word-automaton deter-
minization procedure to show that every motley-word automaton is equiva-
lent to a deterministic one. We show that every finite intersection (that is
the intersections of finitely many) of context-free languages, and only such
intersections, can be captured by a motley-word automaton in the following
precise sense. For every regular (that is accepted by a motley-word automa-
ton) language of motley words, the language of underlying strings is a finite
intersection of context-free languages, and every intersection of context-free
languages can be obtained in this way.

2



2 Preliminaries

To make this note self-contained, we recapitulate here some definitions from
[1].

2.1 Nested words

A nested relation ν over {1, 2, . . . , k} is a binary relation satisfying the fol-
lowing condition: if ν(i, i′) and ν(j, j′) and i ≤ j then either i < i′ < j < j′ or
else i < j < j′ < i′. If ν(i, j) then i is a call position and the call-predecessor
of j, and j is a return position and the return-successor of i.

A nested word over an alphabet Σ is a pair (a1 . . . ak, ν) where each ai ∈ Σ
and ν is a nested relation over {1, 2, . . . , k}. A position i that is neither a
call position nor a return position is an internal position of w.

NW(Σ) is the set of nested Σ-words. A language of nested Σ-words is a
subset of NW(Σ).

2.2 NW automata

An nw automaton A over an alphabet Σ is a quadruple (Q,Qin, δ, Qf ) similar
to a usual nondeterministic automaton with set Q of states, set Qin ⊆ Q of
initial states and set Qf ⊆ Q of final states, except that δ is not a single
transition relation but a triple 〈δc, δi, δr〉 where

• δc ⊆ Q× Σ×Q is the transition relation for call positions,

• δi ⊆ Q× Σ×Q is the transition relation for internal positions, and

• δr ⊆ Q×Q× Σ×Q is the transition relation for return positions.

The automaton A is deterministic if it satisfies the following conditions:

- There is exactly one initial state.

- δc is the relational form of a function from Q×Σ to Q. In other words,
if (p, a, q) and (p, a, q′) belong to δc then q = q′.

- δi is the relational form of a function from Q× Σ to Q.

- δc is the relational form of a function from Q×Q× Σ to Q.

3



A run of A over an nested word (a1 . . . ak, ν) is a sequence q0, q1, . . . , qk of
states such that q0 is an initial state, if i is a call position then (qi−1, ai, qi) ∈
δc, if i is an internal position then (qi−1, ai, qi) ∈ δi, and if i is a return position
with call-predecessor j then (qi−1, qj−1, ai, qi) ∈ δr. The run q0, q1, . . . , qk is
accepting if qk is a final state. A accepts a word w if it has an accepting run
on w. The language L(A) of A is the set of nested words accepted by A.

A language (that is a set) of nested words is regular if there is an nw
automaton A such that L = L(A). Two nw automata A,B are equivalent if
L(A) = L(B). Alur and Madhusudan prove that every nw automaton A is
equivalent to a deterministic nw automaton [1, Theorem 1].

3 Nested-Word Automata and Context-Free

Languages

In this section, we show that,

• for every regular language of nested words, the underlying strings form
a context-free language, and

• every context-free language can be obtained in this way.

Definition 1. A is call explicit if δc and δi are disjoint.

Lemma 2. For every nested-word automaton A = (Q,Qin, δ, Qf ), there is a
call-explicit nw automaton A′ such that L(A′) = L(A). Furthermore, if A is
deterministic then so is A′.

Proof. The desired A′ = (Q′, Q′
in, δ

′, Q′
f ) where Q′, Q′

in and Q′
f are Q×{0, 1},

Qin × {0} and Qf × {0} respectively. Further:

δ′c = {((p, d), a, (q, 1)) : (p, a, q) ∈ δc ∧ d ∈ {0, 1}}
δ′i = {((p, d), a, (q, 0)) : (p, a, q) ∈ δi ∧ d ∈ {0, 1}}
δ′r = {((p1, d1), (p2, d2), a, (q, 0)) : (p1, p2, a, q) ∈ δr ∧ d1, d2 ∈ {0, 1}}

Clearly δ′c and δ′i are disjoint, and A′ is deterministic if A is so. Every
accepting run q0, . . . , qk of A on (a1 . . . ak, ν) gives rise to an accepting run
(q0, d0), . . . , (qk, dk) where di = 1 if and only if i is a call position. And
every accepting run (q0, d0), . . . , (qk, dk) of A′ on (a1 . . . ak, ν) gives rise to an
accepting run q0, . . . , qk of A.

4



Definition 3. The projection P (w) of a nested word w = (x, ν) is the string
x. The projection P (L) of a language L of nested words is the language
{P (w) : w ∈ L}.
Proposition 4. The projection of a regular nw language is context-free.

Proof. Let L = L(A) where A is an nw automaton (Q,Qin, δ, Qf ). We con-
struct a (nondeterministic) pushdown automaton B with L(B) = P (L) that
accepts on empty stack and final state. The sets of states, initial states and
final states of B are Q, Qin and Qf respectively. The stack alphabet of B is
Q∪{⊥} where ⊥ is the bottom-of-the-stack symbol. The transition function
∆ = ∆c ∪∆i ∪∆r where the components are as follows.

∆i = {(p, a, p′, q) : (p, a, q) ∈ δi ∧ p′ ∈ Q}
∆c = {(p, a, p′, q, +p) : (p, a, q) ∈ δc ∧ p′ ∈ Q}
∆r = {(p, a, p′, q,−) : (p, p′, a, q) ∈ δr ∧ p′ ∈ Q}

The intended meaning of an instruction (p, a, p′, q) is this: if the current state
is p, the input symbol is a and the top stack symbol is p′ then to go state q
(and move one-letter to the right on the input word). The additional “+p”
means: push p onto the stack. The additional “−” means: pop the stack.

An accepting run q0, . . . , qk of A on (a1 . . . a`, ν) gives rise to an accepting
run (q0, U0) . . . (qk, Uk) of B on a1 . . . ak where U0, . . . , Uk are stack contents
defined inductively. U0 = ⊥. Let i > 0. If i is an internal position then
Ui = Ui−1. If i is a call position then Ui = qi−1Ui−1. Suppose that u is a
return position with call-predecessor j. The number of call positions < i
exceeds the number of return positions < i, and so Ui−1 6= ⊥. Ui is obtained
from Ui−1 by popping the top symbol. It is easy to check that if (j, i) ∈ ν then
the top symbol of Ui−1 is qi−1. It is easy to see that the run (q0, U0) . . . (qk, Uk)
is indeed accepting.

Every accepting run (a0, U0) . . . (ak, Uk) of B on a1 . . . ak gives rise to an
accepting run q0, . . . , qk of A on a nested word (a1 . . . a`, ν) where ν consists
of pairs (j, i) such that B pushes a symbol at step j and pops it at step i.

Proposition 5. Every context-free language is the projection of some regular
nw language.

Proof. Let L be a context-free language over an alphabet Σ. Without loss of
generality, L is proper, that is it does not contain the empty word ε. Indeed

5



if L′ = L − {ε} is the projection of a regular nw language M ′ then L is the
projection of the regular nw language M ′ ∪ {ε}.

Since L is proper, there is a context-free grammar G for L that is in
quadratic Greibach normal form [2, Theorem 3.2] which means the following.
Let V be the set of the variables of G. Every production of G has the form
X → a or X → aY or X → aY Z where a ∈ Σ and X,Y, Z ∈ V .

We construct a particular nondeterministic pushdown automaton A that
accepts L. Every instruction of A moves it one-letter to the right on the
input string. The state set of A is V . The stack alphabet of A is V ∪ {⊥}
where ⊥ is the bottom-of-the-stack symbol. The initial state of A is the
axiom S of G.

• Every production P = X → aY of G gives rise to instructions
(X, a,X ′, Y ) of A: if the current state is X, the current input let-
ter is a and the top stack symbol is X ′, then go to state Y (without
altering the stack). Here X ′ ranges over V ∪ {⊥}.

• Every production P = X → aY Z of G gives rise to one instruction
(X, a,X ′, Y, +Z) of A: if the current state is X, the current input
letter is a and the top stack symbol is X ′ then go to state Y and push
Z onto the stack. Here X ′ ranges over V ∪ {⊥}.

• Every production P = X → a of G gives rise to instructions
(X, a, Y, Y,−) of A: if the current state is X, the current input let-
ter is a and the top stack symbol is Y , then pop the stack and go to
state Y . Here Y ranges over V .

It is easy to see A indeed accepts L.
It remains to construct an nw automaton B with L(A) = P (L(B)). The

desired B is (
V × (V ∪ {⊥}), {S} × {⊥}, δ, V × {⊥})

where δ is as follows. Intuitively a state (X, Y ) of B means that A is in state
X and the top stack symbol if Y .

• Every instruction (X, a,X ′, Y ) of A gives one δi instruction
((X, X ′), a, (Y, X ′)).

• Every instruction (X, a, X ′, Y, +Z) of A gives one δc instruction
((X, X ′), a, (Y, Z)).

6



• Every instruction (X, a, X ′, X ′,−) of A gives δr instructions
((X, X ′), (Y, Y ′), a, (X ′, Y ′)) where Y, Y ′ ∈ V .

We check that L(A) is the projection of L(B). Let x = a1 . . . ak.
First suppose that x ∈ L(A). Consider an accepting computation
(X0, U0), . . . (Xk, Uk) of A on x. Here Xi, Ui are the state and the stack of A
after reading the initial i letters of x. In particular X0 = S and U0 = Uk = ⊥.
Let X ′

i be the top symbol of Ui. Let ν be the set of pairs (j, i) such A pushes
a symbol onto the stack during the jth step and pops it during the ith step.
Then (X0, X

′
0), . . . , (Xk, X

′
k) is an accepting run of B on (x, ν).

Second suppose that B accepts some (x, ν) and let (X0, X
′
0), . . . , (Xk, X

′
k)

be an accepting run of B on (x, ν). By induction on i, we construct stack
words U0, . . . , Uk such that the top of Ui is X ′

i and (X0, U0), . . . (Xk, Uk) is
an accepting run of A on x. U0 = X ′

0 = ⊥. Let i > 0. If i is an internal
position of (x, ν) then Ui = Ui−1. If i is a call position then Ui = X ′

i−1Ui−1.
And if i is a return position then Ui is the result of popping the top symbol
of Ui−1.

4 Motley Words and Intersections of

Context-Free Languages

We introduce the notion of motley words by generalizing the definition of
nested words to allow for several nested relations. We introduce motley-
word automata, or simply motley automata, and we use the nested-word-
automaton determinization procedure of [1] to show that every motley au-
tomaton is equivalent to a deterministic one. We show that every finite
intersection of context-free languages, and only such intersections, can be
captured by motley automata in the following precise sense. For every reg-
ular (that is accepted by a motley automaton) language of motley words,
the language of underlying strings is a finite intersection of context-free lan-
guages, and every finite intersection of context-free languages can be obtained
in this way.

Fix an alphabet Σ. It is convenient to view a Σ-word a1 . . . an as a
vertex-labeled directed graph. The n vertices 1, . . . , n are labeled with letters
a1, . . . , an respectively. And there are n− 1 edges (1, 2), (2, 3), . . . , (n− 1, n).
The edges are unlabeled.

7



It is convenient to view a nested Σ-word {a1 . . . an, ν} as a digraph de-
scribed above together with addtional ν-labeled edges (i, j) such that ν(i, j)
holds. Think of ν as a color. Then ν-labeled edges are ν-colored. Think of
unlabeled edges as uncolored.

Definition 6. A motley Σ-word w of dimension d is a Σ-word endowed with
d nested relations. More explicitly, w is a tuple (a1 . . . an, ν1, . . . , νd) where
each ai ∈ Σ and ν1, . . . , νd are nested relations on {1, 2, . . . , n}. Every nested
relation is viewed as an edge-color. Hence the adjective motley.

Since the alphabet Σ is fixed, we may omit mentioning it explicitly.

Definition 7. A motley automaton A of dimension d is a direct product
A1 × · · · × Ad of d nw automata A1, . . . , Ad. Since nw automata are in
general non-deterministic, so are motley automata. A motley automaton
A1 × · · · × Ad is deterministic if every nw automaton Ak is so.

Definition 8. A run of A on a d-dimensional motley word
(a1, . . . , an, ν1, . . . , νd) is a sequence

(q1
0, . . . , q

d
0), (q

1
1, . . . , q

d
1), . . . , (q

1
n, . . . , qd

n)

of states of A such that every (qk
0 , q

k
1 , . . . , q

k
n) is a run of Ak on the nested word

(a1, . . . , an, νk). The run of A is accepting if every one of the d constituent
runs is accepting. A accepts a d-dimensional motley word w if it has an
accepting run on w. The language L(A) of A is the set of d-dimensional
motley words accepted by A. Two motley automata A and B are equivalent
if L(A) = L(B).

Theorem 9. For every motley automaton A there is a deterministic motley
automaton B equivalent to A.

Proof. A is the direct product A1×· · ·×Ad of some nw automata A1, . . . , Ad.
By Theorem 1 in [1], every Ak is equivalent to a deterministic nw automaton
B1. It is easy to see that the direct product B1 × · · · × Bd is equivalent to
A.

Definition 10. A motley language of dimension d is a language of d-
dimensional motley words. A d-dimensional motley language L is regular
if there is a d-dimensional motley automaton A such that L = L(A). The
projection P (w) of a motley word w = (x, ν1, . . . , νd) is the Σ-word x. The
projection P (L) of a motley language L of motley words is the language
{P (w) : w ∈ L}.

8



Lemma 11. Let A1, . . . , Ad be nw automata and A be the motley automaton
A1 × · · · × Ad. Then P (L(A)) =

⋂
k P (L(Ak)).

Proof. Consider an arbitrary Σ-word x. First suppose that x ∈ P (L(A)).
By the definition of projections, there exist nw relations ν1, . . . , νd such that
A accepts the motley word (x, ν1, . . . , νd) and so there is an accepting run ρ
of A on w. But then the constituent runs of automata A on nested words
(x, νk) are all accepting. Therefore x belongs to every P (L(Ak)).

Second suppose that x belongs to every P (L(Ak)). Then there are nested
relations ν1, . . . , nk such that every Ak accepts the nested word (x, νk). Let
(qk

0 , q
k
1 , . . . , q

k
n) be an accepting run of Ak on (x, νk). These d runs give rise

to an accepting run

(q1
0, . . . , q

d
0), (q

1
1, . . . , q

d
1), . . . , (q

1
n, . . . , qd

n)

of A on (x, ν1, . . . , νd). Thus x ∈ P (L(A)).

Theorem 12. The projection of any regular motley language is a finite in-
tersection of context-free languages. And the other way round, every finite
intersection of context-free languages is the projection of some regular motley
language.

Proof. Let L be a regular motley language and d be the dimension of L.
There exists a d-dimensional motley automaton A such that L = L(A). The
automaton A is the direct product of nw automata A1, . . . , Ad. By Lemma 11,
P (L) =

⋂
k P (L(Ak)). According to the previous section, every L(Ak) is

context free. Thus P (L) is a finite intersection of context free languages.
Let L =

⋂d
k=1 Lk where every Lk is a context-free language. According

to the previous section, there are nw automata A1, . . . , Ad such that Lk =
L(Ak). Let A be the motley automaton A1 × · · · × Ak. By Lemma 11,
P (L(A)) =

⋂d
k=1 P (L(Ak)) = L. Thus L is the projection of the regular

motley language L(A).

9



References

[1] Rajeev Alur and P. Madhusudan, “Adding Nesting Structure to Words”,
Tenth International Conference on Developments in Language Theory,
2006.

[2] Jean-Michel Autebert, Jean Berstel and Luc Boasson, “Context-Free
Languages and Push-Down Automata”, In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume I, chapter 3.
Springer Verlag, Berlin Heidelberg, 1997

10


