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The following known observation is useful in establishing program termination: if a transitive
relation R is covered by finitely many well-founded relations Uy, ..., U, then R is well-founded.
A question arises how to bound the ordinal height |R| of the relation R in terms of the ordinals
a; = |U;|. We introduce the notion of the stature ||P|| of a well partial ordering P and show
that |R| < |la1 X -+ X ap|| and that this bound is tight. The notion of stature is of considerable
independent interest. We define || P|| as the ordinal height of the forest of nonempty bad sequences
of P, but it has many other natural and equivalent definitions. In particular, || P|| is the supremum,
and in fact the maximum, of the lengths of linearizations of P. And ||a1 X - -+ X awn|| is equal to
the natural product a3 ® -+ ® an.
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1. INTRODUCTION

A program 7, possibly nondeterministic, is terminating if every computation of 7
from an initial state is finite. If there is a computation of 7 from state x to state
y, we say that y is reachable from x and write y < x. A state y is reachable if it
is reachable from an initial state. In practice termination is often established by
means of ranking functions. A ranking function for « is an ordinal-valued function
f on the reachable states of 7 such that f(y) < f(x) whenever y < z. Clearly
7 is terminating if and only if the reachability relation < over reachable states is
well-founded if and only if 7 admits a ranking function. If 7 is terminating then
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2 . A. Blass and Y. Gurevich

the smallest ordinal « such that 7 admits a ranking function with values < « is
the ranking height of w. The following observation may be helpful in establishing
termination.

LEMMA 1 (COVERING OBSERVATION). Any transitive relation covered by finitely
many well-founded relations is well-founded.

In other words, if relations Uy, ..., U, are well-founded and RC U; U---UU, is a
transitive relation, then R is well-founded.

Apparently this observation was made independently a number of times, and
each time it was related to the termination problem. As far as we know, the
observation was made first by Alfons Geser in [1990, page 31]. A weaker form
of the observation, in which the relations U; are required to be transitive, had
been proposed as a question on the web by Geser, and he informed us that he
received proofs of it from Jean-Pierre Jouannaud, Werner Nutt, Franz Baader,
George McNulty, Thomas Streicher, and Dieter Hofbauer; see [Lescanne, discussion
list, items 38-42] for all but the last two of these. Both of our two referees pointed
out that the observation was made independently in [Lee et al. 2001]. One of them
wrote that “the covering observation lies at the heart of” [Lee et al. 2001] where it
“is used implicitly in Theorem 4.” The other referee pointed out that the covering
observation was made independently in [Dershowitz et al. 2001] and in [Codish
et al. 2003]; see [Bruynooghe et al. | in this connection. Recently the covering
observation was rediscovered in [Podelski and Rybalchenko 2004] and was used for
proving termination in [Podelski and Rybalchenko 2005; Cook et al. 2006; Berdine
et al. 2007]. A stronger version of the covering observation, using a hypothesis that
is weaker (but more complicated) than transitivity of R, was given in [Doornbos
and Von Karger 1998].

The covering observation is proved by a straightforward application of the infinite
version of Ramsey’s theorem. The transitivity of R is essential here. If a,b are
distinct elements then the relation {(a,b),(b,a)} is covered by the well-founded
relations {(a,b)} and {(b,a)} but is not well-founded.

Example 2. Let m be the program

while a < 1000 < b
choose between
a,b := at+2, b+1
a,b := a-1, b-1

with integer variables a,b. Initially, a and b could be any integers. Since 7’s
reachability relation y < x is covered by well-founded relations a, < a, < 1002 and
999 < by < by, m terminates. Obviously the ranking height of m; isn’t finite. In
fact it is w, the least infinite ordinal, because the function |3b — 2al is a ranking
function for m;. (The absolute value is used to guarantee that all values of the
function are natural numbers.) Let 7o be the following modification of 7.

while a < 1000 < b
choose between
a := atl
a,b := arbitrary integer, b-1
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Program Termination and Well Partial Orderings . 3

Again, the covering observation applies, with the well-founded covering relations
a; < ay <1001 and 999 < b, < b,. It is easy to see that the ranking height of
is w?. In particular the function wb + [1000 — a| is a ranking function for 7. O

Ezample 3. Let w3 be the program

while F # N?
choose (a,b)e N2 — F
F :=F U {(@,p)eN?: a’ > a and b > b}

where N is the set of natural numbers, F' C N2, and initially F' = (). Think of F' as
the set of forbidden pairs. Initially, no pairs are forbidden, but once a pair becomes
forbidden it remains so forever. As long as some pairs are not yet forbidden, the
program nondeterministically chooses a non-forbidden pair (a, ) and forbids it and
all pairs (a’,b’) such that a’ > a and b’ > b. For every noninitial state z of 73 let

A(zr) = min{a : (a,b) € F, for some b}.

where F,, is F at state x. If z is the initial state, define A(x) = oo. Define the
function B(z) similarly. Define C(x) to be the number of points (a,b) € N2 — F,
such that @ > A(z) and b > B(z). It is not hard to see that C(z) is always
finite. m3’s reachability relation y < x is covered by the three well-founded relations
A(y) < A(z), Bly) < B(x), and C(y) < C(z). By the covering observation, 73
is terminating. But this time the ranking height of the program is less obvious.
It is w? + 1; the initial state has rank w?, and the rank of a noninitial state z is
w- (A(x) + B(z))+ C(x). O

In § 2.2, we recall the definition of the ordinal height | R| of a well-founded relation
R as well as the definition of the ordinal height |z|g of any element = in the
domain of R. If a program 7 is terminating then the ordinal height |z|< is a
ranking function, and |z|< < f(x) for any ranking function f for 7. It follows that
the ranking height of 7 is the ordinal height | < | of 7’s reachability relation <.
Our colleague, Byron Cook, working on a program-termination prover [Cook et al.
2006], asked the following question [Cook 2005].

Question 4 (Covering Question). If a transitive relation R is covered by well-
founded relations Uq, . .., Uy, what is the best bound on |R] in terms of the ordinals

The covering question led us to investigate well partially ordered sets (in short,
wpo sets). Recall that a sequence (xg,x1,...), finite or infinite, of elements of a
partially ordered set P is bad if there are no indices ¢ < j with z; < x; and that
a partially ordered set P is wpo if every bad sequence in P is finite. In §4, we
introduce the key notion of this study, the stature ||P|| of a wpo set P. We define
||P|| as the ordinal height of the forest of nonempty bad sequences of P. We then
give, in the same section, several alternative and equivalent definitions of || P||. In
particular, || P|| is the height of the well-founded poset of proper ideals of P. In our
view, the notion of stature is of central importance to the theory of wpo sets.
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In § 5 we prove the following theorem to reduce the covering question to a question
about the stature of the direct product ag X - - - X v, of ordinals ;. (By Corollary 18,
the direct product of finitely many wpo sets is wpo.)

THEOREM 5. If R,Uy,..., Uy, a1,...,ay are as in the covering question then
[R| < flay x -+ X an|

and this inequality is tight in the following sense. For any ordinals a, . .., oy, there
exist relations R, Uy, ..., U, such that R is transitive, Uy, ..., U, are well-founded,
RCULU---UU,, each |U;| = ey, and |R| = ||ag X -+ X an|-

Applying this theorem to the reachability relation <, of program w3 of Exam-
ple 3, we get that | <, | < [|wXw Xw]||. But what is ||ja; X - - - X @, ||? This question
is addressed in §6.

THEOREM 6. ||ag X -+ Xy =1 @ - @ .

Here a1 ® - - - ® o, is the natural product of the n ordinals. The natural sum and
natural product of ordinals are recalled in §2.4. Combining Theorems 5 and 6, we
obtain the answer to the covering question.

THEOREM 7 (MAIN THEOREM). If R,Uy,..., Uy, a1,...,a, are as in the cov-
ering question then

|R|Sa1®"'®0¢n

and this inequality is tight in the following sense. For any ordinals a, . . ., au,, there
exist relations R, Uy, ..., U, such that R is transitive, Uy, ..., U, are well-founded,
RCULU---UU,, each |U;] = ey, and |[R| =1 @ -+ ® .

After this paper was written, we were informed that this answer to the covering
question had also been obtained by Christian Delhommé [2006].

In the case of the program 73 of Example 3, we have | <, | Cw @ w @ w = wd.
It is often convenient to generalize the notion of ranking function to allow such
a function to have values in any well-ordered set. For each natural number ¢, let
N be the set of (-tuples of natural numbers ordered lexicographically, so that the

ordinal type of N is w?.

COROLLARY 8. Let R,Uy,..., Uy, 1, ...,y be as in the covering question and
assume that o; < w', so that U; admits a ranking function with values in N¢
Here each {; is a positive integer. Let £ = €1 + -+ {,. Then R admits a ranking
function with values in N but may not admit a ranking function with values in
|\t

At first sight, it seems that information like that in the main theorem is useless
in the search for termination proofs. After all, it applies only to relations that
are, by the covering observation, already known to be well-founded. Nevertheless,
such information could be helpful. Here is an example. Suppose that you have
an automated tool that, given a relation R, tries to find a ranking function for
R. The power of a practical automated tool is necessarily restricted (and typically
corresponds to a restricted system of arithmetic). There is an ordinal « such that
the tool can only succeed for relations R of ordinal height |R| < «. Let m be a
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program of ranking height G > «. The tool cannot directly prove that 7 terminates.
But if the reachability relation of 7 is covered with relations Uq,...,U, whose
ordinal heights aq,...,a, are below «, the tool might find ranking functions for
them. For this approach to succeed, it is necessary, according to the main theorem,
that o1 ®---®a, > 8 > «a. If we have some additional information about «, we can
draw additional conclusions. For example, the approach does not work if a = w*
because in that case, a1 ® -+ ® o, < .

As we mentioned earlier, the notion of stature is of independent interest. §7,
the most involved section of this article, is devoted to a characterization of the
stature of a wpo set P in terms of linearizations of P. Earlier, in §4, we notice
that every linearization (that is, every linear extension with the same underlying
set) of a wpo set P is well-founded and of length (that is ordinal height) < || P||.
In the process of proving Theorem 6, we construct a linearization of a; X - -+ X a,
of length |lag x -+ X ay]|.

COROLLARY 9. The supremum of the lengths of linearizations of aq X -+ X ayp,
is |lag X -+ X ag|| and the supremum is attained.

It turns out that this corollary generalizes to all wpo sets, a result proved in [de
Jongh and Parikh 1977]. In §7, we shall obtain the same result simultaneously
with Theorem 10 below, by a somewhat simpler argument. Because the supremum
of the lengths of linearizations of a wpo set is attained, it is sometimes called its
maximal order type [Schmidt 1979].

THEOREM 10. The stature of any wpo set is its mazimal order type.

As one of the referees pointed out, it is fairly easy to prove Theorem 10 if one
already knows that the supremum of the linearization lengths of a wpo set is at-
tained. The idea is to show that this supremum satisfies the analog of Lemma 36,
so that an induction on the stature of the wpo set shows that this supremum and
the stature agree.

A part of our results on wpo sets was already known. As already mentioned,
de Jongh and Parikh showed in [1977] that the supremum of linearization lengths
of a wpo set is attained. They also computed this supremum for disjoint unions
and Cartesian products. We believe that our proofs are simpler than the proofs
that either are available in the literature or could be obtained by combining those
proofs. In §8 we touch upon the involved history of the theory of wpo sets and
other related work.

We attempt to make this article self-contained. In §2 we give some preliminary
information on partially ordered sets, well-founded partially ordered sets, wpo sets,
ordinal arithmetic, and infinite combinatorics.

In § 3 we introduce games that allow us to compare ordinal heights of well-founded
sets. The game criterion for height inequalities proved to be very useful. It may be
known, but we have not found an explicit statement of it in the literature.

Remark 11. The notations |P| and ||P| have many different uses in the litera-
ture. But they are convenient for our purposes and so, with some apprehension, we
use them.
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2. PRELIMINARIES

We recall various definitions and facts and use this occasion to fix terminology and
notation.

2.1 Partially Ordered Sets

A binary relation R can be viewed as a set of pairs of elements. A directed graph,
in short digraph, is a pair (X, R) where X is a set and R C X X X; the set X is
the domain of the digraph. The smallest set X such that R C X x X will be called
the domain of R.

A poset is a partially ordered set. In other words, a poset is a digraph where the
relation is a partial order. Let P be a poset. The relation <p (resp. <p) is the
strict (resp. non-strict) version of the partial order of P. If x <p y, we say that
x is lower than y in P and that y is higher than x in P. In this and other similar
cases, the subscript may be omitted when it is clear.

A poset Q extends P if <p C <, so that the digraph (Dom(Q), Q) may have
more elements as well as more edges than the digraph (Dom(P), P). A linearization
of P is a linearly ordered set with the same domain that extends P.

An element 2 € Dom(P) is the top of P if x >p y for every element y of P.

A subset A of (the domain of) P is an antichain of P if the elements of A are
pairwise incomparable. A subset F' of P is a filter of P if it is upward closed, so
that y € F if x < y for some € F. If X is a subset of P then Min(X) is the
antichain of minimal elements of X and

Filterp(X) ={y : y >p « for some z € X}.

Filter(X) is the smallest filter that includes X. If A is an antichain then A =
Min(Filter(A)).

A subset D of P is an ideal if it is downward closed, so that x € D if z < y for
some y € D. Ideals are the complements of filters in P, and the other way round. If
X C Dom(P) then Idealp(X), or simply Ideal(X), is the ideal Dom(P) — Filter(X).
In other words,

Ideal(X) = {y € Dom(P) : (Vz € X) z £p y}.
An ideal D of P is proper if it does not contain all elements of P.

Warning 12. Ideal(X) is the largest ideal that avoids X, rather than — which is
more usual — the smallest ideal that includes X. We will not use the latter notion
while the first one will play a role in this paper. Note also that many authors
require filters to be not only upward closed but also downward directed (and dually
for ideals). Such authors use terminology like “order-filter” or “up-set” where we
use “filter”, and they use “order-ideal” or “down-set” where we use “ideal”.

The sets Filterp(X) and Idealp(X) inherit partial orderings from P and thus
give rise to posets that are also called Filterp(X) and Idealp(X) respectively. If
2 € Dom(P) then

Filterp(x) = Filterp({z}) = {y € Dom(P) : = <p y},
Idealp(z) = Idealp({z}) = {y € Dom(P) : = £p y}
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Given finitely many posets Pi,...,P,, we can form the direct (or Cartesian)
product P X -+ X P, with domain Dom(P;) X -+ x Dom(P,) where the n-tuples
are ordered componentwise. The direct product operation generalizes to infinitely
many components but we will not need the generalization.

2.2 Well-Founded Partially Ordered Sets

A poset is well-founded if it has no infinite descending sequence. A well-ordered set
is a well-founded, linearly ordered set. Fix a well-founded poset P. If F' is a filter
of P then F = Filter(Min(F)).

Each element z of P has an ordinal height |x|p defined by the recursion

|z| = min{ordinal o : « > |y| for all y <p z}.

The height | P| of the poset P itself is the smallest ordinal > |x|p for all z € Dom(P).
If a poset @ is obtained from P by adding a new top element co to P, then we have
|oo|g = |P|. The ordinal height of a well-ordered set is also called its length.

LEMMA 13. For every a < |P|, there is an element x with |z|p = . If a < |y|p,
then there is an element x <p y with |z|p = a.

PROOF. The second claim follows from the first: consider the sub-poset given by
the set {z: z < y}. To prove the first claim, notice that elements of height > «
form a nonempty filter; any minimal element z of that filter is of height . [

Definition 14. A binary relation R is well-founded if there is no infinite sequence
(x0,21,...) such that x, 1Rz, holds for all n. In the obvious way, the definition
of height generalizes to well-founded relations.

A well-founded relation does not have to be transitive. For example the succes-
sor relation on natural numbers is well-founded but not transitive. However the
transitive closure of a well-founded relation is well-founded as well.

2.3 Well Partially Ordered Sets
A good reference for this subsection is [Kruskal 1972].
Definition 15. Let P be a poset. A sequence (g, 21, ... of elements of P, finite

or infinite, is bad if there are no indices ¢ < j with z; < z;. A poset P is well
partially ordered, or wpo, if all bad sequences in P are finite.

Remark 16. Admittedly, the terminology is not very good. But it is accepted.
We discuss the issue in §8.

There are many equivalent characterizations of the wpo sets.

LEMMA 17. Let P be a poset. The following are equivalent characterizations of
the wpo property. In other words, each of the following claims is equivalent to the
claim that P is wpo.

(1) Ewery infinite sequence (xg, 1, ...) of elements of P includes an infinite weakly
increasing subsequence.
(2) P is well-founded, and all its antichains are finite.

(8) For every filter F' of P, there is a finite antichain A such that F = Filter(A).
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8 . A. Blass and Y. Gurevich

(4) For every filter F' of P, the antichain Min(F) is finite and F = Filter(Min(F)).

(&) For every ideal D of P, there is a finite antichain A such that D = Ideal(A).

(6) For every ideal D of P, the antichain A = Min(Dom(P) — D) is finite and
D = Ideal(A).

The proof is straightforward, using Ramsey’s theorem, Theorem 21, for items 1
and 2.

COROLLARY 18. The direct product of finitely many wpo set is wpo.

PRrROOF. Use the first equivalent characterization of the wpo property in the
preceding lemma. [

2.4  Ordinal Arithmetic

We recall some basic definitions of set theory on ordinals and cardinals. A good
reference for this subsection is the book [Zuckerman 1974], particularly §5.11.

In set theory, an ordinal « is defined as the set {£ : £ < a} of smaller ordinals.
In particular, the first infinite ordinal w is the set of natural numbers. Every well-
ordered set P is isomorphic to a unique ordinal, namely the length of P. The
cardinality of a set X is the least ordinal « such that there is a bijection between
X and «; ordinals that arise in this way are cardinals. If o and [ are ordinals then
a + [ is the length of the set

{(0.1): p<a}U{(L): v< B}

ordered lexicographically.

A limit ordinal is an ordinal o > 0 not of the form g+ 1 for any 8. A set X
of ordinals is cofinal in a limit ordinal « if « is the supremum of X and a ¢ X.
Thus X is cofinal in « if and only if X C « and for every 8 < « there is an element
of X that is > 8. The cofinality of a limit ordinal « is the least cardinal x such
that o has a cofinal subset of cardinality x. Alternatively and equivalently, the
cofinality of a limit ordinal « can be defined as the least ordinal x such that there is
a (strictly) increasing sequence s = (0¢ : £ < k) of ordinals whose range is cofinal
in a.

A cardinal is reqular if it is equal to its own cofinality. It is easy to see that, for
every limit ordinal «, the cofinality of « is a regular cardinal.

For any ordinal «, the ordinal w® is the length of the following well-ordered set P.
Dom(P) is the set of functions f : @« — w such that the support {¢ < a: f(&) > 0}
is finite. The order is reverse lexicographic. That is, fi <p fo if and only if
F1(8) < f2(&) for the largest £ with f1(€) # f2(€). Such a largest £ exists, whenever
f1 and fy are distinct, because the supports of f1, fo are finite.

Any ordinal number « can be written in Cantor normal form (with base w),

a=w + w4 4w

for a unique finite sequence ay > ag > -+ > ay,. (There is an alternative version
where the terms have the form w®m; with integer coefficients m; and where the
exponents are strictly decreasing. The two are obviously equivalent.)

The natural sum a@® 3 of two ordinals o and (3 is obtained by adding their Cantor
normal forms as if they were polynomials (i.e., as if w were an indeterminate),
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arranging the terms in non-increasing order of exponents. It is well known and
easy to check that the natural sum is strictly increasing in each of its arguments.
(In fact, there is an equivalent definition of @ by recursion: « @ [ is the smallest
ordinal strictly above o @ 8 and a @ ' for all &/ < « and ' < 3.)

The natural product, a®j, of two ordinals is defined by multiplying their Cantor
normal forms as if they were polynomials in the indeterminate w, using natural
addition for the exponents, and arranging the resulting terms in non-increasing
order.

LEMMA 19. Natural multiplication is commutative and associative, and it dis-
tributes over natural addition. It is a strictly increasing function of either argument
as long as the other argument is not zero.

Remark 20. The natural sum of two ordinals is at least as big as the ordinal sum
in either order, but it may be strictly bigger than either of the two ordinal sums.
For example, the natural sum of w? +1 and w is w? +w+ 1, which is strictly greater
than both (w? 4+ 1)+ w = w? + w and w + (w? + 1) = w? + 1. Similarly, the natural
product a ® 3 is always at least as big as either of the ordinal products « - 8 and
0B - «, but it may be strictly bigger than both. An example of strict inequality is
given by exponentiating the additive example above: take oo = w +1 and 0 =w".

2.5 Infinite Combinatorics

We recall the infinite version of Ramsey’s theorem for pairs and one generalization
of it. If S is a set then [S]? is the collection of two-element subsets of S.

THEOREM 21 (RAMSEY [1930]). If S is an infinite set and [S]? is partitioned
into finitely many pieces, Si,...,Sm, then there exists an infinite T'C S such that
[T)? C S; for some i.

THEOREM 22 (DUSHNIK AND MILLER [1941]). If  is a regular cardinal and
[k]? is partitioned into two pieces, S1 and So, then either there ewists a subset

Ty C k of cardinality x with [T1])?> C Sy or else there exists an infinite subset Ty C k
with [T2]2 g Sg.

Theorem 21 easily follows from the special case where m = 2 and S = w, which
is the special case k = w of Theorem 22. The proof of Theorem 22 is very similar
to a standard argument for Ramsey’s theorem. (Theorem 22 also holds for singular
K, but the proof, due to Erdés, is more complicated.)

3. GAMES

We give a useful way to compare the heights of well-founded posets.

Given two posets, P and @, define a game I'(P, Q) between two players, called 1
and 2, played as follows. Player 1 (resp. 2) has a pebble which, at each noninitial
stage of the game is at some element of P (resp. Q). Initially, the pebble is off the
poset. Think about the initial position of the pebble being above all elements of
the poset, at the summit position of P (resp. Q). This allows us to pretend that,
at each stage, including the initial stage, the pebble occupies some position in the
poset. Define the height of the summit position to be the height of the poset.

The players move alternately, with 1 moving first. A player’s move shifts his
pebble to a position lower than the current one. In particular, the first move puts
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the pebble at any element of the poset. If a player is unable to move, he loses
the game, and his opponent wins. We say that a player wins the game if he has
a winning strategy, i.e., a strategy by which he wins no matter how the opponent
plays.

PROPOSITION 23 (GAME CRITERION). Let P and @ be posets.

—Suppose that P is well-founded. Then player 1 wins I'(P, Q) if and only if Q is
well-founded and |P| > |Q|.

—Suppose that Q is well-founded. Then player 2 wins T'(P, Q) if and only if P is
well-founded and |P| < |Q].

PRrROOF. @ is well-founded if P is well founded and 1 wins the game. Indeed,
if @ is not well-founded then it has an infinite descending sequence, and 1 cannot
win a play where 2 moves his pebble along the descending sequence. Similarly, P is
well-founded if @ is well-founded and 2 wins the game. In the rest of the proof, we
may assume that both P and @Q are well-founded. It remains to prove the following
two claims.

(1) Player 1 wins I'(P, Q) if and only if |P| > |Q|.
(2) Player 2 wins I'(P, Q) if and only if |P| < |Q].

The two right-to-left implications are easy because, in each case, the winning strat-
egy is to move your pebble to a position whose height is at least as great as that
of the other player’s pebble. Once you have both right-to-left implications, the
left-to-right ones follow, because at most one player can have a winning strategy
and at least one of the ordinal inequalities must hold. [J

A map f from a poset P to a poset @ is monotone if f(z) <o f(y) whenever
r<py.

COROLLARY 24. If there is a monotone map from a poset P to a well-founded
poset Q then P is well-founded and |P| < |Q)|.

PROOF. Player 2 has a winning strategy in I'(P,Q): whenever 1 moves to a
position x, move to position f(z). Now use Proposition 23. [

Remark 25. The game is even more natural for posets with a distinguished el-
ement (pointed posets). Then we don’t need the summit position; initially the
pebbles are at the distinguished elements. The proposition, appropriately adjusted,
remains valid. The corollary, also properly adjusted, remains valid if we require that
the monotone map takes the distinguished element to the distinguished element.
We skip the details of adjustment as we will not use pointed posets.

Remark 26. The game, the proposition and the corollary generalize in a straight-
forward way to the case when P, (@ are directed graphs.

4. STATURE OF A WPO SET

First we give a number of equivalent definitions of stature. Then we prove some
useful facts related to statures and natural sums of ordinals.
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4.1 Definition and Equivalent Characterizations

Fix a wpo set P.

Definition 27. B(P) is the poset of nonempty bad sequences of P. The ordering
is reverse extension: s <g t if and only if ¢ is an initial segment of s.

Thus s <p t if and only if s is an end extension of ¢t. It is easy to see that B is
a forest. If s <g t then we think of the longer sequence s being below the shorter
t; in that sense the forest B grows downward. Every infinite downward path in B
gives rise to an infinite bad sequence of P. But P is wpo and thus does not have
infinite bad sequences. It follows that B is well-founded. Note that if P were not
wpo then B would not be well-founded: an infinite bad sequence in P would give
rise to an infinite downward path in B.

Definition 28. The stature ||P|| of P is the height |B(P)| of B(P).

It is easy to see that ||P|| > |P|. Indeed, it suffices to show that, if x € P and
s is a bad sequence of P that ends with x then |z|p < |s|g. This is easily proved
by induction on |z|p. And ||P]| can exceed |P|. For a simple example consider

the case when P is a finite antichain of n > 1 elements. In this case |P| = 1 and
1Pl = [B] = n.

Remark 29. We could have defined B(P) to be the tree of all bad sequences of
P including the empty sequence. The empty sequence would be the root and the
top element of B. Then || P|| could be defined as the height of the empty sequence
in B. One of our referees asked us why we didn’t define B(P) as the tree of all bad
sequences of P. This was partially a matter of taste, but it is convenient to deal
with the height of B itself rather than the height of one of its elements.

We will give several equivalent characterizations of || P||. To this end, we define
some useful posets.

Definition 30.
—A(P) is the set of nonempty antichains of P with partial order
ASAB < (VbEB)(HCLEA)GSP b.

—Z(P) is the set of proper ideals of P ordered by inclusion.

—A pointed ideal is a pair (D,d) where D is an ideal and d is a maximal (not
necessarily the greatest) element of D. P(P) is the set of pointed ideals of P
with partial order

(D,d) <p (E,e) <= D CE — {e}.

We take the liberty of omitting the argument of A, B,Z,P when it is clear from
the context.

PropPOSITION 31. A, Z and P are well-founded, and |A| = |Z| = |P| = |B| =
I1P][-

PrOOF. We split the proposition into a number of claims and repeatedly use the
game criterion of § 3.
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12 . A. Blass and Y. Gurevich

P is well-founded and |P| < |B|. By the game criterion, it suffices to construct
a winning strategy for player 2 in game I'(P,B). When player 1 has just played
(D, z), extend your previous bad sequence by appending . This strategy always
provides a legal move, so it wins.

7 is well-founded and |Z] < |[P|. We construct a winning strategy for player 2 in
game I['(Z,P). Let Dy = Dom(P). The i*" move of 1 is some ideal D; C D;_;.
Choose any y; € D;_1—D; and play (F;,y;) where F; = Ideal({y1,...,v:})U{y:} =
{z € Dom(P) : z ¥ y; and, for all j < ¢, z 7 y;}. (The key is to play y; in the
second component; the first component E; is chosen as big as possible subject to
the requirement that y; be maximal in it and that E; C E; — {y;} for all j < i.)
This strategy always provides a legal move, so it wins.

A is well-founded and | A| = |Z|, because A and 7 are isomorphic. An isomorphism
from 7 to A is given by D +— Min(Dom(P) — D), and its inverse is X — Ideal(X).

|B] < |Z|. We construct a winning strategy for player 2 in game I'(B,Z). When
player 1 has just played a bad sequence (x1,...,x.), reply with Ideal{z1,..., z}.
This strategy always provides a legal move, so it wins.

To summarize, we established that A,Z, P are well-founded and that |A| = |Z| <
|P| < |B| <|Z|. Tt follows that |A] = |Z| = |P| = |B|. It remains to recall that, by
the definition of stature, | P|| = |B|. O

For future reference, we record the following fact about linearizations of P.

PROPOSITION 32. FEwvery linearization of a wpo P is well-founded and has length
<Pl

PROOF. Let A be a linearization of P. By the definition of stature, | P|| = |B|.
By the game criterion of § 3, it suffices to construct a winning strategy for player 2
in I'(A, B). 1’s moves up to stage ¢ form a decreasing sequence sy of length £ in A.
Clearly s, is a bad sequence of P; use it as your reply at stage ¢. (A direct proof
that A is well-founded is to observe that every decreasing sequence in A is a bad
sequence in P.) O
4.2 Statures and Natural Sums

Recall that any ordinal « has a unique Cantor normal form
o =w" + w4+ W

where a; > ag > -+ > a,, and that the natural sum o @ § of o and [ is obtained
by adding their Cantor normal forms as if they were polynomials.

LEMMA 33. Let a have the Cantor normal form exhibited above, let B < a, and
let v <w*. Then Bd v < a.

PROOF. Increasing ( if necessary, we may assume that it has the form
B=w™ w4 w46

where § < w® (and where the exponents ag,...,a,_1 are the same as in the
normal form of a). As both v and ¢ are < w®n, their Cantor normal forms involve
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only exponents < «;,. So the same is true of their natural sum. But
BOY=w™ 4w+ W+ (§D7),
and so the required inequality follows. [J

COROLLARY 34. An ordinal of the form w® exceeds the natural sum of any two
strictly smaller ordinals.

The corollary is a bit stronger than the analogous assertion without “natural”,
since £ + 1 < £ @ n and the inequality can be strict. We will use the following
obvious consequence of Corollary 34.

COROLLARY 35. An ordinal of the form w® exceeds the natural sum of any fi-
nitely many strictly smaller ordinals.

Our next goal is to relate the statures of a wpo set and its subsets. It is clear
that ||P|| < ||Q|] whenever P C @; indeed the copycat strategy of player 2 wins
G(B(P),B(Q)). On the other hand, we shall see that when two subsets of a wpo
set P cover P their statures add (in the sense of @) to at least the stature of P. For
this, as well as for other purposes later, we need the following information about
statures.

Recall that Filterp(z) is the smallest filter that contains x, Idealp(z) is the
largest ideal that avoids z, and that the corresponding posets (with partial orders
inherited from P) are also denoted Filterp(z) and Idealp(z) respectively.

LEMMA 36. The stature | P|| of a wpo set P is the smallest ordinal strictly above
[ {dealp(v)|| for allv € P.

PROOF. Since ||P|| is the height of the forest B(P), it is the smallest ordinal
strictly greater than the heights of all the roots (v) of the trees that constitute the
forest B(P). The height of any (v) can be computed in the tree of which (v) is
the root, and we shall complete the proof by checking that this height is exactly
[IIdealp(v)]|.

The tree with (v) as root consists of all the bad sequences of the form (v)s.
For such a sequence to be bad means that s is bad and that no term in s is >p v.
In other words, s must be a bad sequence in Idealp(v). Thus, the tree with root
v is isomorphic to B(Idealp(v)) with a top element added, and so the proof is
complete. [

LEMMA 37. Let (the domain of ) a wpo set Q be the union of (the domains of)
finitely many sub-posets Q1, ..., Q,. The subposets may overlap. For any sub-poset
P of Q, we have |P|| < Q1] & --- & [|Qnl]-

PROOF. We proceed by induction on the stature ||P|| of the focal poset P, so
assume the lemma holds for all cases where the focal poset is of strictly smaller
stature. In view of the preceding lemma, it suffices to prove that, for each = € P,
|[Idealp(x)|| < ||Q1]| @ -+ @ ||Qn]|. For this purpose, fix an arbitrary @ € P. If
x € @; then Idealg, () is a well-defined proper ideal of @Q);; otherwise the notation
Idealg, (z) has not yet been assigned a meaning but it is convenient to adopt the
convention! that Idealg, (z) = Q;.

1We do not advocate adopting this convention in general, as it may have awkward consequences;
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14 . A. Blass and Y. Gurevich

By induction hypothesis, we have
[Idealp(z)|| < [[Idealg, (z)]| & - - & [[Idealg, (z)|.-
There is an index j such that z € @;. By Lemma 36,

[Tdealg, ()] < Q-

For @; with i # j we cannot use the same argument, since we don’t necessarily
have z € @);, but we still have

Ldealg, ()] < Q] for all i # j.

Combining the three displayed inequalities and the strict monotonicity of &, we get
[[Idealp(x)|| < [|@Q1]] ® - - @ ||@Qn] as required. O

5. REDUCTION OF COVERING QUESTION

We return to the covering question discussed in the introduction and prove Theo-
rem 5. Assume that Uy, ..., U, are well-founded relations and that R is a transitive
relation included in Uy U --- U U,. Let X = Dom(R). Without loss of generality,
each Dom(U;) € X. By an argument using Ramsey’s theorem, Theorem 21, R is
well-founded. We seek to bound its ordinal height in terms of the ordinals a;; = |Uj].
The direct product oy X - -+ X a,, of the ordinals aq, ..., a, can be seen as a poset
where the n-tuples are ordered componentwise. That poset is wpo by Corollary 18.

PROPOSITION 38. Under the assumptions above, |R| < |Jag X -+ X au|.

PRrROOF. According to Definition 28, we need to prove that |R| < |B(ag X --- X
ay)|. According to the game criterion of § 3, it suffices to prove that player 2 has a
winning strategy in game

L((X,R), Blag X -+ x a)).

The desired strategy is simple. Whenever player 1 moves his pebble to a new point
xz € X, extend the current bad sequence (or the empty sequence if this is the first
move) by appending the element (|z|y,,...,|z|v,) of a1 X -+ X ay,. Here |z|y, =0
if z ¢ Dom(U;). We need to check only that this preserves badness of the sequence.
Since the opponent’s current move x is R-below all his previous moves y (thanks to
transitivity of R) and since R C Uy U- - -UU,,, we have, for each earlier y, that x U; y
and therefore |z|y, < |y|u, hold for some i. Thus, the n-tuple (|z|v,,...,|z|v,)
cannot be > the earlier n-tuple (|y|v,, .- -, |y|v, ), so badness persists. O

PRrROPOSITION 39. The bound in the previous proposition is tight. That is, given
any ordinals aq, ..., ay, we can find well-founded relations Un,...,U, of at most
these heights and we can find a transitive R C U1U- - -UU, with |R| = ||ja X - -Xay|.

PROOF. Let (X, R) be the poset B(ay X - -+ X ay,) of nonempty bad sequences in
aq X -+ Xay,. If s,t are nonempty bad sequences with last members (1, ...,§,) and
(M, . ..,nn) respectively, set tU;s <= n; < &;. Obviously, every U; is well-founded
and |U;| = «;. If tRs holds, then ¢ is an end-extension of s. By the definition of

for example Idealg, (z) is not always a monotone function of z. The convention is useful in the
present proof, and that is why we introduce it here, but not in the general context of § 2.
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bad sequences, (&1,...,&:) £ (M,.-.,Mn), and so tU;s holds for some i. Thus R is
covered by the relations Uy, ..., U,. O

Theorem 5 follows from the two propositions.

6. STATURE OF DIRECT PRODUCT OF SEVERAL ORDINALS

The goal of this section is to prove Theorem 6. The theorem asserts that [Ja; X

X apl = a1 ®- - ®ay, for any natural number n and any ordinals aq, ..., a,. In
§6.1 we will prove that ||ag X -+ X ap]| > @1 ® - @ ay, and in §6.2 will prove that
log X -+ X ap| < a1 ® -+ ® . But first we state a characterization of natural

sums for future reference.

Recall that the natural sum a®f of two ordinals is defined by adding their Cantor
normal forms as if they were polynomials [§2.4]. It is clear from this definition that
a well-ordered set of length o @ 8 can be partitioned into two subsets of length «

and (.

LEMMA 40. a & [ is the largest ordinal that admits a partition into two subsets
of lengths o and (3.

Though this is well-known, we point out that it follows also from Lemmas 37 and
46.

6.1 The Natural Product is Small Enough

In this section, we prove that the stature of oy X -+ X «, is at least as large as
natural product of the n ordinals. We start with the case n = 2.

LEMMA 41. Let o and 3 be arbitrary ordinals.

(1) There is a linearization of a x [ of length a ® (.
(2) [lax Bl za®p.

Remark 42. This lemma is part of [de Jongh and Parikh 1977, Theorem 3.5].
Indeed, if we presuppose Theorem 10, which relates stature to linearizations and is
proved in § 7 below, then Theorem 3.5 of [de Jongh and Parikh 1977] implies all of
Theorem 6. Our proof here uses only half of Theorem 10, namely Proposition 32
proved above. By working directly with stature rather than linearizations in the
next subsection, we shall obtain a simpler proof of that part of Theorem 6.

PrOOF OF LEMMA 41. In virtue of Proposition 32, the first claim implies the
second. So it suffices to prove claim 1. In the rest of the proof we construct the
desired linearization. We do that by induction on o ® 3. The zero case is trivial.
The induction step splits into two cases.

Case 1: At least one of o and 3 is not a power of w. Without loss of generality,
suppose it is a. Let the Cantor normal forms of o and 3 be

a:mer,,,erum’
6:wy1+...+wl’n’

where uy > -+ > pyy and v; > -+ > v, and m > 1. Concerning n, we know only
that n > 1. The Cantor normal form of a ® 3 has the form

a®p=w" A+ gt
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where m; > -+ > T, and every m, = p; @ v; for some 1 < ¢ <mand 1 < j < n,
arranged in non-increasing order. This gives rise to a bijection

feoAl...ompx{1,...,n} = {1,...,mn}

such that mg(; j) = p; ® v;. Since the same ordinal can occur as p; @ v; for several
pairs (4, j), there is some freedom in the choice of f. It will be convenient to specify
f so that f(i,7) < f(k,l) if and only if one of the following three conditions is
satisfied.

(1) pi @ vy > pr Ov.
(2) pi@v;=pr®v and i < k.
B) pi@vj=p, ®rand i =k and j <.

There is a unique such function because the three clauses define a linear ordering
of the pairs (¢, 7). The first condition suffices to ensure that the sequence (7¢(; ;)
is non-increasing, as required above. We record the following claim about f for
future reference.

Cram 43. If f(i,7) < f(k,1) theni <k or j <l (or both).

PROOF. The claim is obvious if the inequality f(i,5) < f(k,l) holds by virtue
of clause (2) or (3). If the inequality holds by virtue of clause (1), we argue by
contradiction. If we had both ¢ > k and j > [, then, since the p and v sequences
are non-increasing, we would have p; < pg and v; < 1. But then pu; vy < pp @y,
contrary to clause (1). O

Now partition « into consecutive segments Ay, ..., A, of lengths w** ... wH™ re-
spectively, and partition (§ into consecutive segments By, ..., B, of lengths w*, ... w""
respectively. Each A; x B; can be viewed as a partially ordered set where the order
is componentwise. For each pair (4, j), fix a linearization Cy(, ;) of A; x B; of height
wHi®¥i  Such linearizations exist by the induction hypothesis, since every wt < a
and every w"’ # 0. By the definition of a ® 3, the concatenation

C=C " Com

defined in the obvious way, is of length @ ® 3. It remains to show that C extends
the partially ordered set a x 4. That will complete Case 1 of the proof of the
proposition.

Within each block A; x Bj, there is no problem, since Cy(; ;) extends A; x B;
by the definition of C(; ;). The only possible problem arises between elements of
different blocks. Suppose, toward a contradiction, that something goes wrong, i.e.,
we have

f(g) < f(k,1),

(776> € Cf(i,j)v (E7C) € Cf(k,l)7

(€,¢) < (v,0) in o x .

By Claim 43, either i < k or j < [. If i < k, then the segment A; of «, which

contains vy, precedes the segment A;, which contains ¢; hence v < e. Similarly,
j < limplies § < ¢. In either case, this contradicts that (¢,¢{) < (v,6) in a X 3.

and
but

ACM Transactions on Computational Logic, Vol. V, No. N, December 2006.



Program Termination and Well Partial Orderings . 17

Case 2: Both a and (§ are powers of w, say a = w* and 8 = w”. We need to prove
that there is a linearization of the poset w* x w” of length wH®.

Recall that every w? is the length of a linearly ordered set B, such that Dom(B,)
is the set of finite-support functions f : v — w and the order of B, is reverse
lexicographic [§2.4]. Since the posets w# x w” and B, x B, are isomorphic, it
suffices to prove that there is a linearization of B, x B, of the length of B,g..
To this end, it suffices to produce a bijection C' from B,, x B, onto B,,q, that is
monotone in both arguments. Indeed such a map gives a linearization

(f,9) <(f,9) <= C(f,9) <C(f,9)

of B, x B, of the length of B,g, .

By the definition of natural sum [§2.4], u @ v can be partitioned into two subsets,
M of length p and N of length v. Let By (resp. By) be the poset of finite-support
functions f from M (resp. N) to w ordered in the reverse lexicographic way. Since
posets Byr X By and B, x B, are isomorphic, it suffices to prove that there is a
bijection D from Bjs x By onto B,g, that is monotone in both arguments.

The desired map D sends (f,g) to the disjoint union f U g (where we view a
function as a set of ordered pairs). Then D is clearly a one-to-one map from
By x By to Byun = Bpugw. D is monotone; that is, if f < f" and g < ¢’ then
D(f,g9) < D(f',¢'). This is because the last place (in p & v) where D(f,g) and
D(f',¢’) differ either lies in M and is the last place where f and f’ differ or lies in
N and is the last place where g and ¢" differ.

It remains to check that every finite-support function s : u @ v — w has the form
fUg where f: M — w and g : N — w. The desired f, g are the restrictions of h
to M, N respectively.

PROPOSITION 44. For every natural number n and all ordinals aq, ..., oy,

(1) There is a linearization of oy X -+ X u, of length ag @ -+ @ vy,

(2) [lox x - X anl| > a1 @+ @ an.

PROOF. Again, in virtue of Proposition 32, the first claim implies the second. So
it suffices to prove claim 1. We do that by induction on n. Cases n < 2 are trivial,
and case n = 2 is Lemma 41. We suppose that n > 2 and that claim 1 holds for
all natural numbers < n, and we prove the case n + 1 of claim 1. By the induction
hypothesis, there is a linearization A of a3 x -+ X «,, of length a3 ® -+ ® a,. So
the (componentwise) partial order of a3 X - -+ X au, X @41 can be extended to the
componentwise partial order A x a1 isomorphic to (a1 ® -+ ® a,) X apt1. By
Lemma 41, this can in turn be extended to a linear order of length a; ® - - - ® a,, ®
(077N O

6.2 The Natural Product is Large Enough

In this section, we prove that the stature of a; X - -- X v, is at most as large as the
natural product of the n ordinals.

PROPOSITION 45. For every natural number n and all ordinals aq, ..., c,, we
have ||ag X -+ X ap|| < a1 @ -+ @ ..
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PRrOOF. Without loss of generality n > 2. We prove the proposition by induction
on oy ® -+ ® a,. The base case a3 ® -+ ® a, = 0 (so that one of the ordinals o
is 0) is trivial. The induction step splits into two cases.

Case 1: At least one of ordinals «; is not of the form w*. Without loss of generality,
the Cantor normal form of a7 has at least two terms. Notice that any ordinal is the
natural sum (as well as the ordinary sum) of the terms in its Cantor normal form.
So we have ay = o/ @ o” = o’ + " with both summands < «;. (To be specific,
take o’ to be the last term in the Cantor normal form of a;; and o’ to be the sum
of all the earlier terms.) So «; is the disjoint union of its initial segment o’ and a
final segment F of length o”. Therefore

ap X ag XX ap = (@ Xag X Xa,)U(F XagX- - Xap).
By Lemma 37, we have
log X ag X+ X an| < |lof x ag x -+ X an||®||F X az x -+ X ag|
(@R Ray)® (@ Rar®@ @ ay)
=1 Qay® - ay,
where the second inequality comes from the induction hypothesis and the final
equality is the distributivity of ® over &.

Case 2: o; =whifori =1,...,n. Let P = a; X -+ X a,. By Lemma 36, || P]||
is the smallest ordinal strictly above ||Idealp(¢y,...,&,)| for any & € ;. So it
suffices to show that, for all such &1, ...,&,,

[Idealp(€r,. ... &) < a1 ® - ® an.

Fix an arbitrary tuple (&1,...,&,) € P and let I = Idealp(&q,...,&,). We show
that ||I| < o1 @ -+ @ o

The set I is covered by the subsets Pi,..., P, where P; is obtained from P by
replacing the ith factor «; with &. By Lemma 37, |I|| < |Pi|| & -+ @ ||P.]|. By
the induction hypothesis, each ||P;|| is bounded by the natural product of &; and
n — 1 ordinals o; with j # 4. By the strict monotonicity of @, we have

HP1|| <o ® - RQa, = wpl@...@un.

for each i. By Corollary 35, the ordinal w#1®®H» is strictly larger than the natural
sum of any finite number of smaller ordinals. It follows that

I < IR @ @ 1Pal] < @0 — a1 @+ ® .
O
Propositions 44 and 45 imply Theorem 6.

7. STATURE IS MAXIMAL LINEARIZATION LENGTH

In this section, we prove Theorem 10: The stature of a wpo set P is the largest
among the lengths of linearizations of P. In § 4.1, we showed that every linearization
of P is well-founded and has length < ||P|| (Proposition 32). It remains to prove
that the supremum of linearization lengths of P is attainable and equal to || P||.
This is easy if P is linearly ordered.
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LEMMA 46. If P is a well-ordered set then the supremum of linearization lengths
of P is attainable and equal to || P||.

PROOF. The first claim is trivial as there is only one linearization and so the
supremum is | P|. To prove the second claim, recall that, by Proposition 31, ||P|| =
|P(P)|. Since P is linear, P(P) is isomorphic to P via the map (D,d) — d. O

In the rest of this section, we prove that, for any wpo set P, the supremum of
linearization heights of P is attainable and equal to || P]|.

7.1 Long Consistent Sequence Suffices

Definition 47. Two posets P and @ are consistent if there is no pair {z,y} such
that © <p y <g =.

A sequence s = (zg: [ < a) of distinct elements of a poset P can be viewed as
a linearly ordered set where x5 <, z, if and only if 5 <.

Definition 48. A sequence s = (zg: [ < a) of distinct elements of P is consis-
tent with P if the posets P and s are consistent.

In this subsection, we prove that a wpo set P has a linearization of length || P|| if
it has a consistent sequence of elements of length || P||. We start with an auxiliary
result.

LEMMA 49. Let P be a poset (not necessarily wpo), and let A be a linearly ordered
set with Dom(A) C Dom(P). If A and P are consistent then there is a linearization
of P that extends A.

PROOF. Let R be the binary relation <p U <4. It suffices to prove that the
digraph G = (Dom(P), R) is acyclic. Indeed if G is acyclic then the transitive
closure R* of R is a partial order. Extend R* to a linear order (by Zorn’s lemma,
any poset can be extended to a linearly ordered set) and get the desired linearization
of P.

So suppose, toward a contradiction, that G has a cycle C. Since <p and <4 are
transitive, we can combine consecutive “steps” in the same ordering. Thus, without
loss of generality, C' has the form g, z1,...,z,-1 where x; <p x;41 for even i and
x; <a x;41 for odd i. Here we take the subscripts modulo n, so that when i =n—1
we interpret ¢ + 1 as 0. Also, n is even, because otherwise the steps from x,, 5 to
T,—1 and then to x¢ would be in the same one of A and P and could be combined.
Note that each z; is in A because it is related by <4 to either x;_1 or x;11. Since
<4 linearly orders A, let j be the index for which x; is largest, with respect to <4.

In particular, z; >4 xj41. But if j is odd then z; <4 41, a contradiction.
So j is even and z; <p x;11. But then A and P are inconsistent contrary to the
hypothesis of the lemma. [

Remark 50. The linearity of A is essential for the proof of the lemma. It is not
true that, if two posets P, () with the same domain are consistent, then there is
a partial order extending both of them. For a counterexample, take the common
domain to be a four-element set {a,b,c,d}, take <p= {(a,b),(c,d)}, and take
<g= {(b,¢),(d,a)}. Then P and @ are consistent, yet the union of the order
relations contains a cycle. O
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LEMMA 51. Let P be a wpo set, and suppose that there is a sequence s = (T, :
a < |P]]) of elements of P consistent with P. Then there is a linearization of P of
length || P]|.

PRrROOF. By Lemma 49, there is a linearization A of P that extends s. By Propo-
sition 32, A is well-founded and |A| < ||P||. Since A extends s, we have |A| > |s|;
one easy way to see that |A| > |s| is to use a game as in §3. But |s| = ||P]||. So
[Al=1lP]. O

7.2 Producing a Long Consistent Sequence

PROPOSITION 52. For every wpo set P, there is a linearization of P of length
[Pl

PROOF. Fix a wpo set P. According to Lemma 51, it suffices to prove that there
is a sequence s = (xy : « < ||P||) of elements of P consistent with P. We do that
by induction on || P||.

Case 1: ||P|| = 0. Trivial.

Case 2: || P|| is a successor ordinal o+ 1. By Lemma 36, there is an element x € P
such that ||Idealp(z)| = . Let I be Idealp(z) (viewed as a poset). By induction
hypothesis, we have an a-sequence s of elements of I consistent with /. Appending
x to s, we get the desired || P||-sequence of elements of P consistent with P.

Case 3: || P|| is a limit ordinal but not of the form w®. So the Cantor normal form
of || P|| has at least two summands; let w® be the last summand, and let 6 be the
sum of all the other terms in the Cantor normal form. So

IP]| =0 +w® =0

By Lemma 36, there is x € P such that ¢ < |[Idealp(x)|| < ||P||. Applying
Lemma 37 with the posets Idealp(x) and Filterp(x) in the roles of @1 and Qa,
we obtain

1P| < [[idealp (2)]| © [[Filter p ().

It follows, by Lemma 33, that we cannot have ||Filterp(z)|| < w®.

By induction hypothesis, Idealp(x) contains a consistent sequence s of length
|[Idealp(x)|| > ¢. And Filterp(z) contains a consistent sequence ¢ of length > w®.
Indeed, let @ be the poset Filterp(z). If ||Q|| < || P|| then the induction hypothesis
gives t of length ||Filterp(x)| > w®. Otherwise ||Q| = ||P||. Use Lemma 36 to find
w € @ such that w® < ||Idealg(w)|| < ||P||. By applying the induction hypothesis
to Idealg(w), we again get a consistent sequence ¢ of length > w*®.

The concatenation st has length at least 6 + w® = || P||. It is consistent with P
because s and t are consistent with P and because all elements of ¢ and no elements
of s are >p .

Case 4: ||P|| = w® for some non-zero ordinal .. Let k be the cofinality of w®, and
let (B¢ : € < k) be a strictly increasing sequence of ordinals cofinal with w®. Recall
that k, being the cofinality of something, must be a regular cardinal.

LEMMA 53. There is an increasing sequence (x¢ : & < k) of elements of P such
that || Idealp(z¢)|| > Be for all § < k.
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PRrROOF. For each £ < k, use Lemma 36 to obtain some ye € P with ||Idealp(ye)|| >
Be¢. Although there may be repetitions in the sequence (ye), no single element y
can be y¢ for k different ordinals . The reason is that, if there were such a y,
then |Idealp(y)|| would be greater than the corresponding ordinals . As any x of
these ordinals have supremum w®, we would have ||Idealp(y¢)|| > w® = || P||, which
contradicts Lemma 36.

Because no element occurs £ times in the sequence (ye¢) and because  is regular,
the set S = {£: y¢ # yy for all n < £} is of cardinality x. We can therefore extract
a subsequence of (ye¢) in which there are no repetitions. Specifically, let f(&) be the
¢ ordinal in S, and let yé = Ys(¢)- Then all the yé are distinct and, since f(&) > &,
we have ||Idealp (yé)” > By > Be. (That f(&£) > £ is probably intuitively evident;
for a proof see [Zuckerman 1974, Theorem 5.1.1].) From now on, we work with the
y¢ and we omit the primes.

Invoking again the regularity of k, we can apply the Dushnik-Miller theorem,
Theorem 22, to the partition where S; = {{{ < n} : ye <p y,} and Sz = [k]? — 5.
If an infinite subset T of k had [T]?> C Ss, then the first w elements of T would
constitute an infinite bad sequence, contrary to the assumption that P is wpo.
So, by the Dushnik-Miller theorem, there must be a x-element subset T C k such
that [T]? C S1. Letting g(&) denote the £™ ordinal in T' and letting z¢ = yy (),
we obtain the conclusion of the lemma. Indeed, the homogeneity of T ensures
that the sequence (xz¢ : & < k) is increasing, and because g(§) > & we have

[Idealp(x¢)|| = [[1dealp(yge))ll > Boce) = Be- T

LEMMA 54. There is an increasing sequence (z¢ : & < k) of elements of P such
that

I Ideal(xey1)|| > || Ideal(ze)|| @ Be for all § < k.

PrOOF. By Lemma 53, there is an increasing sequence s = (ye : £ < k) such
that every |Idealp(ye)|l > Be. The desired (zg : £ < k) is a subsequence of
s built by recursion. Start with zy = yo and, at limit stages of the recursion,
simply take the next y, after all those previously taken. The nontrivial case is
the successor step, where we already have z¢ and must find an appropriate x¢y;.
Since the statures of the sets Ideal(y,) approach ||P|| = w®, it suffices to check that
|Ideal(z¢)|| @ B¢ < w®. Fortunately, this follows immediately from Corollary 34.
This completes the proof of the lemma. [

Let (z¢ : & < k) be as in Lemma 54. Temporarily fix some £ < k. Since
Ideal(z¢41) is obviously the union of Ideal(z¢) and Ideal(x¢y1)NFilter(x¢ ), Lemma 37
gives us that

[[Ideal(zeq1)|| < ||Ideal(ze)| @ [[Ideal(zeq1) N Filter(xe)]|.
Comparing this with Lemma 54, we find that
|[Ideal(x¢41) N Filter(ze)|| > Be.

Applying the induction hypothesis to Ideal(z¢41) N Filter(ze) (which is a subset
of Ideal(z¢y1) and so, by Lemma 36, has lower stature than P), we obtain, in
Ideal(z¢41) NFilter(xe), a sequence s¢ of length at least B¢ which is consistent with
Ideal(x¢41) N Filter(x¢) and therefore is consistent with P.
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Now un-fix £. Let ¢t be the concatenation of all the sequences s¢, in order of
increasing £. The length of ¢ is, for each &, at least 3¢, since s¢ is a segment of ¢.
So the length of ¢ is at least the supremum of the 3¢’s, which is w®.

To complete the proof, it remains only to check that ¢ is consistent with P. Since
each s¢ has this property, the only thing that can go wrong is that there are £ <17
with some y in s, being <p some x € s¢. To see that this cannot happen, suppose
it did, and recall where these sequences s¢ and s, came from. The former was
chosen from Ideal(z¢41) NFilter(xe), so © # xey1, while the latter was chosen from
Ideal(z,+1) N Filter(z,), so y > z,. Since the sequence (z¢ : ¢ < k) is increasing,
and since £ < 7, we have

T2Y > Ty 2 Tey,
a contradiction. Proposition 52 is proved.

Propositions 32 and 52 imply Theorem 10.
8. RELATED WORK

We describe in this section earlier work on two concepts central to this paper,
namely well partially ordered sets and natural products of ordinals.

8.1 Natural Products

Natural sums and natural products of ordinals are defined in Hausdorff’s book
[1927, pages 68-70]. Hausdorff credits these concepts to Hessenberg, citing [1906,
§75], but the cited section contains only natural sums, not products, nor have we
found natural products elsewhere in [1906].

Carruth [1942] proved that every linearization of the componentwise partial order
on a X [ has length at most @ ® 3. In our presentation, this fact is a consequence
of Propositions 32 and 45. Carruth’s argument is fairly complex, using neither
any notion of stature nor indeed any notion of well partially ordered set. Carruth’s
motivation came from the theory of ordered abelian groups; he shows how to bound,
in terms of the length of a well-ordered set X of positive elements in such a group,
the length of the (necessarily also well-ordered) subsemigroup generated by X.

8.2 Well Partially Ordered Sets

In 1920, Maurice Janet [1920] published a proof that a sequence of monomials in
a fixed number n of variables must be finite if no monomial in the list divides a
later one. This amounts to the statement that N™ is well partially ordered. See
[Lescanne 1989 for the relevant passages from Janet’s paper along with an English
translation.

The general notion of well partially ordered sets was introduced by Higman [1952].
He called them partially ordered sets with the finite basis property. This terminol-
ogy refers to the characterization given by item 3 in our Lemma 17, which Higman
used as the definition. He proved several equivalent characterizations, including
the main points of Lemma 17 and the well-foundedness of Z. His main result
is that when P is wpo then so is the set of finite sequences from P, ordered by
“componentwise majorized by a subsequence of”.

The second author [Gurevich 1969] independently discovered the notion of wpo,
introduced the terminology “tight partial order”, and proved some cases of Hig-
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man’s result that he needed for investigations about decidability in predicate logic.
The word “tight” was meant to refer to a boot, where one cannot move downward
or sideways but only upward.

Kruskal [1960] developed the theory of wpo sets further, proving a celebrated
result about certain posets of trees being wpo. He seems to be the first to use
the terminology “well-quasi-ordering”. (“Quasi” in place of “partial” means that
< is not required to be antisymmetric. Many authors write “preorder” instead
of “quasi-order”, but “prewellorder” means something different from well-quasi-
order. A prewellorder is a preorder whose partially ordered quotient, obtained
by identifying = and y whenever z < y < z, is a well-order.) Kruskal mentions
that previous authors have used the terms “well-partial-ordering” and “partial well-
ordering. Even at this early stage of the development of wpo theory, the terminology
had become so chaotic that Kruskal gives, at the end of [1960], a glossary for
matching his terminology with Higman’s.

In [1972], Kruskal describes much of the early history of the wpo concept (though
he was unaware of [Gurevich 1969]). He mentions yet another name for the concept,
“fairly well-ordered”, used by Michael [1960].

De Jongh and Parikh [1977] give several equivalent characterizations of wpo,
adding to Higman’s list the property that all linearizations are well-ordered. Fur-
thermore, they show that among the ordinal lengths of these linear orderings there
is a largest one. In the case of a Cartesian product a x 3 of ordinals, they show
that this largest length of a linearization is a ® 3. Recall that, by Theorem 10, the
stature of a wpo set P equals the largest length of a linearization, which de Jongh
and Parikh call o(P). In this sense, [1977] can be regarded as introducing the no-
tion of stature, though without a name and without other equivalent descriptions
(such as our definition in terms of the forest of nonempty bad sequences).

The definition of stature that we use, the height of the forest of nonempty bad
sequences, was studied by Ki{z and Thomas [1990], who called it the type of P and
used the notation ¢(P) for it. They assert (in their Theorem 4.7) that this equals
the largest length of a linearization, but there seems to be a problem with the proof.
Their Theorem 4.6 uses in an essential way that the disjoint union of two posets
was defined with the two parts incomparable, but then this theorem is applied
in a situation where the incomparability requirement is violated. Nevertheless,
their Lemma 4.5 motivated our use of the Dushnik-Miller theorem in the proof of
Lemma 53; in fact, their Lemma 4.5 essentially re-proves the relevant case of the
Dushnik-Miller theorem.

Remark 55. As already indicated, the notion of wpo set has acquired many
names as a result of being discovered many times. (Yet another name, “Noetherian”,
is used in [Aschenbrenner and Pong 2004, page 33]; other authors, however, use
“Noetherian” to mean that the reverse ordering is well-founded.) If we could choose
between the many names, we would prefer “tight”, and not just because one of us
introduced it. It’s short and (with the boot metaphor) descriptive, and it doesn’t
use “well” as an adjective (as in “well partial order”). A second choice would prob-
ably be “finite basis property”. Although longer, it summarizes nicely one of the
equivalent characterizations of the notion. It also has the advantage of being the
name used by Higman, who introduced the concept.

ACM Transactions on Computational Logic, Vol. V; No. N, December 2006.



24 . A. Blass and Y. Gurevich

Unfortunately, the terminology “well partially ordered” and its close relative
“well quasi-ordered” are used so commonly, and the alternatives so rarely, that
it seems hopeless to advocate a change of terminology now. We have therefore
resigned ourselves to wpo.

An imaginative interpretation of “well partial order” is to invoke the other mean-
ing of “well”, namely a source of water from underground. Like a boot, a well (at
least an old-fashioned one) is closed at the bottom and sides but open at the top.
Think of a well partial order as a partial order where, as in a well, the only direction
for unrestricted motion is upward.

Acknowledgment

We thank Andreas Weiermann for informing us about the result of de Jongh and
Parikh [1977], that the maximum length of linearizations of a x 8 is a® (3, and also
for pointing out to us the papers of Carruth [1942] and Ki{z and Thomas [1990].
We thank Alfons Geser for reference [1990]. Finally, we thank the two anonymous
referees for their careful reading of the paper and their useful suggestions.

REFERENCES

MATTHIAS ASCHENBRENNER AND WAI YAN PONG 2004. Orderings of monomial ideals. Fund.
Math. 181 27-74.

JosH BERDINE, AzIEM CHAWDHARY, BYRON COOK, DINO DISTEFANO, AND PETER O’HEARN 2007.
Variance analyses from invariance analyses. Proceedings of 2007 ACM Symposium on Principles
of Programming Languages (POPL 2007), to appear.

MAURICE BRUYNOOGHE, MICHAEL CODISH, SAMIR GENAIM, JOHN P. GALLAGHER, AND WIM VAN-
HOOF. Termination analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems, to appear.

PuiLip W. CARRUTH 1942. Arithmetic of ordinals with applications to the theory of ordered
Abelian groups. Bull. Amer. Math. Soc. 48 262-271.

MiICHAEL CODISH, SAMIR GENAIM, MAURICE BRUYNOOGHE, JOHN P. GALLAGHER, AND WIM VAN-
HOOF 2003. One loop at a time. Proceedings of 2003 International Workshop on Termination
(WST 2003) 1-4, http://www.dsic.upv.es/ "rdp03/procs/WST03all.pdf.

ByroN COOK 2005. Private communication.

BYRON COOK, ANDREAS PODELSKI, AND ANDREY RYBALCHENKO 2006. Termination proofs for
systems code. Proceedings of 2006 ACM Conference on Programming Language Design and
Implementation (PLDI 2006) 415-426.

Dick H. J. DE JONGH AND ROHIT PARIKH 1977. Well-partial orderings and hierarchies. Nederl.
Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39 (1977) 195-207.

CHRISTIAN DELHOMME 2006. Height of a superposition. Order 23 (2006) 221-233.

NACHUM DERSHOWITZ, NAOMI LINDENSTRAUSS, YEHOSHUA SAGIV AND ALEXANDER SEREBRENIK
2001. A general framework for automatic termination analysis of logic programs. Applicable
Algebra in Engineering, Communication and Computing 12, no. 1/2, 117-156.

HENK DOORNBOS AND BURGHARD VON KARGER 1998. On the union of well-founded relations.
Log. J. IGPL 6 195-201.

BEN DUsHNIK AND E. W. MILLER 1941. Partially ordered sets. Amer. J. Math. 63 (1941) 600-610.

ALFONS GESER 1990. Relative Termination. Doctoral dissertation, University of Passau.

YURI GUREVICH 1969. The decision problem for logic of predicates and operations. Algebra i
Logika 8 284-308 (Russian). English translation in Algebra and Logic 8 160-174.

FELIX HAUSDORFF 1927. Mengenlehre, 2nd edition, de Gruyter.

GERHARD HESSENBERG 1906. Grundbegriffe der Mengenlehre, Vandenhoeck & Ruprecht.

GRAHAM HIGMAN 1952. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3) 2 326-336.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2006.



Program Termination and Well Partial Orderings . 25

MAURICE JANET 1920. Sur les systémes d’équations au dérivées partielles.  Journal de
Mathématiques Pures et Appliquées, Série 8, 3 65-151.

Icor KRiZ AND ROBIN THOMAS 1990. Ordinal types in Ramsey theory and well-partial-ordering
theory. in Mathematics of Ramsey Theory (J. Nesetfil and V. Rodl, eds.) Springer-Verlag
57-95.

JosepH B. KRUSKAL 1960. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Amer. Math. Soc. 95 210-225.

JosePH B. KRUSKAL 1972. The theory of well-quasi-ordering: A frequently discovered concept. J.
Comb. Theory A 13 297-305.

CHIN SOON LEE, NEIL D. JONES AND AMIR M. BEN-AMRAM 2001. The Size-Change Principle for
Program Termination. Proceedings of 2001 ACM Symposium on Principles of Programming
Languages (POPL 2001) 81-92.

PIERRE LESCANNE 1989. Well quasi-ordering in a paper by Maurice Janet. Bull. EATCS 39
(October 1989) 185-188.

PIERRE LESCANNE (MODERATOR). Rewriting Mailing List. Archive of older contributions.
http://www.ens-1lyon.fr/lip/rewriting/contributions/.

ERNEST MICHAEL 1960. A class of partially ordered sets. Amer. Math. Monthly 67 448-449.

ANDREAS PODELSKI AND ANDREY RYBALCHENKO 2004. Transition invariants, Proceedings of 200/
IEEE Symposium on Logic in Computer Science (LICS 2004) 32-41.

ANDREAS PODELSKI AND ANDREY RYBALCHENKO 2005. Transition predicate abstraction and fair
termination. Proceedings of 2005 ACM Symposium on Principles of Programming Languages
(POPL 2005) 132-144.

FRANK P. RAMSEY 1930. On a problem of formal logic. Proc. London Math. Soc. (2nd ser.) 30
234-286.

DiaNA ScHMIDT 1979. Well-Partial Orderings and their Mazximal Order Types. Habilitationss-
chrift, University of Heidelberg.

MARTIN M. ZUCKERMAN 1974. Sets and Transfinite Numbers, Macmillan.

Received May 2006, accepted October 2006

ACM Transactions on Computational Logic, Vol. V; No. N, December 2006.



