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Summary. A sequential algorithm just follows its instructions and thus cannot
make a nondeterministic choice all by itself, but it can be instructed to solicit outside
help to make a choice. Similarly, an object-oriented program cannot create a new
object all by itself; a create-a-new-object command solicits outside help. These are
but two examples of intrastep interaction of an algorithm with its environment. Here
we motivate and survey recent work on interactive algorithms within the Behavioral
Computation Theory project.

1 Introduction

This is essentially article [14] except that we have added an appendix called
“What is interaction anyway?” that can be read independently.

In 1982, the University of Michigan hired this logician on his promise
to become a computer scientist. The logician eagerly wanted to become a
computer scientist. But what is computer science? Is it really a science? What
is it about?

After thinking a while, we concluded that computer science is largely about
algorithms. Operating systems, compilers, programming languages, etc. are all
algorithms, in a wide sense of the word. For example, a programming language
can be seen as a universal algorithm that applies the given program to the
given data. In practice, you may need a compiler and a machine to run the
compiled program on, but this is invisible on the abstraction level of the
programming language.

A problem arises: What is an algorithm? To us, this is a fundamental
problem of computer science, and we have been working on it ever since.

But didn’t Turing solve the problem? The answer to this question depends
on how you think of algorithms. If all you care about is the input-to-output
function of the algorithm, then yes, Turing solved the problem. But the behav-
ior of an algorithm may be much richer than its input-to-output function. An
algorithm has its natural abstraction level, and the data structures employed
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by an algorithm are intrinsic to its behavior. The parallelism of a parallel
algorithm is an inherent part of its behavior. Similarly, the interactivity of an
interactive algorithm is an inherent part of its behavior as well.

Is there a solution à la Turing to the problem of what an algorithm is? In
other words, is there a state-machine model that captures the notion of algo-
rithm up to behavioral equivalence? Our impression was, and still is, that the
answer is yes. In [11], we defined sequential abstract state machines (ASMs)
and put forward a sequential ASM thesis: for every sequential algorithm, there
is a sequential ASM with the same behavior. In particular, the ASM is sup-
posed to simulate the given algorithm step-for-step. In [12], we defined parallel
and distributed abstract state machines and generalized the ASM thesis for
parallel and distributed algorithms. Parallel ASMs gave rise to a specification
(and high-level programming) language AsmL [2] developed by the group of
Foundations of Software Engineering of Microsoft Research.

At this point, the story forks. One branch leads to experimental evidence
for the ASM thesis and to applications of ASMs [1, 2, 7]. Another branch
leads to behavioral computation theory. We take the second branch here and
restrict attention to sequential time algorithms that compute in a sequence of
discrete steps.

In Sect. 2 we discuss a newer approach to the explication of the notion
of algorithm. The new approach is axiomatic, but it also involves a machine
characterization of algorithms. This newer approach is used in the rest of the
article.

In Sect. 3 we sketch our explication of sequential (or small-step) algorithms
[13]. We mention also the explication of parallel (or wide-step) algorithms in
[3] but briefly. In either case, the algorithms in questions are isolated-step
algorithms that abstain from intrastep interaction with the environment. They
can interact with the environment in the interstep manner, however.

Section 4 is a quick introduction to the study of intrastep interaction of
an algorithm with its environment; much of the section reflects [5, Part I].
We motivate the study of intrastep interaction and attempt to demonstrate
how ubiquitous intrastep interaction is. Numerous disparate phenomena are
best understood as special cases of intrastep interaction. We discuss various
forms of intrastep interaction, introduce the query mechanism of [5, Part I]
and attempt to demonstrate the universality of the query mechanism: the
atomic interactions of any mechanism are queries. In the rest of the article,
we concentrate on intrastep interaction; by default interaction means intrastep
interaction. To simplify the exposition, we consider primarily the small-step
(rather than wide-step) algorithms; by default algorithms are small-step al-
gorithms.

Section 5 is devoted to the explication of ordinary interactive algorithms
[5]. Ordinary algorithms never complete a step until all queries from that step
have been answered. Furthermore, the only information from the environment
that an ordinary algorithm uses during a step is answers to its queries.
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Section 6 is devoted to the explication of general interactive algorithms [6,
Article 1-3]. Contrary to ordinary interactive algorithms, a general interactive
algorithm can be impatient and complete a step without waiting for all queries
from that step to have been answered. It also can be time sensitive, so that its
actions during a step depend not only on the answers to its queries but also on
the order in which the answers have arrived. We mention also the explication
of general wide-step algorithms [6, Article 4] but briefly.

Section 7 is a concluding remark to the main part of this article, that is
the whole article minus the appendix.

Finally the appendix compares our approach to interactive computing with
that of the Wegner school presented in this volume by article [10].

Much of this article reflects joint work with Andreas Blass, Benjamin Ross-
man and Dean Rosenzweig.

2 Explication of Algorithms

The theses mentioned in the introduction equate an informal, intuitive notion
with a formal, mathematical notion. You cannot prove such a thesis mathe-
matically but you can argue for it. Both Church and Turing argued for their
theses. While their theses are equivalent, their arguments were quite different
[4]. The ASM theses, mentioned in the introduction, have the following form.

ASM Thesis Form

1. Describe informally a class A of algorithms.
2. Describe the behavioral equivalence of A algorithms. Intuitively two algo-

rithms are behaviorally equivalent if they do the same thing in all circum-
stances. Since A is defined informally, the behavioral equivalence may be
informal as well.

3. Define a class M of abstract state machines.
4. Claim that M ⊆ A and that every A ∈ A is behaviorally equivalent to

some M ∈ M.

The thesis for a class A of algorithms explicates algorithms in A as abstract
state machines in M. For example, sequential algorithms are explicated as
sequential ASMs. The thesis is open to criticism. One can try to construct
an ASM in M that falls off A or an algorithm in A that is not behaviorally
equivalent to any ASM in M.

Since the ASM thesis for A cannot be proven mathematically, experi-
mental confirmation of the thesis is indispensable; this partially explains the
interest in applications of ASMs in the ASM community. But one can argue
for the thesis, and we looked for the best way to do that. Eventually we arrived
at a newer and better explication procedure.
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Algorithm Explication Procedure

1. Axiomatize the class A of the algorithms of interest. This is the hardest
part. You try to find the most convincing axioms (or postulates) possible.

2. Define precisely the notion of behavioral equivalence. If there is already
an ASM thesis T for A, you may want to use the behavioral equivalence
of T or a precise version of the behavioral equivalence of T .

3. Define a class M of abstract state machines. If there is already an ASM
thesis T for A, you may want to use the abstract state machines of T .

4. Prove the following characterization theorem for A: M ⊆ A and every
A ∈ M is behaviorally equivalent to some M ∈ M.

The characterization provides a theoretical programming language for A and
opens a way for more practical languages for A. Any instance of the explication
procedure is open to criticism of course. In particular, one may criticize the
axiomatization and the behavioral equivalence relation.

If an explication procedure for A uses (a precise version of) the behavioral
equivalence and the machines of the ASM thesis for A, then the explication
procedure can be viewed as a proof of the thesis given the axiomatization.

A priori it is not obvious at all that a convincing axiomatization is possi-
ble. But our experience seems to be encouraging. The explication procedure
was used for the first time in [13] where sequential algorithms were axioma-
tized and the sequential ASM thesis proved; see more about that in the next
section. In [3], parallel algorithms were axiomatized and the parallel ASM the-
sis was proved, except that we slightly modified the notion of parallel ASM.
Additional uses of the explication procedure will be addressed in Sects. 4–6.

In both, [13] and [3], two algorithms are behaviorally equivalent if they
have the same states, initial states and transition function. It follows that
behaviorally equivalent algorithms simulate each other step-for-step. We have
been criticized that this behavioral equivalence is too fine, that step-for-step
simulation is too much to require, that appropriate bisimulation may be a
better behavioral equivalence. We agree that in some applications bisimula-
tion is the right equivalence notion. But notice this: the finer the behavioral
equivalence, the stronger the characterization theorem.

3 Isolated-Step Algorithms

As we mentioned above, sequential algorithms were explicated in [13]. Here
we recall and motivate parts of that explication needed to make our story
self-contained.

Imagine that you have some entity E. What does it mean that E is a
sequential algorithm? A part of the answer is easy: every algorithm is a (not
necessarily finite-state) automaton.
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Postulate 1 (Sequential time) The entity E determines

• a nonempty collection of states,
• a nonempty collection of initial states, and
• a state-transition function.

The postulate does not say anything about final states; we refer the interested
reader to [13, Sect. 3.3.2] in this connection. This single postulate allows us to
define behavioral equivalence of sequential algorithms.

Definition 1. Two sequential algorithms are behaviorally equivalent if they
have the same states, initial states and transition function.

It is harder to see what else can be said about sequential algorithms in full
generality. Of course, every algorithm has a program of one kind or another,
but we don’t know how to turn this into a postulate or postulates. There are
so many different programming notations in use already, and it is bewildering
to imagine all possible programming notations.

Some logicians, notably Andrey A. Markov [18], insisted that the input to
an algorithm should be constructive, like a string or matrix, so that you can
actually write it down. This excludes abstract finite graphs for example. How
would you put an abstract graph on the Turing machine tape? It turned out,
however, that the constructive input requirement is too restrictive. Relational
databases for example represent abstract structures, in particular graphs, and
serve as inputs to important algorithms.

Remark 1 You can represent an abstract graph by an adjacency matrix. But
this representation is not unique. Note also that it is not known whether there
is a polynomial-time algorithm that, given two adjacency matrices, determines
whether they represent the same graph.

A characteristic property of sequential algorithms is that they change their
state only locally in any one step. Andrey N. Kolmogorov, who looked into
this problem, spoke about “steps whose complexity is bounded in advance”
[15]. We prefer to speak about bounded work instead; the amount of work
done by a sequential algorithm in any one step is bounded, and the bound
depends only on the algorithm and not on the state or the input. But we don’t
know how to measure the complexity of a step or the work done during a step.
Fortunately we found a way around this difficulty. To this end, we need two
additional postulates.

According to the abstract state postulate, all states of the entity E are
structures (that is first-order structures) of a fixed vocabulary. If X is an (ini-
tial) state of A and a structure Y is isomorphic to X then Y is an (initial)
state of A. The abstract state postulate allows us to introduce an abstract
notion of location and to mark locations explored by an algorithm during a
given step. The bounded exploration postulate bounds the number of loca-
tions explored by an algorithm during any step; the bound depends only on
the algorithm and not on the state or the input. See details in [13].
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Definition 2. A sequential algorithm is any entity that satisfies the sequential-
time, abstract-state and bounded-exploration postulates.

A sequential abstract state machine is given is by a program, a nonempty
isomorphism-closed collection of states and a nonempty isomorphism-closed
subcollection of initial states. The program determines the state transition
function.

Like a Turing machine program, a sequential ASM program describes only
one step of the ASM. It is presumed that this step is executed over and over
again. The machine halts when the execution of a step does not change the
state of the machine. The simplest sequential ASM programs are assignments:

f(t1, . . . , tj) := t0

Here f is a j-ary dynamic function and every ti is a ground first-order term.
To execute such a program, evaluate every ti at the given state; let the result
be ai. Then set the value of f(a1, . . . , aj) to a0. Any other sequential ASM
program is constructed from assignments by means of two constructs: if-then-
else and do-in-parallel. Here is a sequential ASM program for the Euclidean
algorithm: given two natural numbers a and b, it computes their greatest
common divisor d.

Example 1 (Euclidean algorithm 1).

if a = 0 then d := b
else do in-parallel

a := b mod a
b := a

The do-in-parallel constructs allows us to compose and execute in parallel two
or more programs. In the case when every component is an assignment, the
parallel composition can be written as a simultaneous assignment. Example 1
can be rewritten as

if a = 0 then d := b
else a, b := b mod a, a

A question arises what happens if the components perform contradictory ac-
tions in parallel, for example,

do in-parallel
x := 7
x := 11

The ASM breaks down in such a case. One can argue that there are better
solutions for such situations that guarantee that sequential ASMs do not break
down. In the case of the program above, for example, one of the two values, 7 or
11, can be chosen in one way or another and assigned to x. Note, however, that
some sequential algorithms do break down. That is a part of their behavior.
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If sequential ASMs do not ever break down, then no sequential ASM can be
behaviorally equivalent to a sequential algorithm that does break down.

In the Euclidean algorithm, all dynamic functions are nullary. Here is a
version of the algorithm where some of dynamic functions are unary. Initially
mode = s = 0.

Example 2 (Euclidean algorithm 2).

if mode = 0 then a(s), b(s), mode := Input1(s), Input2(s), 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

Theorem 1 (Sequential characterization theorem). Every sequential
ASM is a sequential algorithm, and every sequential algorithm is behaviorally
equivalent to a sequential ASM.

We turn our attention to parallel algorithms and quote from [4]: “The term
‘parallel algorithm’ is used for a number of different notions in the literature.
We have in mind sequential-time algorithms that can exhibit unbounded par-
allelism but only bounded sequentiality within a single step. Bounded sequen-
tiality means that there is an a priori bound on the lengths of sequences of
events within any one step of the algorithm that must occur in a specified
order. To distinguish this notion of parallel algorithms, we call such paral-
lel algorithms wide-step. Intuitively the width is the amount of parallelism.
The ‘step’ in ‘wide-step’ alludes to sequential time.” Taking into account the
bounded sequentiality of wide-step algorithms, they could be called “wide and
shallow step algorithms”.

4 Interaction

4.1 Interstep Interaction

One may have the impression that the algorithms of the previous section
do not interact at all with the environment during the computation. This
is not necessarily so. They do not interact with the environment during a
step; we call such algorithm isolated step algorithms. But the environment
can intervene between the steps of an algorithm. The environment preserves
the vocabulary of the state but otherwise it can change the state in any way. It
makes no difference in the proofs of the two characterization theorems whether
interstep interaction with the environment is or is not permitted.

In particular, Euclidean algorithm 2 could be naturally interstep interac-
tive; the functions Input1 and Input2 do not have to be given ahead of time.
Think of a machine that repeatedly applies the Euclidean algorithm and keeps
track of the number s of the current session. At the beginning of session s,
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the user provides numbers Input1(s) and Input2(s), so that the functions In-
put1(s) and Input2(s) are external. The interstep interactive character of the
algorithm becomes obvious if we make the functions Input1, Input2 nullary.

Example 3 (Euclidean algorithm 3).

if mode = 0 then a(s), b(s), mode := Input1, Input2, 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

4.2 Intrastep Interaction

In applications, however, much of the interaction of an algorithm with its
environment is intrastep. Consider for example an assignment

x := g(f(7))

where f(7) is a remote procedure call whose result is used to form another
remote procedure call. It is natural to view the assignment being done within
one step. Of course, we can break the assignment into several steps so that
interaction is interstep but this forces us to a lower abstraction level. Another
justification of intrastep interaction is related to parallelism.

Example 4. This example reflects a real-world AsmL experience. To paint a
picture, an AsmL application calls an outside paint applications. A paint agent
is created, examines the picture and repeatedly calls the algorithm back: what
color for such and such detail? The AsmL application can make two or more
such paint calls in parallel. It is natural to view parallel conversations with
paint agents happening intrastep.

Proviso 1 In the rest of this article, we concentrate on intrastep interaction
and ignore interstep interaction. By default, interaction is intrastep interac-
tion.

4.3 The Ubiquity of Interaction

Intrastep interaction is ubiquitous. Here are some examples.

• Remote procedure calls.
• Doing the following as a part of expression evaluation: getting input, re-

ceiving a message, printing output, sending a message, using an oracle.
• Making nondeterministic choices among two or more alternatives.
• Creating new objects in the object-oriented and other paradigms.
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The last two items require explanation. First we address nondeterminis-
tic choices. Recall that we do not consider distributed algorithms here. A
sequential-step algorithm just follows instructions and cannot nondeterminis-
tically choose all by itself. But it can solicit help from the environment, and
the environment may be able to make a choice for the algorithm. For example,
to evaluate an expression

any x | x in {0, 1, 2, 3, 4, 5} where x > 1

an AsmL program computes the set {2, 3, 4, 5} and then uses an outside pseu-
dorandom number generator to choose an element of that set. Of course an
implementation of a nondeterministic algorithm may incorporate a choosing
mechanism, so that there is no choice on the level of the implementation.

Re new object creation. An object-oriented program does not have the
means necessary to create a new object all by itself: to allocate a portion
of the memory and format it appropriately. A create-a-new-object command
solicits outside help. This phenomenon is not restricted to the object-oriented
paradigm. We give a non-object-oriented example. Consider an ASM rule

import v
NewLeaf := v

that creates a new leaf say of a tree. The import command is really a query to
the environment. In the ASM paradigm, a state comes with an infinite set of
so-called reserve elements. The environment chooses such a reserve elements
and returns it as a reply to the query.

4.4 Interaction Mechanisms

One popular interaction form is exemplified by the Remote Procedure Call
(RPC) mechanism. One can think of a remote procedure call as a query to
the environment where the caller waits for a reply to its query in order to
complete a step and continue the computation. This interaction form is often
called synchronous or blocking. Another popular interaction form is message
passing. After sending a message, the sender proceeds with its computation;
this interaction form is often called asynchronous or nonblocking. The syn-
chronous/asynchronous and blocking/nonblocking terminologies may create
an impression that every atomic intrastep interaction is in one of the two
form. This is not the case. There is a spectrum of possible interaction forms.
For example, a query may require two replies: first an acknowledgment and
then an informative reply. One can think of queries with three, four or arbi-
trarily many replies.

Nevertheless, according to [5, Part I], there a universal form of atomic
intrastep interaction: not-necessarily-blocking single-reply queries. In the pre-
vious paragraph, we have already represented a remote procedure call as a
query. Sending a message can be thought of as a query that gets an immediate
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automatic reply, an acknowledgment that the query has been issued. Produc-
ing an output is similar. In fact, from the point of view of an algorithm issuing
queries, there is no principal difference between sending a message and pro-
ducing an output; in a particular application of course messages and outputs
may have distinct formats.

What about two-reply queries mentioned above? It takes two single-reply
queries to get two answers. Consider an algorithm A issuing a two-reply query
q and think of q as a single-reply query. When the acknowledgment comes
back, A goes to a mode where it expects an informative answer to q. This
expectation can be seen as implicitly issuing a new query q′. The informative
reply ostensibly to q is a usual reply to q′. In a similar way, one can explain
receiving a message. It may seem that the incoming message is not provoked
by any query. What query is it a reply to? An implicit query. That implicit
query manifests itself in A’s readiness to accept the incoming message. Here
is an analogy. You sleep and then wake up because of the alarm clock buzz.
Have you been expecting the buzz? In a way you were, in an implicit sort
of way. Imagine that, instead of producing a buzz, the alarm clock quietly
produces a sign “Wake up!” This will not have the desired effect, would it?

In general we do not assume that the query issuer has to wait for a reply
to a query in order to resume its computation. More about that in Sect. 6.

What are potential queries precisely? This question is discussed at length
in [5, Part I]. It is presumed that potential answers to a query are elements
of the state of the algorithm that issued the query, so that an answer makes
sense to the algorithm.

5 Ordinary Interactive Small-Step Algorithms

Proviso 2 To simplify the exposition, in the rest of the article we speak
primarily about small-step algorithms. By default, algorithms are small-step
algorithms.

Informally speaking, an interactive algorithm is ordinary if it has the fol-
lowing two properties.

• The algorithm cannot successfully complete a step while there is an unan-
swered query from that step.

• The only information that the algorithm receives from the environment
during a step consists of the replies to the queries issued during the step.

Ordinary interactive algorithms are axiomatized in [5, Part I]. Some postulates
of [5, Part I] refactor those of [13]. One of the new postulates is this:

Postulate 2 (Interaction Postulate) An interactive algorithm determines,
for each state X, a causality relation �X between finite answer functions and
potential queries.
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Here an answer function is a function from potential queries to potential
replies. An answer function α is closed under a causality relation �X if every
query caused by α or by a subfunction of α is already in the domain of α.
Minimal answer functions closed under �X are contexts at X .

As before, behaviorally equivalent algorithms do the same thing in all
circumstances. To make this precise, we need a couple of additional definitions.
Given a causality relation �X and an answer function α, define an α-trace to
be a sequence 〈q1, . . . , qn〉 of potential queries such that each qi is caused by
the restriction αi of α to {qj : j < k} or by some subfunction of αi. A
potential query q is reachable from α under �X if it occurs in some α-trace.
Two causality relations are equivalent if, for every answer function α, they
make the same potential queries reachable from α.

Definition 3. Two ordinary interactive algorithms are behaviorally equivalent
if

• they have the same states and initial states,
• for every state, they have equivalent causality relations, and
• for every state and context, they both fail or they both succeed and pro-

duce the same next state. ��
We turn our attention to ordinary abstract state machines. Again, a ma-

chine is given by a program, a collection of states and a subcollection of initial
states. We need only to describe programs.

The syntax of ordinary ASM programs is nearly the same as that of iso-
lated state algorithms, the algorithms of [13]. The crucial difference is in the
semantics of external functions. In the case of isolated step algorithms, an
invocation of an external function is treated as a usual state-location lookup;
see Euclidean algorithm 2 or 3 in this connection. In the case of interactive
algorithms, an invocation of an external function is a query.

The new interpretation of external functions gives rise to a problem. Sup-
pose that you have two distinct invocations f(3) of an external function f( )
in your program. Should the replies be necessarily the same? In the case of
an isolated-step program, the answer is yes. Indeed, the whole program de-
scribes one step of an algorithm, and the state does not change during the
step. Two distinct lookups of f(3) will give you the same result. In the case
of an interactive program, the replies don’t have to be the same. Consider

Example 5 (Euclidean algorithm 4).

if mode = 0 then a, b, mode := Input, Input, 1
elseif mode = 1 then

if a = 0 then d, mode := b, 0
else a, b := b mod a, a

The two invocations of input are different queries that may have different re-
sults. Furthermore, in the object-oriented paradigm, two distinct invocations
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of the same create-a-new-object command with the same parameters necessar-
ily result in two distinct objects. We use a mechanism of template assignment
to solve the problem in question [5, Parts II and III].

The study of ordinary interactive algorithms in [5] culminates in

Theorem 2 (Ordinary interactive characterization theorem). Every
ordinary interactive ASM is an ordinary interactive algorithm, and every ordi-
nary interactive algorithm is behaviorally equivalent to an ordinary interactive
ASM.

6 General Interactive Algorithms

Call an interactive algorithm patient if it cannot finish a step without having
the replies to all queries issued during the step. While ordinary interactive
algorithms are patient, this does not apply to all interactive algorithms. The
algorithm

Example 6 (Impatience).

do in parallel
if α or β then x:=1
if ¬α and ¬β then x:=2

issues two Boolean queries α and β. If one of the queries returns “true” while
the other query is unanswered, then the other query can be aborted.

Call an interactive algorithm time insensitive if the only information that
it receives from the environment during a step consists of the replies to the
queries issued during the step. Ordinary algorithms are time insensitive. Since
our algorithms interact with the environment only by means of queries, it is
not immediately obvious what information the algorithm can get from the
environment in addition to the replies. For example, time stamps, reflecting
the times when the replies were issued, can be considered to be parts of the
replies.

The additional information is the order in which the replies come in. Con-
sider for example an automated financial broker with a block of shares to sell
and two clients bidding for the block of shares. If the bid of client 1 reaches
the broker first, then the broker sells the shares to client 1, even if client 2
happened to issue a bid a tad earlier.

An algorithm can be impatient and time sensitive at the same time. Con-
sider for example a one-step algorithm that issues two queries, q1 and q2, and
then does the following. If qi is answered while q3−i is not, then it sets x to
i and aborts q3−i. And if the queries are answered at the same time, then it
sets x to 0.

The following key observation allowed us to axiomatize general interactive
algorithms. Behind any sequential-step algorithm there is a single executor of
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the algorithm. In particular, it is the executor who gets query replies from
the environment, in batches, one after another. It follows that the replies
are linearly preordered according to the time or arrival. In [6, Article 1], we
successfully execute the algorithm explication procedure of Sect. 2 in the case
of general interactive algorithms.

Theorem 3 (Interactive characterization theorem). Every interactive
ASM is an interactive algorithm, and every interactive algorithm is behav-
iorally equivalent to an interactive ASM.

A variant of this theorem is proved in [6, Article 2]. The twist is that,
instead of interactive algorithms, we speak about their components there.

Patient (but possibly time sensitive) interactive algorithms as well as time
insensitive (but possibly impatient) interactive algorithms are characterized
in [6, Article 3].

These variants of the interactive characterization theorem as well as the
theorem itself are about small-step algorithms. The interactive characteriza-
tion theorem is generalized to wide-step algorithms in [6, Article 4].

7 Perspective

The behavioral theory of small-isolated-step algorithms [13] was an after-the-
fact explanation of what those algorithms were. Small-isolated-step algorithms
had been studied for a long time.

The behavioral theory of wide-isolated-step algorithms was developed in
[3]. Wide-isolated-step algorithms had been studied primarily in computa-
tional complexity where a number of wide-isolated-step computation mod-
els had been known. But the class of wide-isolated-step algorithms of [3] is
wider. The theory was used to develop a number of tools [1], most notably
the specification language AsmL [2]. Because of the practical considerations
of industrial environment, intrastep interaction plays a considerable role in
AsmL. That helped us to realize the importance and indeed inevitability of
intrastep interaction.

The behavioral theory of intrastep interactive algorithms is developed in
[5, 6]. While intrastep interaction is ubiquitous, it has been studied very little if
at all. We hope that the research described above will put intrastep interaction
on the map and will give rise to further advances in specification and high-level
programming of interactive algorithms.

Appendix: What Is Interaction Anyway?

The main part of this article presented our approach to interactive comput-
ing. There is another approach to interactive computing pioneered by Peter
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Wegner [21, 20], developed in particular in article [9], and presented in this
volume by Dina Goldin and Peter Wegner [10]. The editors of this volume
suggested that a comparison of the two approaches would be useful; hence
this appendix. The appendix refers to the main part of this article but can
be read independently. The version of article [10] available to us when this
appendix is being written (the first part of December 2005) does not have
references to the ASM approach.

What is an Algorithm?

The two schools use the term algorithm differently. The Wegner school uses the
term algorithm in the classical sense of Turing’s article [19]. This is perfectly
legitimate. But Turing explicated the notion of string-to-string computable
function rather than the notion of algorithm. Even in Turing’s time, the term
algorihm had a wider meaning; recall the Gauss elimination procedure or
geometric compass-and-ruler constructions. And the meaning of the term al-
gorithm in computer science has been expanding. People speak of parallel and
distributed algorithms; see [16, 17] for example. Our usage of the term algo-
rithm is the convergence point for that expansion. For us, an algorithm is a
(real or imaginable, physical or abstract) computer system at an abstraction
level where its behavior—possibly interactive, possibly parallel, etc.—is given
or can be given by a program. We devoted much attention to explicating the
notion of algorithm [4].

Can an Algorithm be Interactive?

Our answer to the title question is positive of course. The title “Why Inter-
action is More Powerful than Algorithms” of [21] may suggest the opposite.
Wegner’s school speaks about interactive computing but not about interac-
tive algorithms. Taking into account the philosophical character of article [10],
we note that the discrepancy is terminological, not philosophical. The term
interactive algorithm is used in the rest of this appendix.

Note 1 Even classical Turing machines are somewhat interactive because it is
the environment that provides the input and presumably consumes the ouput.
Nondeterministic Turing machines, which seem to be accepted as algorithms
by the Wegner school [9], need additional interaction to resolve nondetermin-
istic choices; see Sect. 4.3 above in this connection. ��

We distinguish between two kinds of interaction of an algorithm with the
envrionment. One kind is interstep interaction, when the environment modifies
the state of the algorithm (to a legitimate state) before, after, or between the
steps of the algorithm. The other kind is intrastep interaction that takes place
during a step. An algorithm that is not intrastep interactive is an isolated-step
algorithm. Abstract state machines have been intrastep interactive (by means
of external functions) from the beginning [11].
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Two Distinct Theses

Can one capture the behavior of interactive algorithms in the same way that
Church and Turing captured the computability of string-to-string functions?
Both, the ASM school and the Wegner school, attempt to meet the challenge.
Article [9] defines persistent Turing machines (PTMs). A PTM is a non-
deterministic Turing machine with three one-way-infinite tapes: a read-only
input tape, a read/write work tape, and a write-only output tape. PTMs are
interstep interactive in the following sense. The computation of a PTM splits
into macrosteps, and the environment intervenes between the macrosteps. The
environment

• puts a new input on the input tape and resets the input-tape head to the
initial position,

• removes the output from the output tape and resets the output-tape head
to the initial position,

• but leaves the work tape intact (that is the persistent aspect of PTMs).

Article [10] asserts that “any sequential interactive computation can be per-
formed by a persistent Turing machine.”

We put forward a similar thesis where the role of persistent Turing ma-
chines is played by interactive abstract state machines (interactive ASMs);
see the main part of this article. Either thesis is meaningful but they are not
equivalent. Interactive ASMs are more powerful and more interactive than
PTMs.

Interactive ASMs Faithfully Simulate PTMs

A simulation of an interactive algorithm A by an interactive algorithm B is
faithful if B can replace A in every legal enviroment of A. In other words, every
legal enviroment E of A is a legal enviroment of B, and the interactive behavior
of B in E coincides with that of A. In the case of PTMs, interactive behaviors
are defined as interactive streams [9]. An interactive stream is essentially the
first input followed by the first output, followed by the second input, and so
on.

Claim 1 For every PTM P , there is an interactive ASM A that faithfully
simulates P .

Proof. Employ bounded-choice ASMs of [13, Sect. 9.2]. Bounded choice gives
the necessary nondeterminism, and interactive runs [13, Sect. 8.2] provide the
necessary intermacrostep interaction. The simulation is step-for-step (that is
microstep for microstep) and preserves the interaction stream. ��

Alternatively we can employ the ordinary ASMs of [5] that don’t have the
bounded-choice construct and do not need interstep interaction. Instead two
external functions are used, one to resolve nondeterminism, and another to
access input. Again the simulation is step for step and preserves the interaction
stream.
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PTMs Cannot Faithfully Simulate Interactive ASMs

Claim 2 There is a sequential ASM A1 such that (i) A1 is noninteractive (ex-
cept that the environment provides input and consumes output) and (ii) there
is no PTM with the same input/output behavior.

Proof Sketch. We exploit the higher abstraction level of ASMs. For exam-
ple, the desired A1 may express the Euclidean algorithm that works with any
Euclidean domain. A1 has a variety of initial states. One initial state of A1

could include the ring of integers and two distinguished integers (whose great-
est common divisor A1 is supposed to find), and another initial state of A1

could include the ring of polynomials over some field K and two distinguished
polynomials. ��

But let’s concentrate on interaction. In most cases, a legal environment
E of an interactive ASM A is not a legal environment of any PTM B. The
messages that E sends to A are illegible to B. Even if there is a canonic
translation of messages to input string, somebody should do that translation
work. In other words, B requires a more hardworking environment. We will
return to this issue in Note 2 below.

Besides, the interactive behaviors of ASMs [6, Article 1] are more compli-
cated than PTM interaction streams. Here is a simple example. Consider an
interactive ASM

do in parallel
if α ≺ β then x := 1
if β 
 α then x := 2

Call it A2. It makes only one step. It issues two queries α and β but cares only
about the reply times; otherwise it does not care about the returned values
(so that there is no problem of transforming those values to PTM input). The
symbols ≺ and 
 compare the times when the answers are returned. If α is
answered before β then β is ignored and x gets 1; it will make no difference
whether β is eventually answered or not. If β is answered before or simulta-
neously with α then x gets 2 (and α is ignored in case β is answered earlier).
In our terms, this ASM is time (that is message arrival time) sensitive. Time
sensitivity is important in applications. See the automated broker example in
Sect. 6 above in this connection.

An appropriate PTM can simulate A2 in two macrosteps. It writes the
two queries on the output tape and then examines the input provided by the
environment. But this simulation is not faithful. No PTM B can faithfully
simulate A2. Consider an environment that provides A2 with one or two an-
swers. A2 realizes immediately how many replies are there, and, in the case
of single reply, what query is this reply to. In order for a PTM to understand
this information, it should be transformed into a PTM input, and somebody
should do the transformation job.



Interactive Algorithms 2005 with Added Appendix 181

Note 2 Classical Turing machines suffer from a similar limitation. Consider
a noninteractive algorithm A that takes graphs as inputs. No Turing machine
can simulate A directly. Somebody has to transform the input graph into a
string. Interaction exacerbates the problem for PTMs. Consider an interactive
algorithm A and a PTM that is supposed to simulate A. Not only inputs
should be coded and outputs decoded, but also every message sent to A should
in general be coded and every information sent by A should in general be
decoded. In addition, as we have seen in the example above, there may be need
to code some information related to the arrival times of various messages. ��

Thesis Justification

In [4], we mentioned how differently Church and Turing arrived at their re-
spective theses. Church made a good guess, but Turing convincingly argued
his thesis. In particular, Gödel was not convinced by Church’s guess but was
convinced by Turing’s analysis. Inspired by Turing’s analysis, we have been
trying hard to justify the interactive ASM thesis from first principles; see the
main part of this article. It would be interesting to see a justification of the
PTM thesis from first principles.

Of course nothing can replace experimental evidence for a thesis, but we
will not address that issue here.
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