
Generating Finite State Machines
from Abstract State Machines

Wolfgang Grieskamp
Microsoft Research

Redmond, WA
wrwg@microsoft.com

Yuri Gurevich
Microsoft Research

Redmond, WA
gurevich@microsoft.com

Wolfram Schulte
Microsoft Research

Redmond, WA
schulte@microsoft.com

Margus Veanes
Microsoft Research

Redmond, WA
margus@microsoft.com

ABSTRACT
We give an algorithm that derives a finite state machine (FSM)
from a given abstract state machine (ASM) specification. This
allows us to integrate ASM specs with the existing tools for test
case generation from FSMs. ASM specs are executable but have
typically too many, often infinitely many states. We group ASM
states into finitely many hyperstates which are the nodes of the
FSM. The links of the FSM are induced by the ASM state
transitions.

Keywords
finite state machine, FSM, abstract state machine, ASM, test case
generation, executable specification

1. INTRODUCTION
The group on Foundations of Software Engineering at Microsoft
Research has developed an industrial-strength high-level
executable specification language AsmL [13]. AsmL builds on the
concept of abstract state machine [18] and provides a modern
specification environment that is object-oriented and component-
based. Here we are concerned with using AsmL specifications as
a source for algorithmic generation of test suites. This is one
approach to model-based testing, and such testing is receiving
more and more attention in Microsoft's product groups recently.
Typically, however, the models used are finite state machines
(FSMs). There are pretty good tools for deriving test suites from
FSMs. So it is reasonable for us to integrate with those tools. This
is how we arrived to the problem addressed in this paper:
algorithmic generation of an FSM from a given AsmL spec. Of
course the desired FSM should reflect important functionalities of
the spec, so that the resulting test suites are meaningful. The FSM
also should be of manageable size.
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA 2002, Rome, Italy.
Copyright 2002 ACM 1-58113-562-9/02/0007 .……$5.00.

We start with an abstract state machine which models some
implementation under test (IUT) and which is written in AsmL;
this model will be referred to as the ASM or the ASM spec. The
ASM may have too many, often infinitely many, states. To this
end, we group ASM states into finitely many hyperstates. This
gives rise to a finite directed graph or finite state machine whose
nodes are the generated hyperstates. Then state transitions of the
ASM are used to generate links between hyperstates. Let us note
that it is not necessary to first produce an FSM and then use the
FSM for test generation. The graph-generating procedure itself
can be used to produce a test suite as a byproduct.

The FSM-generating algorithm is a particular kind of graph
reachability algorithm. It starts from the initial state and builds up
a labeled state transition graph by invoking actions that are parts
of the ASM. If a new state is encountered, it is added to the
frontier of unexplored states but only if this new state is
considered to be relevant e.g. if it gives a new hyperstate. A
suitable relevance condition is an important part of the algorithm
that determines the quality of the generated FSM and whether the
algorithm terminates.

The generated FSM and the original ASM are related in a natural
way. Suppose that an action a is applied to an ASM state s. What
will be the next state of the ASM or – if a is nondeterministic –
what are the possible next states? That depends on Boolean
guards of the spec of a. The guards reflect the state distinction
that the specification writer cared enough about to make explicit.
Say that two states of the ASM are distinguishable by guards if
there exists a guard that is satisfied in one of the two states but not
in the other. Indistinguishability by guards is an example of a
useful equivalence relation given by a sequence of Boolean
conditions, the distinguishing sequence. There are other useful
distinguishing sequences and corresponding equivalence relations.
The algorithm takes a distinguishing sequence as an additional
input. Hyperstates are the corresponding equivalence classes.

We illustrate the algorithm on a medium size spec of a Universal
Plug and Play (UPnP) device. UPnP device architecture is a
world-wide industry standard for peer-to-peer network
connectivity of various intelligent appliances, wireless devices
and PCs [26].

Our reduction of states to hyperstates is a form of data
abstraction. In model checking, data abstraction is a well-known
technique to cope with state explosion. In the context of model
checking, the more abstract model must simulate the original
model, so that certain properties of the original model are
preserved [8]. In order to ensure this simulation, the standard

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 2002 ACM 1-58113-562-9...$5.00

112

data-abstraction algorithms used in model checking may yield an
over-approximation (with extra transitions) of the ideal data
abstraction [8]. An over-abstraction also arises when one uses the
method of abstract interpretation of programs [9]. In contrast, the
output of our algorithm may under-approximate the true FSM so
that some reachable hyperstates or some links between reachable
hyperstates may be missing. The reason is that we work with the
states of the original ASM: every FSM node is the hyperstate of a
reachable ASM state, and every FSM link is given by a transition
between reachable ASM states. In general, there is no algorithm
(guaranteed to terminate) that generates the true FSM; this is
proved in 3.3.

This article is written in the AsmL tradition: the same text serves
the human reader and the computer. The computer will extract
the program part which appears in the special AsmL style and
execute our FSM generating algorithm on the UPnP device
example.

We do not presume that the reader is familiar with ASMs or
AsmL. The article is self-explanatory. In particular, the AsmL
rules themselves are pretty much self-explanatory but we also
provide additional explanation. The interested reader can always
consult the AsmL website [13].

2. BASIC SETUP
We are given an implementation under test (IUT) and an ASM
specification S. We assume that the actions that the IUT can be
invoked with form a fixed and finite set. This set is usually only
an approximation of the set of all possible actions that the real
IUT can be called with, that may in general be infinite if the real
actions have parameters ranging over infinite domains. Parameter
selection in testing is a difficult problem all by itself and it is out
of the scope of the current paper.

The specification S reduces to the following normal form. For
each action a, there is a rule called the action spec for a. Each
action spec is a do-in-parallel block

 if g1 then R1
 ...

 if gk then Rk
where each clause if gi then Ri is composed from a Boolean-
valued guard gi and body Ri. The body is a possibly
nondeterministic rule without any conditional sub-rules. We say
that there is a transition with label a or an a-transition from a
state A1 to a state A2, if after firing (the action spec for) a in state
A1 a possible resulting state is A2. A run is a finite sequence of
transitions where the end state of every transition is the start state
of its immediate successor (if any) in the sequence. We require
that there is a fixed initial state for S. The reachable states of S
are those states that can be reached from the initial state of S by
means of the runs. The fact that action specs have the normal
form is convenient but not essential for this paper.

The ASM specification S describes the desired behavior of the
IUT leaving out various implementation details. IUT is the
subject of actions by the external environment or by the user of
the IUT. For simplicity, we consider one pool of actions
(including those of the environment and those of the user) and

have in mind a single testing agent. The problem we are dealing
with here is to provide a set of action sequences (a test suite) that
the testing agent can use to drive the IUT through as many
distinguishable states as possible. You may want not to
distinguish between states where the difference is not relevant
from the testing standpoint. It is desirable that such
indistinguishability relation is an equivalence relation that has
only finitely many equivalence classes.

Conceptually, our method consists of two, largely independent,
steps:

1. Extract a finite state machine M from the given S, where
each node1 of M represents an equivalence class of the
states of S.

2. Use M to generate a test suite, that is a set of action
sequences.

In the following sections we explain in detail how the proposed
FSM extraction algorithm works. Only a short section 4 is
devoted to the test suite generation.

2.1 Indistinguishability and Hyperstates
We will use Boolean-valued conditions to define the desired
equivalence relation between the states of the given spec S.
Natural candidates for such conditions are those that explicitly
appear in S, but one may also consider their derivatives by e.g.
incrementing or decrementing numerical boundary conditions that
occur in S. Let b be a fixed nonempty sequence b0,...,bn-1 of n
such conditions. Say that two states are b-distinguishable if some
bi distinguishes between them. Any two states that are not
distinguishable by b are b-indistinguishable. We will, as a rule,
omit the distinguishing sequence b when it is clear from the
context. It is easy to see that the indistinguishability relation is a
finite equivalence relation. Define hyperstate as an equivalence
class of this equivalence relation. A transition is local if both of
its endpoints are in the same hyperstate.

Notice that there are at most 2n hyperstates. The actual number is
less if the conditions in the sequence are not independent. For
example, if the disjunction of all the conditions is necessarily true
then the hyperstate where all the conditions are false is not
realized. Let H be a hyperstate; the index of H is the binary
sequence h0,...,hn-1 such that, for all i<n, hi=1 if bi holds in the
states in H, and hi=0 otherwise. The index of a hyperstate H
uniquely determines which conditions of b are true and which are
false in the states of H. We identify hyperstates with their indices.
The index of a state is the index of its hyperstate.

2.1.1 Selecting the Distinguishing Sequence
There are various natural selections of the distinguishing

sequence b. One selection comprises the guards that actually
appear in S. This reflects the case distinctions made explicit by
the author of S. A second selection comprises the Boolean
constituents (that is Boolean-indecomposable parts) of the guards.
Typically, the number of hyperstates is larger in the second case,

1 In order to avoid confusion between the states of S and the states

of the finite automaton, we use the term node for the latter.

113

which, depending on the purpose, may be an advantage or a
disadvantage. The second selection will be illustrated below.
There are intermediate selections. For example, you reduce every
guard to a disjunctive (or the full disjunctive) normal form and
then use the conjunctions. (In the full disjunctive normal form,
every one of those conjunctions contains every constituent,
negated or non-negated.)

2.1.2 The True FSM
Ideally, we would like to generate an FSM from S and b that
contains all the possible links. We call this the true FSM for S and
b. The nodes of the true FSM are the indices of all the reachable
states of S. The initial node is the index of the initial state of S.
There is a link (n1,a,n2) from node n1 to node n2 with label a in the
true FSM if there is an a-transition from a reachable state of S
with index n1 to a state with index n2. Notice that you may have
also unreachable states with index n1; the restriction to reachable
states in the previous sentence is important.
Some remarks: 1) Not all hyperstates are necessarily represented
in the true FSM, only the reachable ones are. 2) The true FSM
may be nondeterministic even if S is deterministic. This occurs
when there exist two state transitions with the same label from
two indistinguishable states to two distinguishable states. 3) The
true FSM may be deterministic even if S is nondeterministic.
Intuitively this means that the nondeterminism in S is not visible
at the abstraction level imposed by the distinguishing sequence.

2.2 A Sample Device as IUT
As a running example we use one service of a medium size UPnP
device as our IUT. UPnP device architecture is a standard for
peer-to-peer network connectivity of various intelligent
appliances, wireless devices and PCs; see the website [26] of the
industrial UPnP Forum. A distributed ASM model of the UPnP is
described in [15][16].
Here we consider a CD player. In the full model (see [16]) this
device has two services, ChangeDisc and PlayCD. We use the the
first one as our running example; see Figure 1. It allows a user
(the control point in UPnP terms) to add discs to or remove discs
from the CD player, to choose a disc to be placed on the tray, and
to toggle (open/close) the door. Figure 1 illustrates the relevant
state information associated with the service.
We use AsmL to write a specification for the ChangeDisc service.
This will also provide a small introduction to AsmL.
First we describe the variables of the ASM state together with the
initial values.
class CHANGEDISC
 var occupiedSlots as Set of Integer = {}
 var currentSlot as Integer = 1
 var doorIsOpen as Boolean = false
 var doorIsStuck as Boolean = false
 var result as RESULT = undef

Figure 1. ChangeDisc service of a CD Player.

The reader may wonder what the role of the result is. Apply an
action a to a state s and let t be a resulting state. The action may
produce a Boolean or an error.
structure RESULT
 case ERR
 code as String
 case BOOL
 res as Boolean
This result is important and the hyperstate of t should reflect it.
But here, for simplicity, we all but ignore the results. Our
hyperstates do not reflect them. But we leave the result in the
state t as a reminder of the importance of results. Alternatively we
could attach the results to transitions rather than states. The
question arises what is the result of the initial state because it is
not a priori produced by any transition. Naturally the result of the
initial state is undef.

Now we describe the part of the state that does not change: the set
of slots. The additional constraint says that the current slot and all
the occupied slots must be members of the set of all slots.
class CHANGEDISC ...
 allSlots as Set of Integer
 constraint
 currentSlot in allSlots and
 occupiedSlots subset allSlots
The action specs use several private helper functions whose
intended meaning is self-explanatory. For example, the
trayHasDisc() function checks whether the current slot is
occupied. The remaining helper functions are defined in the
appendix.

10

.

9
8
7
6
5
4
3
2
1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied
Slots

10

.

9
8
7
6
5
4
3
2
1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied
Slots

114

class CHANGEDISC ...
 trayHasDisc() as Boolean
 return currentSlot in occupiedSlots
The AddDisc action opens the door (or leaves it open) and
chooses a free slot as the new current slot. There are altogether 11
actions, see the appendix.
class CHANGEDISC ...
 AddDisc()

 if not (isFull() or
 isClosedAndStuck()) then
 doorIsOpen := true
 choose slot in emptySlots()
 currentSlot := slot

 else
 ReportAnyError({(isFull(),"full"),

 (isClosedAndStuck(),"stuck")})

A hyperstate is defined in this algorithm as a sequence of
Booleans.
structure Hyperstate
 content as Seq of Boolean
We define the distinguishing sequence to be a sequence of all the
Boolean-indecomposable conditions that appear in the guards.
class CHANGEDISC ...
 GetHyperstate() as Hyperstate
 h1 = doorIsOpen

 h2 = trayHasDisc()

 h3 = successors() = {}

 h4 = predecessors()={}

 h5 = isEmpty()

 h6 = isFull()

 h7 = doorIsStuck

 return
 Hyperstate([h1,h2,h3,h4,h5,h6,h7])

2.3 Coverage
One can define various notions of coverage in terms of the
generated FSM M, the ASM specification S, and the generated
test suite. Although we will not go into details of any of the
notions, since it is a separate topic all by itself, it is worth
mentioning that there are in principle two different ways to
measure coverage here. One is to look at the structure of M (as a
directed graph) and the other is to look at the structure of S. The
IUT itself is assumed to be a black box. In the first case, one may
consider node coverage and link coverage. In the second case,
one may consider statement coverage or branch coverage at the
clause level of the action specs [1]. Several notions of structural
ASM specification coverage are defined in [14].

3. FSM EXTRACTION FROM ASMS
In this section, we concentrate on the finite state machine
extraction problem. The extraction algorithm works with a given
ASM spec and is itself described as an ASM. The algorithm keeps
executing the actions of the given spec on concrete states of that
spec and building up the transition graph as it goes. The end state
of a new transition is added to the frontier if the transition is
relevant in an appropriate technical sense; the start state of the
transition is deleted from the frontier. Initially the frontier consists
of the initial state. The algorithm terminates when the frontier
becomes empty.
Typically the state space is very large and you want to prune it as
much as possible while reaching as many hyperstates as possible.
This brings us to the problem of finding an adequate definition of
relevance. First we show two relevance definitions that are the
two extreme cases of a wide spectrum of possible relevance
definitions, and we explain why these two definitions are
problematic. Toward a solution of the relevance problem we
introduce the notion of an improvement relation between states.
Roughly, the improvement relation provides domain-specific
knowledge for the algorithm to make better choices in pruning the
search space. Using the improvement relation, we define a notion
of relevance that is actually used in the algorithm.
In general our algorithm may "under-approximate" the true FSM,
that is some links or even nodes may be missing. In general, it
takes an unreasonably liberal relevance condition to guarantee
that the true FSM is constructed in full. We will return to this
problem in Section 3.3.
We now describe the algorithm in detail using AsmL. A test-state
is the dynamic part of the full state of the spec. For brevity, we
will often omit the "test" qualifier. States (that is test states) are
naturally represented by AsmL structures.
structure State
Actions are identified by strings.
structure Action
 name as String
The FSM generation algorithm operates the spec by means of a
test harness
class GenFSM
 h as Harness
The harness provides the initial state, the set of actions, a function
that calculates (the index of) the hyperstate of a given state, and a
method Fire that invokes a given action at a given state and
returns a resulting state. There may be several possible resulting
test states due to the nondeterminism of the spec.
interface Harness
 Initially() as State
 Actions() as Set of Action
 GetHyperstate(s as State) as Hyperstate
 Fire(s as State, a as Action) as State
The dynamic state of the GenFSM algorithm comprises the set of
transitions that have been generated, initially empty; the frontier,
a sequence of states to be traversed, initially containing only the

115

initial state; and the set of hyperstates that have been generated,
initially containing only the hyperstate of the initial state.
class GenFSM ...
 var transitions
 as Set of(State,Action,State) = {}
 var frontier as Seq of State
 var hypers as Set of Hyperstate
The initialization of the frontier and hypers fields is given below.
The method main is the entry point of the algorithm.
class GenFSM ...
 main()

 step while frontier ne []
 generate()

The algorithm generates new transitions from the frontier states,
handling one state and one action at a time. The AsmL statement
explore e produces a sequence of all possible return values of
the expression e. It makes it possible to handle nondeterministic
ASM specifications. In this case, explore is used to produce all
the transitions that exist from a given state on a given action.
class GenFSM ...
 generate()

 step
 s = head(frontier)

 frontier := tail(frontier)

 step foreach a in h.Actions()
 nextStates = explore h.Fire(s,a)
 step foreach t in nextStates
 transitions(s,a,t) := true
 if relevant(s,a,t) then
 frontier := frontier + [t]

 hypers := hypers union
 {h.GetHyperstate(t)}

3.1 Relevance
The definition of relevant transition plays an important role in the
algorithm. One possible definition of relevance (not the one that
we will use) stipulates that a transition is relevant only if the
hyperstate of the end state has not been encountered yet. This is
clearly a minimal requirement.
class GenFSM ...
 relevant1(s as State,
 a as Action,
 t as State) as Boolean
 return h.GetHyperstate(t) notin hypers
The potential state explosion problem of the generated FSM is
somewhat ameliorated by the fact that only reachable hyperstates
are produced. But the total number of reachable hyperstates may
be also exponential in the length of the distinguishing sequence.

The second definition of relevance (again, not the one that we will
use) stipulates that a transition is relevant if the end state itself
(rather than hyperstate) has not been encountered yet. With the
second definition, the algorithm will not terminate unless the total
number of reachable states is finite. If it does terminate the
resulting FSM is the true FSM, no reachable state has been
omitted.
class GenFSM ...
 relevant2(s as State,
 a as Action,
 t as State) as Boolean
 //check if t has been encountered

3.1.1 CHANGEDISC Example
Recall the CHANGEDISC service specification in 2.2. A harness
for it is given in the appendix.
If we run a 30 slot version of the spec with relevant1 then we
obtain 24 hyperstates. Many hyperstates are missing because the
algorithm never discovers the ones where the CD player is full. If,
on the other hand, we run the same 30 slot version with
relevant2 then the state space explodes. See also Table 1 in
this connection.
The problem with relevant1 is quite general. In order to
discover a new hyperstate, you may need new representatives of
the hyperstates that have been encountered, but the relevance
conditions forces you to discard all new representatives. This is
related to the non-discovery problem discussed in Section 3.3. A
partial but practically important solution of this problem is
provided by the notion of improvement relation.

3.2 Improvement Relations
Consider a fixed specification. We want to use our domain-
specific knowledge about its state space to define the relevance
condition. How can we do that? Typically there may be certain
(more or less abstract) goals that we want to achieve. For
example, in the case of the CD changer the goal may be that all
the slots are occupied. Given a goal, we want the algorithm to
make progress towards that goal and thus discover new
hyperstates. An appropriate improvement relation on states allows
us to achieve that. When you encounter a new state, check
whether it is an improvement toward the goal comparative to the
old state. Improvement relations help us define appropriate
relevance conditions.
The GenFSM algorithm itself is independent of the particular
improvement relations. They are given by the harness.
interface Harness ...
 //returns true if t is

 //an improvement over s toward the goal g

 improved(s as State,
 t as State, g as Goal) as Boolean
 goals() as Set of Goal //set of all goals

116

Now we are ready to give a useful relevance condition which we
will use. A transition (s,a,t) is relevant if either t leads to a
new hyperstate or else t is an improvement over the best state
seen so far toward some goal. In the bestState map we keep
track of the best state seen so far for each goal.

class GenFSM ...
 var bestState as Map of Goal to State
 GenFSM(h1 as Harness) //the constructor
 h = h1

 bestState = {g |-> h1.Initially() |

 g in h1.goals()}
 frontier = [h1.Initially()]
 hypers =
 {h1.GetHyperstate(h1.Initially())}

 relevant(s as State,
 a as Action,
 t as State) as Boolean
 forall g in h.goals() where
 h.improved(bestState(g),t,g)

 bestState(g) := t

 return
 (h.GetHyperstate(t) notin hypers) or
 (exists g in h.goals() where
 h.improved(bestState(g),t,g))

3.2.1 CHANGEDISC Example Revisited
We have a single goal to reach any state where the disc changer is
full.
enum Goal
 DCisFull

In order to define an appropriate improvement relation for that
goal we use a weight function that gives the minimal distance to
(that is the minimal number of actions required to reach) a state
where the disc changer has no empty slots.
class CDHARNESS implements Harness
 goals() as Set of Goal
 return {DCisFull}
 improved(s as State,
 t as State, g as Goal) as Boolean
 return weight(t as CDState) <
 weight(s as CDState)

 weight(s as CDState) as Integer
 free= size(slots)- size(s.occupiedSlots)

 if s.doorIsOpen and
 (s.currentSlot notin s.occupiedSlots)

 then return 2 * free - 1
 else return 2 * free
When we run the 30 slot version of the algorithm with the
relevance (called relevance3 in Table 1 below) given by this
improvement relation, it produces 44 hyperstates and 531 links
between hyperstates. Some more statistics for the disc changer
example is found in Table 1. With the given improvement
relation, we discover all hyperstates of the true FSM but only
about 85% of the links.

Table 1. Sizes of generated FSMs for the disc changer example
with different # of slots and different relevance conditions.

relevance1 relevance3 relevance2
(true FSM)

nodes links nodes links nodes links

1 slot 8 88 8 88 8 88

2 slots 24 270 24 270 24 273

3 slots 24 273 40 475 40 516

4 slots 24 273 44 531 44 619

>4 slots 24 273 44 531 44 625

3.2.2 An Example with Multiple Goals
Consider a spec with two actions inc and dec. There are two
integer-valued state variables x and y with initial value 0. The inc
action increments x by one and the dec action decrements y by
one. The distinguishing sequence contains the conditions x=max
and y=min where min is some negative number and max some
positive number. The two obvious orthogonal goals are to reach a
state satisfying the respective boundary condition. The definition
of the improvement relation is obvious for both goals.

3.3 Non-Discovery Problem: Undecidability
and Complexity
Even though the process described in the previous section works
pretty well in practice, at least in our practice, the problem of
extracting the true finite state machine is hard in general. To
make this claim more precise, we introduce several decision
problems and prove that they all are hard. It is hard to discover
hyperstates and it is hard to discover links. We refer to all these
decision problems together as the non-discovery problem.
Hyperstate reachability problem.
Instance: A spec S, a distinguishing sequence b and an index h.
Question: Is hyperstate h reachable?
First link discovery problem.
Instance: A spec S, a distinguishing sequence b, an action a, and
an index h.
Question: Is there an a-transition from any state s in the initial
hyperstate to any state t in the hyperstate h?
Here the initial hyperstate is the hyperstate of the initial state.

117

Second link discovery problem.
Instance: A spec S, a distinguishing sequence b, an action a, and
an index h.
Question: Is there an a-link from the initial hyperstate to
hyperstate h? In other words, is there an a-transition from a
reachable state s in the initial hyperstate to any state t in h.
The third and fourth link discovery problems are like the first and
second, except that h is assumed to be reachable.

Theorem 1 The five decision problems are all undecidable.
Proof. First we assume that S has a unique action a:

 if ¬(p(x1,..,xk) = 0) then R
 if p(x1,..,xk) = 0 then Halt
Here x1,...,xk are integer variables and p is a polynomial with
integer coefficients. In the initial state the integer vector x =
(x1,..,xk) has the value 0 = (0,…,0). The rule R transforms an
integer vector x = (x1,..,xk) to an integer vector x' in such a way
that the infinite sequence

 0, 0', 0'', 0''', …
contains every k-dimensional integer vector. The distinguishing
sequence b consists of one Boolean condition, namely
p(x1,..,xk)=0, so that we have only two possible hyperstates.
Finally let h be (the index of) the hyperstate where
p(x1,..,xk)=0.

It is known that there is no algorithm that, given a polynomial
p(x1,..,xk) with integer coefficients and variables, decides
whether p has a root [24]. This is the famous Diophantine
Equation Problem. By the construction above, it reduces to the
first and second link discovery problems and to the hyperstate
reachability problem, so these three problems are undecidable.
To prove the undecidability of the third and fourth link discover
problems, we extend the spec above by means of another action a'
with spec
 y := true
The new distinguishing sequence consists of one Boolean
condition
 (p(x1,..,xk) = 0) or y
Finally, h is the hyperstate where this condition holds. This
hyperstate is reachable from the initial state by action a'. This
gives us a reduction of the Diophantine Equation Problem to the
second link discovery problem. QED
The proof of Theorem 1 shows that the three decision problems
remain undecidable even if the distinguishing sequence contains
only one Boolean condition.
Theorem 1 implies that there is no algorithm for constructing the
true FSM unless we allow algorithms that may not terminate. In
fact, the second relevance condition (the most liberal one) does
allows us to extract the true ASM, but the resulting algorithm may
not teminate.
To prove a simple lower complexity bound, define the bounded
version of any of the five decision problems by requiring that the
variables of the given spec S are all Boolean and use the length of
the distinguishing sequence as the size of the problem.
Theorem 2 The bounded versions of the five decision problems
are all NP-hard.

Proof. The proof is similar to the proof of Theorem 1 except that
we use SAT, the satisfiability problem for propositional formulas
rather than Diophantine Equation Problem. We indicate the
necessary changes. In the spec of a, replace p(x1,..,xk)=0
with ϕ(u1,...,un) where u1,...,un are propositional
variables and ϕ is a propositional formula. In the initial state, u1
= ... = un = 0 (where 0 represents false). R transforms a
Boolean vector u into a Boolean vector u' in such a way that
every n-dimensional Boolean vector occurs in the sequence 0, 0',
0'', 0''', …. QED
Theorem 2 is sort of trivial because we write programs in AsmL
which has bounded quantification, choice, etc. But Theorem 2
remains true if we restrict attention to any language that expresses
the program in the proof for each n. For example, we can use the
language of sequential ASMs [19] where the only dynamic
symbols are propositional variables (nullary relational symbols in
terms of [19]). We presume that any values of the propositional
variables give rise to a legal (not necessarily reachable) state. In
that case the actions are deterministic and the first link discovery
problem is also in NP and thus NP complete.

4. GENERATING A TEST SUITE
The extraction algorithm produces a finite state machine. View
the machine as a directed graph and mark each edge with the cost
of executing the corresponding action at the corresponding
hyperstate. You want to walk through the graph in a cheapest
possible way traversing every edge at least once. That is the well
known Chinese Postman Problem [17] that naturally arises in
conformance testing [21][23]. The problem has an efficient
solution in the case when the finite state machine is deterministic
and strongly connected.
In general, the deterministic case has been studied extensively in
the literature and there exist several other methods for exploiting
the structure of a deterministic FSM, see e.g. [28]. The most
common of them is the transition-tour method, also known as the
T-method, and one version of the T-method uses the Postman
Tour. We have integrated an efficient Postman Tour algorithm
[29] with our extraction algorithm.

5. REALATED WORK
As far as we know, the first automated technique for extracting
FSMs from model-based specifications for the purpose of test
case generation was introduced in [11]. The approach of [11] is
based on a finite partitioning of the state space of the model using
full disjunctive normal forms (full DNFs) of the conditions in the
spec and is called the DNF approach. The modeling language
used of [11] is VDM but the approach is more general. The DNF
approach is extended in [20] and applied to Z specs where the
explosion of the size of the partitioning is ameliorated by
employing DNFs that are not necessarily full. While our partition
of the state space is similar to that of the DNF approach, the two
approaches are quite different. Most importantly, the DNF
approach employs symbolic techniques while we execute the
spec. Heuristics are used differently in the two approaches: in the
DNF approach, heuristics are used as part of theorem proving,
whereas we use heuristics to prune the search space. As far as the
problem of scaling is concerned, the DNF approach suffers from

118

the explosion of terms. Besides, theorem proving is time-
consuming. In our approach, there is a trade-off between the
computation time and how closely you approximate the true FSM.
We can play with relevance conditions. A more restrictive
condition gives quicker termination but leads to a more severe
under-approximation. A more liberal condition leads to a better
approximation but you may have to terminate the algorithm by
force.
Finite automaton based testing for object oriented software is
introduced in [31]. Article [5] introduces techniques for
"factoring" large, possibly nondeterministic, FSMs into smaller
deterministic ones. Some of these techniques have been
implemented in the KVEST tool [6].

In model checking, data abstraction is used to cope with state
explosion. Typically your original model M is an FSM but it may
be too large. Data abstraction groups states of M and produces a
reduced model Mr which is analogous to our true FSM. Due to
efficiency considerations, the standard data abstraction algorithms
may yield an over-approximation of Mr; see [8]. Abstract
interpretation based program testing is somewhat similar to but
distinct from model checking; it also may lead to "the necessary
over-approximation" [9]. In contrast, our approach may yield an
under-approximation of the true FSM.

Recall that the purpose of our FSM extraction algorithm is to
produce an FSM that can be used for test case generation. In
general, the two main approaches for test case generation are
those based on labeled transition systems (LTSs) and those based
on finite state machines. A review of both approaches is given in
[2]. In the following we look briefly at both.

Conformance testing plays a central role in testing
communication protocols where it is important to have a precise
model of the observable behavior of the system. This has lead to a
testing theory based on labeled transition systems. See an
overview of the approach in [30] and an overview of related
literature in [4]. Labeled transition systems are in general
nondeterministic; the ability to deal with nondeterminism is a
virtue of the LTS approach. Another virtue is compositionality.
On the other hand, the FSM approach is able to exploit the FSM
graph structure to produce test suites for the desired coverage. In
the LTS approach, verification techniques can be used to deal
with state explosion and to generate test cases. TGV [12] is an
industrial tool that utilizes the LTS approach to generate test cases
from SDL and Lotos specifications.
FSM based testing was initially driven by problems arising in
functional testing of hardware circuits. The theory has recently
been adapted to the context of communication protocols. The bulk
of the work in this area has dealt with deterministic FSMs. See
[22][28] for comprehensive surveys and [25] for an overview of
the literature. The Extended Finite State Machine (EFSM)
approach has been introduced mainly to cope with the state
explosion problem of the FSM approach. Typically the problem
arises when the system to be modeled has variables with values in
large, even infinite, domains, for example integers. In an EFSM,
such variables are allowed, and the transitions may depend on and
update their values. See [3][7][22]. In EFSMs, the control part is
finite and is separated from the data part, which distinguishes
them from ASMs. An interesting problem in our FSM generation
algorithm is to fiddle with the hyperstates in order to avoid

nondeterminism in the resulting FSM. This problem is related to
the stabilization problem of EFSMs that is addressed in [7]. The
inability to directly deal with nondeterminism is the main
drawback of the FSM based approaches.
More work related to finite state machine based software testing
can be found on the homepage of Model-Based Testing [27].

6. FUTURE WORK
Here are some but definitely not all problems to be addressed.

• We discussed above the problem of non-discovery of
hyperstates and links. We are currently investigating
other methods, in addition to the method of
improvement relations, to get better approximations of
the true FSM.

• An important issue that we haven't dealt with in this
paper is state explosion that arises from joining several
independent ASM specs into one.

• In this paper, we have assumed that the action programs
do not take parameters. One possible approach to
solving this problem builds on grouping the values of
parameters according to the guards (or to the
constituents of guards).

• How to best deal with nondeterminism in the generated
FSM is another open issue that has consequences
regarding the applicability of known FSM based test
case generation techniques. Sometimes nondeterminism
can be avoided by fiddling with the definition of
hyperstates. The nondeterminism problem does in
general not arise in the LTS approach. A generalization
of the LTS approach to ASMs seems promising.

7. REFERENCES
[1] Boris Beizer. Software Testing Techniques. Van

Nostrand Reinhold, New York, second edition, 1990.

[2] G.V. Bochmann and A. Petrenko. Protocol testing:
review of methods and relevance for software testing. In
Proceedings of the 1994 international symposium on
Software testing and analysis, pages 109-124, 1994.

[3] C. Bourhr, R. Dssouli, and E.M. Aboulhamid.
Automatic test generation for EFSM-based systems.
Publication departementale 1043, Departement IRO,
Uni- versite de Montreal, August 1996.

[4] E. Brinksma and J. Tretmans. Testing Transition
Systems: An Annotated Bibliography. In F. Cassez, C.
Jard, B. Rozoy, and M. Ryan, editors, Summer School
MOVEP'2k Modelling and Verication of Parallel
Processes, pp. 44-50, Nantes, July 2000.

[5] I.B. Burdonov, A.S.Kossatchev, and V.V. Kulyamin.
Application of finite automatons for program testing.
Programming and Computer Software, 26(2):61-73,
2000.

[6] I.B. Burdonov, A.S.Kossatchev, A. Petrenko, and D.
Galter. Kvest: Automated generation of test suites from
formal specications. In J. Wing, J. Woodcock, and J.

119

Davies, editors, FM'99, Vol. I, volume 1708 of Lecture
Notes in Computer Science, pages 608-621. Springer,
1999.

[7] K.-T. Cheng and A.S. Krishnakumar. Automatic
generation of functional vectors using the extended
finite state machine model. ACM Transcations on
Design Automation of Electronic Systems, 1(1):57-79,
January 1996.

[8] E. M. Clarke, Jr., O. Grumberg and D. A. Peled, Model
Checking, MIT Press, 1999.

[9] P. Cousot and R. Cousot. Abstract Interpretation Based
Program Testing, Proceedings of the SSGRR 2000
Computer & eBusiness International Conference,
Compact disk paper 248, L'Aquila, Italy, July 31 -
August 6, 2000.

[10] R.G. de Vries and J. Tretmans. On-the-fly conformance
testing using Spin. Software Tools for Technology
Transfer, 2(4):382{393, March 2000.

[11] J. Dick and A. Faivre. Automating the generation and
sequencing of test cases from model-based
specifications. In Proc. FME'93, LNCS 670, p. 268-284,
Springer, 1993.

[12] J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. An
experiment in automatic generation of test suites for
protocols with verification technology. Science of
Computer Programming - Special Issue on COST247,
Verification and Validation Methods for Formal
Descriptions, 29(1-2):123-146, 1997.

[13] Foundations of Software Engineering, Microsoft
Research. Abstract state machine Language, Website:
http://research.microsoft.com/fse/AsmL

[14] A. Gargantini and E. Riccobene, ASM-based Testing:
Coverage Criteria and Automatic Test Sequence
Generation, J. of Universal Computer Science,
7(11):1050-1067, 2001.

[15] U. Glässer, Y.Gurevich and M. Veanes, High-Level
Executable Specification of the Universal Plug and Play
Architecture, In Proc. of the Thirty-Fifth Annual Hawaii
International Conference on System Sciences, IEEE,
2002.

[16] U. Glässer, Y.Gurevich and M. Veanes, Universal Plug
and Play Machine Models, Microsoft Research,
Technical Report MSR-TR-2001-59, June, 2001.

[17] J. Gross and J. Yellen. Graph Theory and its
Applications. CRC, Boca Raton, 1999.

[18] Y. Gurevich. Evolving algebra 1993: Lipari guide. In
Egon Boerger, editor, Specification and Validation
Methods, pages 9-36. Oxford University Press, 1995.

[19] Yuri Gurevich. Sequential Abstract State Machines
capture Sequential Algorithms,
ACM Transactions on Computational Logic,
Volume 1, Number 1 (July 2000), pages 77-111

[20] S. Helke, T. Neustupny, and T. Santen. Automating test
case generation from Z specifications with Isabelle. In
Proc. ZUM97, LNCS 1212, p. 52-71, Springer, 1997.

[21] G.J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, Englewood Cliffs, NJ, 1991.

[22] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines - a survey. In Proceedings
of the IEEE, volume 84, number 8, pages 1090-1123,
Berlin, Aug 1996. IEEE Computer Society Press.

[23] R.J. Linn and M.Ü. Uyar. Conformance Testing
Methodologies and Architectures for OSI Protocols.
IEEE Computer Society Press, Los Alamitos, CA, 1994.

[24] Y. V. Matiyasevich. Hilbert's Tenth Problem. MIT
Press, 1993.

[25] A. Petrenko. Fault model-driven test derivation from
finite state models: Annotated bibliography. In
Proceedings of the Summer School MOVEP2000,
Modelling and Verification of Parallel Processes, 2000.
Appears in LNCS.

[26] Universal Plug and Play Forum. Website:
http://www.upnp.org

[27] H. Robinson. Model-Based Testing. Website:
http://www.geocities.com/model_based_testing/

[28] Deepinder P. Sidhu and Ting-Kau Leung. Formal
methods for protocol testing: A detailed study. IEEE
Transactions on Software Engineering, 15(4):413-426,
April 1989.

[29] H. Thimbleby. An algorithm for the directed Chinese
Postman Problem (with applications). Technical report,
Middlesex University School of Computing Science,
London, 2000.

[30] J. Tretmans and A. Belinfante. Automatic testing with
formal methods. In EuroSTAR'99: 7th European Int.
Conference on Software Testing, Analysis & Review,
Barcelona, Spain, November pp. 8-12, 1999. EuroStar
Conferences, Galway, Ireland.

[31] C.D. Turner and D.J. Robson. The state-based testing of
object-oriented programs. In Proc. IEEE Conf. Software
Maintenance, pp. 302-310, 1993.

APPENDIX
Helper functions of the CHANGEDISC model.
class CHANGEDISC ...
 emptySlots() as Set of Integer
 return allSlots difference occupiedSlots
 successors() as Set of Integer
 return {e | e in occupiedSlots
 where e gt currentSlot}
 predecessors() as Set of Integer
 return {e | e in occupiedSlots
 where e lt currentSlot}

120

 isEmpty() as Boolean
 return occupiedSlots = {}

 isFull() as Boolean
 return occupiedSlots = allSlots
 isClosedAndStuck() as Boolean
 return doorIsStuck and not doorIsOpen
 isOpenAndStuck() as Boolean
 return doorIsStuck and doorIsOpen
 //return the maximum element from a set

 setmax(s as Set of Integer) as Integer
 return the e | e in s where
 (forall d in s holds e gte d)
 //return the minimum element from a set

 setmin(s as Set of Integer) as Integer
 return the e | e in s where
 (forall d in s holds e lte d)
The following rule stipulates that only one of the arising errors is
reported; the choice of error to report is left to the
implementation.
class CHANGEDISC ...
 ReportAnyError(errs as
 Set of (Boolean,String))
 choose (true, err) in errs
 result := ERR(err)

Remaining 8 UPnP actions.
class CHANGEDISC ...
 NextDisc()

 if not(isEmpty() or
 isOpenAndStuck()) then
 doorIsOpen := false
 if successors() ne {} then
 currentSlot := setmin(successors())

 else
 currentSlot := setmin(occupiedSlots)

 else
 ReportAnyError({(isEmpty(),"empty"),

 (isOpenAndStuck(),"stuck")})

 PrevDisc()

 if not(isEmpty() or
 isOpenAndStuck()) then
 doorIsOpen := false
 if predecessors() ne {} then
 currentSlot:= setmax(predecessors())

 else
 currentSlot:= setmax(occupiedSlots)

 else
 ReportAnyError({(isEmpty(),"empty"),

 (isOpenAndStuck(),"stuck")})

 RandomDisc()

 if not (isEmpty() or
 isOpenAndStuck()) then
 doorIsOpen := false
 choose slot in occupiedSlots
 currentSlot := slot

 else
 ReportAnyError({(isEmpty(),"empty"),

 (isOpenAndStuck(),"stuck")})

 OpenDoor()

 if not isClosedAndStuck() then
 doorIsOpen := true
 else
 result := ERR("stuck")

 CloseDoor()

 if not isOpenAndStuck() then
 doorIsOpen := false
 else
 result := ERR("stuck")

 ToggleDoor()

 if not doorIsStuck then
 doorIsOpen := not doorIsOpen
 else
 result := ERR("stuck")

 HasTrayDisc()

 result := BOOL(trayHasDisc())

 IsDoorOpen()

 result := BOOL(doorIsOpen)

The remaining two actions specify the possible behavior of the
external environment. First one says that if the door is open then
the disc can either be removed from the tray or placed on the tray.
The second one specifies that the door may get stuck or unstuck.
class CHANGEDISC ...
 ToggleDiscOnTray()

 if doorIsOpen then
 if trayHasDisc() then
 occupiedSlots(currentSlot) := false
 else
 occupiedSlots(currentSlot) := true
 ToggleDoorStuck()
 doorIsStuck := not doorIsStuck
The test state is defined as follows.
structure CDState extends State
 occupiedSlots as Set of Integer

121

 currentSlot as Integer
 doorIsOpen as Boolean
 doorIsStuck as Boolean
 result as RESULT
The following extensions of the CHANGEDISC spec are needed
below to set the test state, to get the test state and to dispatch on
named actions.
class CHANGEDISC ...
 GetState() as State
 return CDState(occupiedSlots,
 currentSlot,

 doorIsOpen, doorIsStuck,

 result) as State
 SetState(s as State)
 s1 = s as CDState
 occupiedSlots := s1.occupiedSlots

 currentSlot := s1.currentSlot

 doorIsOpen := s1.doorIsOpen

 doorIsStuck := s1.doorIsStuck

 result := s1.result

 Fire(a as Action)
 match a.name
 "AddDisc" : AddDisc()

 "NextDisc" : NextDisc()

 "PrevDisc" : PrevDisc()

 "RandomDisc" : RandomDisc()

 "OpenDoor" : OpenDoor()

 "CloseDoor" : CloseDoor()

 "ToggleDoor" : ToggleDoor()

 "HasTrayDisc" : HasTrayDisc()

 "IsDoorOpen" : IsDoorOpen()

 "ToggleDiscOnTray": ToggleDiscOnTray()

 "ToggleDoorStuck" : ToggleDoorStuck()

 Actions() as Set of Action
 names = {"AddDisc", "NextDisc",

 "PrevDisc", "RandomDisc",

 "OpenDoor", "CloseDoor",

 "ToggleDoor", "HasTrayDisc",

 "IsDoorOpen",

 "ToggleDiscOnTray",

 "ToggleDoorStuck"}

 return {Action(n) | n in names}
Using the above definitions we can implement the rest of the
required harness as follows.
class CDHARNESS ...
 slots as Set of Integer
 CDHARNESS(MaxSlot as Integer)

 slots = {1..MaxSlot}

 Initially() as State
 cd as CHANGEDISC = new CHANGEDISC(slots)
 return cd.GetState()
 Actions() as Set of Action
 cd as CHANGEDISC = new CHANGEDISC(slots)
 return cd.Actions()
 Fire(s as State, a as Action) as State
 cd as CHANGEDISC = new CHANGEDISC(slots)
 step
 cd.SetState(s)

 step
 cd.Fire(a)

 step
 return cd.GetState()
 GetHyperstate(s as State) as Hyperstate
 cd as CHANGEDISC = new CHANGEDISC(slots)
 step
 cd.SetState(s)

 step
 return cd.GetHyperstate()
The following is the entry point to execute the FSM generation
algorithm with the CHANGEDISC harness. It prints out the
number of hyperstates and the number of links between them.
run()

 step
 writeln("Input nr of slots.")

 write(">")

 MaxSlot = readln() //read a nr of slots

 step
 cd = new CDHARNESS(asInteger(MaxSlot))
 step
 genfsm = new GenFSM(cd as Harness)
 if genfsm = undef then
 throw SearchFailureException()
 step
 genfsm.main()

 step
 nodes = genfsm.hypers

 links =

 {(cd.GetHyperstate(s),a,

 cd.GetHyperstate(t)) |

 (s,a,t) in genfsm.transitions}
 writeln("nr of nodes = " +

 asString(size(nodes)) + "\n" +

 "nr of links = " +

 asString(size(links)))

122

