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Abstract

Recently, Microsoft took a lead in the development of a standard for peer-to-peer network connectivity of
various intelligent appliances, wireless devices and PCs. It is called the Umniversal Plug and Play Device
Architecture (UPnP). We construct a high-level Abstract State Machine (ASM) model for UPnP. The model is
based on the ASM paradigm for distributed systems with real-time constraints and is executable in principle.
For practical execution, we use AsmL, the Abstract state machine Language, developed at Microsoft Research
and integrated with Visual Studio and COM. This gives us an AsmL model, a refined version of the ASM
model. The third part of this project is a graphical user interface by means of which the runs of the AsmL
model are controlled and inspected at various levels of detail as required for e.g. simulation and conformance
testing.
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1 Introduction

The group on Foundations of Software Engineering at Microsoft Research has developed a powerful
specification language based on the notion of Abstract State Machines (ASMs) [4]. The language is called AsmL,
the Abstract state machine Language [9]. AsmL is executable. Furthermore, it is integrated with Microsoft
software development environment including Visual Studio and COM, Component Object Model [13]. AsmL
supports specification and rapid prototyping of object oriented and component oriented software.

The main strength of ASMs in general and AsmL in particular is the precise, rigorously defined semantics.
ASMs have been used to specify architectures, protocols, modeling languages, programming languages, and so
on [10]. In particular, the International Telecommunication Union (ITU) recently approved an ASM-based
formal semantics definition of SDL, the Specification and Description Language of ITU, as an official ITU-T
standard [11]. AsmL was developed in order to deploy the ASM technology for industrial software
development, in particular at Microsoft; see [12] for an overview.

Recently, Microsoft took a lead in the development of a standard for peer-to-peer network connectivity of
various intelligent appliances, wireless devices and PCs. The current version of the standard is Universal Plug
and Play (UPnP) Device Architecture V 1.0 defined in [1]; see also the website [2] of the UPnP Forum. Based
on [1], we present in this document a high-level, executable ASM model of the protocol underlying the UPnP
architecture. The model is concurrent, interactive, and real-time dependent. Here is how UPnP is described
in [1]:

Universal Plug and Play is a distributed, open networking architecture that leverages TCP/IP and the Web
technologies to enable seamless proximity networking in addition to control and data transfer among networked
devices in the home, office and public spaces.

This paper is a part of a larger study of distributed systems. Starting from an informal specification, like the
UPnP standard, we construct a hierarchy of executable mathematical models called Abstract State Machines or
ASMs. In this case, we construct two ASMs, a higher-level ASM described in Section 3, and a lower-level AsmL
in Section 4. We cover most of the UPnP definition; there are no conceptual difficulties in covering the
remainder.

What are executable mathematical models good for? Unlike traditional engineering disciplines, like mechanical
or electrical engineering, systems engineering heavily relies on informal documentation. Such informal
documentation is necessary and, as in the case of the UPnP definition, may be informative and useful. Still,
informal documentation is informal and thus may be and often is ambiguous, incomplete, and even
inconsistent. Properly constructed, mathematical models are consistent, avoid unintended ambiguity and are
complete in the appropriate sense. Certain properties of the design can be proved mathematically. Furthermore,
in contrast with informal documentation, our mathematical models are executable and so they can be used to
explore and test the design. You can validate your models and generate test suites for conformance testing of
your implementation. Let us emphasize that our mathematical models build on the given informal description.
We fix loose ends, resolve ambiguities and inconsistencies, separate concerns, and so on. Gradually the given
informal description gives rise to an executable mathematical model or to a hierarchy of such models.

In this paper, we concentrate on interoperability aspects rather than details of individual components.
Components operate concurrently and interact with each other by exchanging messages over the



communication network. They use actuators and sensors to interact with the external world, which is the
environment into which the whole system is embedded. The ASM paradigm allows us to combine synchronous
as well as asynchronous computations. The component models themselves are parallel compositions of
synchronously operating ASMs. The system as a whole is a composition of asynchronously operating
components, called agents.

The Document Structure. Section 2 gives a brief overview of the UPnP protocol and illustrates a sample UPnP
device. In Section 3 we introduce the higher-level UPnP machine model in several steps. In 3.1 we explain its
overall structure and characteristic features, the underlying notions of concurrency and time, and its main
components and interfaces. In 3.2 we define the basic communication primitives and data structures. In 0 we
define the behavior model. In Section 4 we introduce the lower-level protocol model in AsmL and illustrate the
tool environment for simulating the AsmL model. We start by treating basic properties of addressing and
communication (Section 4.3). Next, we define the individual component models, namely: the network
model(Section 4.4), the control point model (Section 4.5) and the device model (Section 4.6). Conclusions are
presented in Section 5. Appendix I contains a detailed AsmL model of the sample UPnP device that is briefly
described in Section 0.

Remark. This document is available in electronic form that allows automatic code extraction for feeding the
AsmL compiler [9]. The AsmL parts are marked by a special document style so that they can easily be identified
within the document.

2 The UPnP Protocol

In the given application context, we attempt to accurately reflect the abstraction level of the informal
description of the UPnP Device Architecture as defined in [1]. Nonetheless, one wants to abstract from those
details that are irrelevant for the understanding of the principle protocol behavior. To figure out what is
relevant and what can be neglected is often not trivial and sometimes impossible without consulting the
application domain experts. In our case these experts are the UPnP developers at Microsoft.

2.1 Basic Properties

We briefly summarize here basic characteristics of the UPnP architecture. Technically, this is a layered protocol
architecture built on top of TCP/IP networks by combining various standard protocols, e.g. such as DHCP,
SSDP, SOAP and GENA. It supports dynamic configuration of any number of devices offering services requested
by control points. To perform certain control tasks, a control point needs to know what devices are available (i.e.
reachable over the network) and what services these devices advertise. For a concrete example of a UPnP device
see Section 2.2.

Restrictions. In general, the following restrictions apply:

= Devices may come and go at any time with or without prior notice. Consequently, there is no guarantee
that a requested service is available in a given state or will become available in a future state.

* An available service may not remain available until a certain control task using this service has been
completed.

= Control points and devices interact through exchange of messages over a TCP/IP network, where
specific network characteristics (like bandwidth, dimension, reliability) are left unspecified. As such,
communication is considered to be neither predictable nor reliable, i.e. message transfer is subject to
arbitrary and varying delays, and certain messages may even get lost.



Basic Steps. The UPnP protocol defines 6 basic steps or phases. Initially, these steps are invoked one after the
other in the order given below, but may arbitrarily overlap afterwards.
= Step 0: Addressing is needed for obtaining an IP address when a new device is added to a network.
= Step 1: Discovery informs control points about the availability of devices and their service.
= Step 2: Description allows control points to retrieve detailed information about a device and its
capabilities.
= Step 3: Control provides mechanisms for control points to access and control devices through well-
defined interfaces.
= Step 4: Eeventing allows control points to receive information about changes in the state of a service at
run time.
= Step 5: Presentation enables users to retrieve information about a device as needed by for controlling the
device.

2.2 Sample UPnP Device

As an example we consider a CD player [2]. In our model this device has two services, called ChangeDi sc,
Pl ayCD, where Figure 1 illustrates only the first one. The ChangeDi sc allows a control point to add or
remove discs from the CD player and to choose a disc to be placed on the tray. The complete service has the
following basic actions (not requiring any arguments).

= AddDisc

= NextDisc

* PrevDisc

* RandomDisc

=  OpenDoor

= CloseDoor

* ToggleDoor

=  HasTrayDisc

* IsDoorOpen

The Pl ayCD service has the following actions.

= Play
= Tause
= Stop

= SetPlayProgram ONCE_RANDOM (or REPEAT_RANDOM or REPEAT_IN_ORDER)
= SelectTrack number
* NextTrack
» PrevTrack
The full AsmL model of the CD Player with these two services is given in Appendix I.
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Figure 1: ChangeDisc service of a CD Player

3 Abstract State Machine Model

This section describes our ASM model of UPnP and the rational behind. The ASM model serves as a conceptual
framework for dealing with system behavior at a more abstract level; nevertheless, it is closely related to the
executable AsmL version, as described in Section 4, so that the translation into the latter becomes obvious.
Conceptually, the ASM model is designed to meet two fundamental requirements on technical descriptions of
complex software systems, namely:

*  robustness provides the flexibility needed to extend and modify the model with a reasonable effort,

» simplicity avoids formalization overhead by stating behavior at the given level of abstraction, i.e.

reflecting the view of the informal description.

Technically speaking, the model classifies as distributed real-time ASM and as such is based on fairly general
notions of concurrency and time. Aiming at an intuitive understanding, we explain the underlying
mathematical concepts in a rather informal style concentrating on those aspects that are relevant here. For a
rigorous mathematical definition of the theory of Abstract State Machines, see the original literature [3,5].

3.1 Distributed Real-Time ASM

A reasonable choice for the construction of an abstract UPnP protocol model is a distributed real-time ASM
consisting of an arbitrary number of concurrently operating and asynchronously communicating components.
Intuitively, a component either represents a device, a control point or some fraction of the underlying
communication network. With each component type we associate one or more interfaces such that any
interaction between a component and any other component is restricted to actions and events as observable at
these interfaces. Furthermore, actions and events in the external world as represented by the environment into
which the system under consideration is embedded may affect the system behavior in various ways. For



instance, the transport of messages over the communication network is subject to delays and some messages
may even get lost. Also, the system configuration itself may change as devices come and go. Such actions and
events are basically unpredictable. We therefore introduce an additional GUI (cf. Section 4.1) that allows for
user-controlled interaction with the external world. The overall organization of the model is illustrated in
Figure 2.

e GUI: ExternalWorld |

| (Visual Basic) i

E : Interface E
Controller Model Device Model i
synchronous synchronous i
@ Interface @ E

Network Model i

asynchronous -

Abstraction of TCP/IP networks

Figure 3: Overall organization of the distributed ASM model of UPnP.

At the component level, control points and devices are further decomposed, where each individual component
splits into a collection of synchronously operating functional units. This decomposition is such that each of the
resulting units participates in a different protocol step (cf. Section 2.1). Accordingly, we model control points
and devices as parallel compositions of synchronously operating ASMs. For dealing with real-time constraints,
we introduce a discrete notion of time for the abstract representation of global system time. In particular, we
model timeout events through timer mechanisms (Section 0).

3.1.1 Components and Interfaces

We formulate dynamic properties of the UPnP protocol in terms of component interactions. Components
operate autonomously and so that we can identify them with ASM agents in the distributed ASM. Agents come
as elements of a dynamically growing and shrinking universe (or domain) AGENT, wher e we associate with
each agent a program defining its behavior. A program consists of guarded update rules specifying state
transitions through local updates on global states. We distinguish different types of agents according to
different types of programs as represented by a static universe PROGRAM

domai n AGENT, static donmai n PROGRAM

In any given state of an ASM run, the behavior of an agent is well defined as stated by a unary dynamic
function pr ogr am Being dynamic, this function allows introducing new agents at run time.

program: AGENT - PROGRAM forall a O AGENT: progran(a) O PROGRAM
Any interaction between the model and the external world, as observable at the respective interfaces, is reduced
to interaction between two different categories of agents: (1) explicitly defined agents of the model, and (2)



implicitly given agents of the environment. The non-deterministic nature of environment agents naturally
reflects the system view of the environment. However, this does not mean that environment behave in a
completely unpredictable way; rather one can formulate reasonable integrity constraints on external actions and
events where appropriate.

Roughly, one can characterize the model through the following basic properties:

= Initial State: An initial state specifies some finite collection of agents, which may grow and shrink
dynamically over an ASM run.

= ASM Agents: There are three types of explicit agents, namely: control point agents, device agents and
network agents.

= Concurrency: Agents operate concurrently. They interact by reading and writing shared locations of
globally shared system states. The underlying semantic model regulates interaction between agents so
that potential conflicts are resolved according to the definition of partially ordered runs [4].

= Instantaneous Reactions: Agents react instantaneously, i.e. they fire their rules as soon as they reach a
state in which the rules are enabled. (Strictly speaking, one must assume here some non-zero delay to
preserve the causal ordering of actions and events; though, this delay is immaterial from an
application point of view.).

=  Atomicity: Computation steps of agents are atomic, but, nevertheless, are considered as time-consuming
actions.

= Discrete Time: System time is based on a discrete notion of time with time values being represented as
real numbers.

3.1.2 Abstract Data Structures

In order to simplify modeling and to stay close to the informal understanding, we assume the presence of a rich
background structure. In particular, we will be using sets and maps in our model. We may have sets of integers,
maps from integers to strings, or even sets of such maps, etc. Both maps and sets may be viewed as aggregate
entities and may be updated point-wise. For example, if s is a set of integers,

s : Set of Integer

say s is {1,2} in the current state then we may update s by firing the following parallel update in order to
remove 2 from s and to add 3 to s.

s(2)
s(3)

fal se
true

In the state resulting from firing this rule, the value of s is {1,3}. If mis a map from integers to integers,

m: Map of Integer to Integer

that maps 2 to 3 and 4 to 5, then we may update mso that it maps 4 to 6 by firing the rule
m4) :=6

We also have dynamic functions whose range consists of maps. For example, we may have a unary dynamic
functionf from integers to maps from integers to integers.

f : Integer - Map of Integer to |nteger

If in the current state f (1) is a map from 2 to 3 and 4 to 5, in symbols f (1) (2) =3 and f (1) (4) =5, then



we may update f (1) to map 4 to 6, just as we did with m above, by firing the rule
f(1)(4) := 6

Justification for the aggregate view of maps and sets in terms of standard ASMs is given in [15].

3.1.3 TCP/IP Network and Protocols

To model the network behavior, we define an abstraction of TCP/IP networks using standard network
terminology [7]. Our network model is based on a distributed execution model reflecting the fact that a TCP/IP
network usually consists of a (not further specified) collection of interconnected physical networks. However,
we abstract here from topological details, e.g. how a global network is formed by interconnecting local
networks using routers (or gateways); rather we describe the overall network behavior through a collection of
concurrently operating communicators, each of which refers to some local network in conjunction with its
adjacent routers. Conceptually, we separate behavior of the network and its routers (or gateways) from
behavior of the hosts attached to this network as illustrated in Figure 2.

Communicator 1 Communicator 2

Router

Figure 4: Communicators.

Based on the two standard transport level protocols, UDP (User Datagram Protocol) and TCP (Transmission
Control Protocol), user level processes, or application programs, interact with each other by exchanging
messages over the network. According to this view, there may be several application programs running on a
single host. The address of an application program is given by the IP address of its host in conjunction with a
unique protocol port number on this host. In our case, several control point programs may run on the same
host. Devices, however, are considered as individual hardware units; therefore they are identified with the
hosts on which they run. Collectively, we refer to control points and devices as applications.

3.1.4 Basic Agent Types

This section introduces various domains identifying the basic types of agents and gives an overview on how
they are related with each other. We start with the main objects, namely: communicators, control points and
devices.

domai n COVMUNI CATOR, donmai n CONTROLIPO NT, dommi n DEVI CE

DHCP Server Interface. The Dynamic Host Configuration Protocol (DHCP) enables automatic configuration of
IP addresses when adding a new host to a network [8]. We model interaction between a DHCP server and the



DHCP client of a device explicitly only as far as the device side is concerned (cf. Section 3.3.3). The server side is
abstractly represented through one or more external DHCP server agents whose behavior is left implicit. In our
model, the DHCP server represents another type of application program.

domai n DHCPSERVER

We can now define AGENT as a derived domain, where we assume the three underlying domains
COMMUNI CATOR, CONTROL[PO NT, DEVI CE and DHCPISERVER to be pairwise disjoint.

AGENT = APPLI CATI ON O COVMUNI CATOR
APPLI CATI ON = CONTROLIPO NT 0O DEVI CE O DHCPISERVER

An overview of the various agent types and the relations between them is presented in the form of an UML
class diagram in Figure 3. In the subsequent sections, the keyword me will be used to identify the agent under
consideration, i.e. as identified by a given context. In ASMs, classes are dynamic universes of objects.
Consequently, a field f of type D of a class C can be viewed as a dynamic unary function from C to D, in
symbols f: C - D. For instance, a communicator has a field routingTable denoting a mapping from addresses
to sets of communicators.

routingTabl e: COMMUNI CATOR - Map of ADDRESS to (Set of COVMUNI CATOR)

AGENT
mailbox: Set of MESSAGE

r

COMMUNICATOR APPLICATION
routingTable: Address: ADDRESS
Map of ADDRESS to Set of COMMUNICATOR network: COMMUNICATOR
addressTable:
Map of ADDRESS to Set of ADDRESS / ZF Zﬁ
DEVICE CONTROLPOINT| | DHCPSERVER
status: DEVICESTATUS search: DATA
services: Set of SERVICE action: DATA
type: String
uid: String

Figure 3: UML class diagram of the agents.

3.1.5 Discrete Time and Timeout Events

Time values are represented as real numbers by the elements of a linearly ordered domain TI ME. We can
assume that TI ME O REAL and define the relation “>” on time values through the corresponding relation on
real numbers. A domain DURATI ON represents finite time intervals as differences between time values.

domai n TI ME, donmi n DURATI ON

-10-



Our notion of time is based on the view that we can only observe, but not control, how physical time evolves.
Accordingly, we introduce a monitored, nullary function nowtaking values in Tl ME. Intuitively, nowrepresents
the global system time as measured by some discrete clock. One can reasonably assume that the values of now
change monotonically over ASM runs.

monitored now : TIME initially startTine

An agent a may employ several distinct timers for different purposes, where each individual timer t has its
own default duration effectively determining the expiration time when setting t . In a given state, a timer t is
acti ve if and only if its expiration time ti me(t) is greater than the value of now. Otherwise, t is called
expired.

domain TI MERTYPE = {dhcpCdient, discovery, ..}
duration : AGENT - Map of TIMEROYPE to DURATI ON
time : AGENT - Map of TIMEROYPE to TIME

For a given timer t of agent a, the operation of setting t can thus be defined as follows.
SetTinmer(a,t) = time(a)(t):= now + duration(a)(t)

In a given state, a predicate Ti meout indicates for given timer instance t and agent a whether the timer
instance is active or has expired.

Ti meout : AGENT - Map of TIMERTYPE to BOOL, Tineout(a,t) = now = tinme(a)(t)

3.2 Addresses and Messages

This section defines the representation of addresses and messages together with the mechanisms for sending
and receiving messages. Our model abstractly reflects the view of the transport layer protocols TCP and UDP.
At the given abstraction level, the only real difference between TCP and UDP is that the former is reliable
whereas the latter provides a best-effort, connectionless packet delivery service, i.e. messages may get lost.

3.2.1 Addresses

We introduce a static universe ADDRESS of IP addresses that are extended by protocol port numbers to refer to the
global TCP/UDP address space. For each application under consideration, a dynamic function address
identifies an element from ADDRESS. A distinguished address called t hi sDevi ce is used as a source address
for newly added devices that do not yet have an otherwise defined IP address.

stati ¢ donmai n ADDRESS
address : APPLI CATI ON - ADDRESS

When a new device is added to the network, it does not yet have an IP address, but uses its hardware address

instead for communication with a DHCP server [8]. We abstractly represent hardware addresses as elements of
a static domain HWADDRESS.

stati ¢ domai n HWADDRESS
hwAddress : DEVI CE - HWADDRESS

-11 -



3.2.2 Representation of Messages

Messages are uniformly represented as elements of a dynamic domain MESSAGE. Each message is of a certain
type from the static domain MSGITYPE. The message type determines whether a message is transmitted using
UDP or TCP, though we do not make this distinction explicit.

domain MESSAGE initially enpty
domai n MSGIYPE = {adverti senent, search, request, response,
revocation, dhcpOffer, dhcpbi scover}

A message uniquely identifies a sender, a receiver, a message type, and the actual message content. The content
can be any finite representation of information to be transferred from a sender to a receiver.

sndr : MESSAGE - ADDRESS
rcvr : MESSAGE -» ADDRESS
type : MESSAGE - MSGIYPE
data : MESSAGE - DATA

3.2.3 Sending and Receiving Messages

An application is running on some host connected to one or more local networks. The operation of sending a
message as well as the delivery of a message both require some form of direct interaction between this host and
one of its local networks. We can assume here that the network is uniquely determined by the application.
Abstractly, this relation is expressed using a unary dynamic function network defined on applications.

network : APPLI CATION - COVMUNI CATCOR

Local Mailboxes. An agent has a local mailbox for storing messages until these messages will be processed.
According to this view, the mailbox of a network agent represents the set of messages that are currently in
transit on the related network. The mailbox of an application represents its local input port as identified by the
respective port number for this application.

mai | box : AGENT - Set of MESSACE initially enpty

Message Output. We introduce the output operation defined below for applications to send a message over a
local network. Here me refers to the application sending the message. The extend operation below creates a new

message object. The effect of the send operation is that the message is put into the mailbox of the network agent.
Cut put (r: ADDRESS, d: DATA, t : MSGIYPE) =
extend MESSAGE with m
sndr (m : =addr ess(ne)

revr(m:=r
data(m: =d
type(m: =t
mai | box(network(ne)) := mail box(network(ne)) O {n}

Multicasting and Broadcasting. Depending on the applied mechanism for message delivery, one typically
classifies addressing as unicasting, multicasting or broadcasting. Conceptually multicasting can be viewed as a
generalization of all other address forms [7]. According to this view, we associate with every address some
collection of applications, called a multicast group. More specifically, the group associated with a unicast address
consists of a single application. The group associated with a broadcast address consists of all applications on a
given local network. Notice that multicast groups change dynamically as applications come and go. Our model
distinguished two basically different multicast groups: control points and devices.

-12 -



3.3 Abstract Protocol Model

In this section we define a high-level ASM model of the UPnP protocol. This ASM model is then refined into an
executable AsmL model by adding details related to the object-oriented specification style of AsmL as will be
described in Section 4.

3.3.1 Initial States

An initial state reflects the particular system configuration under consideration. As such it identifies some finite
collection of a priori given agents, one for each control point, each device and each communicator. Depending
on the type of an agent, it executes the program RunControPoint, RunDevice, or RunNetwork. The behavior of
DHCP server agents is not explicitly defined in terms of a program; rather it is determined by the respective
actions controlled by the external world.

domai n PROGRAM = {RunContr ol Poi nt, RunDevi ce, RunNetwork}

Integrity Constraint. In every state of an ASM run, including the initial state, the following property holds.

O x O AGENT: program(x) =
RunControl Point, if x O CONTROLPO NT
RunDevice, if x O DEVICE
RunNetwork, if x O COVMUNI CATCOR

Remark. In the model of the UPnP protocol, we abstract from any device specific properties but concentrate on
those aspects of behavior that are common to all UPnP devices according to [1]. The resulting device model thus
provides a basic description that may be extended by adding the device specifics depending on the particular
type of device. Technically this is achieved through a parallel composition of the two device models, the basic
one and the specific one.

3.3.2 Network Model

We assume a TCP/IP network using TCP and UDP as transport protocols for the transfer of messages between
applications running on different machines. Recall that UDP uses the same unreliable datagram delivery
semantics as IP [7]. As such it provides a connectionless, best-effort message delivery service, where messages
may be lost, duplicated, delayed or delivered out of order without receiving any notification. Hence, it is in the
responsibility of an application to tolerate this behavior.

Delivery and Routing. Collectively, the communicators solve the task of globally transferring messages
between applications running on hosts connected to the network. Communicators thus imitate the behavior of
IP routers, where we encode the topological information in a dynamic mapping called routi ngTabl e.
Intuitively a r outi ngTabl e of a given communicator maps a non-local addresses to the correct neighboring
communicators. Notice that a multicast address may refer to several network communicators.

routingTable : COVMUNI CATOR - Map of ADDRESS to COVMUNI CATCOR

Furthermore, communicators handle the delivery of messages to destinations on a given local network. That is,
given the destination address of a message in conjunction with a local network, a (possibly empty) set of related
destinations on this network must be identified. We therefore introduce a dynamic mapping of addresses called
addr essTabl e. Intuitively, addr essTabl e is a mapping from addresses of multicast groups to addresses of
related group members.

-13 -



addressTabl e : COMMUNI CATOR -~ Map of ADDRESS to Set of ADDRESS

Time to Live (TTL). To limit the maximum number of routers that a message can pass on its way from the
sender host to a destination host, a time-to-live or TTL, is assigned when the message is created. Each router
decrements the TTL by one until the message eventually reaches its final destination or will be discarded. UPnP
defines the initial TTL to be 4.

ttl : MESSAGE - {0,1,2,3,4} initially 4

Message Transfer. The transfer of messages may be delayed in an unpredictable manner depending on
resource limitations of the underlying physical network. Since we abstract here from lower level network
layers, the decision whether a messages is ready to be delivered in a given state of the network is stated through
an externally controlled predicate ReadyToDel i ver. (Notice that for some UDP message m the condition
ReadyToDel i ver (m) may never hold, implying that the message effectively gets lost.)

nmoni t ored ReadyToDeliver : MESSAGE - BOOL initially false

Now, we can formalize the network behavior in terms of interacting communicators executing the below
program. This program performs three basically different steps, namely: (1) limited broadcasting within the
local network; (2) delivery of multicast messages on a local network; (3) routing of messages through a global
network. To identify local networks, a unique mnetwork identifier, called netid, is associated with each
communicator. The network identifier can be derived from an address by inspecting the network mask part of
the address. In the program below me refers to a communicator.

RunConmmuni cat or =
choose nsg O mail box(ne): ReadyToDeliver(nmsg) do
mai | box(ne): = mail box(nme) - {nsg}
if rcvr(msg) = broadcast then
forall a O APPLI CATION: network(a) = nme do
Del i ver MessageToMai | box(nsg, address(a), a)
el se
forall adr O addressTabl e(ne)(rcvr(nmsg)) do
if netid(adr)= netid(nme) then
choose a O APPLI CATI ON: address(a) = adr do
Del i ver MessageToMai | box(nsg, adr, a)
el se
if ttl(nsg) > 0 then
let ¢ = routingTable(ne)(adr) in
Del i ver MessageToMai | box(nsg, adr, c¢)

The operation of delivering a message to the mailbox of a given agent is defined below. Applications and
communicators are treated uniformly. They are both agents that have a mailbox and the operation performed
on this mailbox (i.e., inserting a copy of some message) does not depend on the particular type of agent.

Del i ver MessageToMai | box( nmsg: MESSACE, adr : ADDRESS, ag: AGENT) =
extend MESSAGE with m

sndr(m: = sndr(nsg),

rcvr(m: = adr,
type(m:= type(nmsg),
data(m:= data(nsg), ttl(m :=ttl(m-1

mai | box(ag): = mail box(ag) O {n}
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3.3.3 Device Model

In this section we define the device model as parallel composition of a number of synchronously operating
ASM models, each of which runs a different protocol step. For the purpose of illustrating the device program,
we focus here on Addressing, Discovery and Control.

Device Status. In a given system state, a UPnP device may or may not be connected to a network. Regarding
the connection status of a device, there are basically three different situations:

* inactive: the device is currently not connected to a network;

* alive: the device is connected and will probably remain connected for some time;

= byebye: the device is connected but is about to be removed from the network.
The status of a device is affected by actions and events in the external world. Therefore, it may change in a
basically unpredictable way, but one can assume that devices initially are not connected. To model the device
status, we introduce an externally controlled dynamic function status defined on devices.

monitored status : DEVICE - { inactive, alive, byebye }

In the device program defined below, me refers to a device agent.

RunDevi ce =
if status(me) # inactive then

RunAddr essi ng
RunDi scovery
RunDescri ption
RunContr o
RunEventi ng
RunPresent ati on

Addressing. IP address management requires a DHCP server to uniquely assign an IP address whenever a
new host (for which no IP address is specified manually) is added to a network [8]. A key idea behind DHCP is
to enable communication between a DHCP server and the host's DHCP client using the hardware address of
the host. That is, as reply to a DHCPDISCOVER message from a client, the server broadcasts a DHCPOFFER
message identifying the IP address as well as the hardware address of the host. By checking the hardware
address, the host identifies itself as receiver (and can thus install the IP address).

Alternatively, a host may obtain a temporary IP address through auto IP addressing in case that a DHCP server
is not available (or reachable). This temporary address may then be used until a matching DHCPOFFER
message is received. To distinguish various situations with regard to a device's address status, we use the
following abbreviations for checking whether a message is an offer from a matching DHCP server offer.

DhcpOffer(m
(type(m

dhcpoffer and hwAddressEncodedl n(data(m) = hwAddress(ne))

We abstract here from the device specific algorithm used for auto IP addressing by making a non-deterministic
choice. To check the result, we assume to have some externally controlled decision procedure as represented by
the monitored predicate Valid AutolPAdr. Without specifying any further details, we expect the resulting auto IP
addresses to fulfill the given constraints.

noni tored Val i dAut ol PAdr : DEVI CE x ADDRESS - BOOL

RunAddr essi ng =
i f address(nme) = thisDevice or AutoConfiguredAddress(ne) then
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RunDHCPcl i ent
if address(ne) = thisDevice and -DhcpOfif er Recei ved t hen

choose address [0 ADDRESS: Vali dAut ol PAdr (e, address) do
address(ne): = address
Aut oConf i gur edAddress(ne): = true

where
DhepOf f er Received = O m O mai |l box(me): DhcpOifer(m

Even in case that a DHCPOFFER has been received, a host may continue to use a temporary IP address for
some time until it eventually switches to the server assigned IP address. In [1], the condition that affects the
switching of addresses is left abstract. Accordingly, we model this behavior by introducing an externally
controlled predicate SwitchAddressEvent defined on devices.

nmoni tored SwitchAddressEvent : DEVICE - BOOL initially false

When a DHCP client becomes activated, it generates an initial DHCPDISCOVER message immediately. To
distinguish this situation from those where a timeout event triggers the generation of subsequent
DHCPDISCOVER messages, we introduce a special flag.

I ssuelnitial Discover : DEVICE - BOOL initially true

RunDHCPcl i ent =

choose m O nuai | box(ne): DhcpOffer(n) do
i f SwitchAddressEvent (ne) then
address(ne):= rcvr(m
Aut oConfi guredl PAdr(ne): = fal se
Adverti seNewAds(rcvr(n))
Revoked dAds(address(ne))
i f ~DhcpOfiferReceived then
i f Tinmeout(nme,dhcplientTiner) or Issuelnitial Discover(ne) then
Qut put (255. 255. 255. 255, dhcpdi scover, hwAddr ess(ne))
Set Ti mer (e, dhcpd i ent Ti ner)
I ssuelnitial Di scover(me): = fal se
wher e

DhepO f er Recei ved = exists m O nail box(ne): DhcpOifer(m

After switching to a new address, the device must update and reissue its advertisements as well as revoke the
old advertisements. These operations are further specified in the AsmL model.

Discovery. The discovery part of the UPnP protocol is based on UDP. Since messages may get lost, devices
inform control points about their presence and the services they offer reissuing their advertisements on a
regular basis. Additionally, a device replies to service requests from control points in case that a request
matches with a service offered by the device, as indicated by the following predicate.

Mat chi ngSer vi ceRequest : SERVI CE * MESSAGE - BOOL
RunDi scovery =

Not i f yAdsSt at us

RespondToSear ch

Noti fyAdsStatus =
if address(ne) # thisDevice and Ti nmeout (ne, di scoveryTi ner) then
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Set Ti ner (ne, di scoveryTi mer)
if status(nme) = alive then
Not i f yDevi ceAvai | abl e(cont rol Poi nts)
if status(ne) = byebye then
Not i f yDevi ceUnavai | abl e( cont r ol Poi nt s)
status(ne): = inactive

We identify the services associated with a root device or one of its embedded devices using a static function
srucs defined on devices.

srvcs : DEVICE - Set of SERVICE

RespondToSearch =
choose m O mai | box(nme) : type(m = search do
mai | box(nme)(m := fal se
if exists s O srvcs(ne): MatchingServi ceRequest (s, m then
Not i f yDevi ceAvai |l abl e(sndr(m))

The control part of a device is responsible for invoking the pending requests and generating the responses to
those requests. The requests are handled one at a time. Each request message is assumed to have a data part
that is a map identifying a service (Ser vi ce), an action (Act i on) and arguments (Ar gunent s) for that action.
A response message is sent back to the sender of the request message. The data of the response message records
the result of the action call. See the AsmL model for further details.

RunControl =
i f not address(ne)=thisDevice then
choose m O mai | box(nme) : type(m = request and
data(m (Service) O srvcs(ne) do
let res = Invoke(data(m (Service), data(m (Action), data(n) (Argunents))
mai | box(nme) (m := fal se
Qut put (address(ne), sndr(m, {Result napsto res}, response)

4 Executable Protocol Model and GUI

The protocol model defined in the previous section can be refined into an executable AsmL program. The AsmL
model is written in an object-oriented style. This is for example reflected by the fact that the identity of agents is
mostly not explicitly mentioned but is implicitly given by the identity of the object (1me). The object model was

illustrated above with a UML class diagram. The intension is that the AsmL model is self-explanatory. Many of
the comments regarding the logical structure of the model were already given above and are not repeated here.

The rest of the section is structured as follows. We start by mentioning the GUI. The top level loop that drives
the model, as well as the methods defining the interaction between the model and the environment, are part of
the interface definition to the GUI. Next we define the universes of the different kind of entities that we need.
We then describe the communication model and the message structure needed to support it. Finally we define
the AsmL models for communicators, control points and devices, respectively. The last three subsections
constitute the main part of the overall AsmL model.

4.1 Gaphical User Interface

It is important to have a GUI that allows you to visualize the state in a way that is close to the intuitive
understanding, and that allows you to interact with the AsmL model.
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The following figure shows a snapshot of the simulator in a setup with two separate network communicators,
one for devices and one for control points. There is a DHCP server whose behavior is completely controlled by
the external world through the GUI. There is one control point and one device. The control point is receiving
advertisements and revocations (of old advertisements) from the device (some of the advertisements are still in
transfer), as a result of the device having received a new IP address from the DHCP server.
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Figure 5: Snapshot of the UPnP Simulation tool.
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In order to interact with the model using a GUI (as a client) we encapsulate the model in a COM component
(acting as a server) that exposes the methods needed to interact with the model through an interface. The COM
server is named UPnPMbdel Ser ver .

i nport COM

server Nane = " UPnPMbdel Server"

We declare an interface called | Ser ver (extension with the builtin interface | Di spat ch is needed for
automation support).

interface | Server extends |Dispatch

The first method that the user of this server must do is to invoke the | ni ti al i ze method. All | Ser ver
methods are declared and implemented in Appendix II.

4.2 Executable Protocol Model

var CONTRCOLPO NTs as Set[ CONTROLPO NT] = {}
var DEVI CEs as Set[DEVICE] = {}

var DHCPSERVERs as Set [ DHCPSERVER] = {}

APPLI CATI ONs() as Set[ APPLI CATION] =
{c as APPLI CATION | c¢ in CONTROLPO NTs}
union {d as APPLICATION | d in DEVI CEs}
union {s as APPLI CATION | s in DHCPSERVERs}

var COVMUNI CATORs as Set[ COMUNI CATOR] = {}
var now as Integer = 0

In order to run the programs of all the agents in AsmL, we introduce the following top-level rule. The
executions of several agents are generally simulated by interleaving. Here we may in fact run them all
simultaneously because they do not share variables, all communication between agents takes place via message
passing.
RunUPnP() =
forall ¢ in CONTROLPO NTs do
c. RunCont r ol Poi nt ()
forall d in DEVICEs do
d. RunDevi ce()
forall n in COMMUNI CATORs do
n. RunNet wor k()

Timers

enum Tl MERTYPE
dhcpd i ent Ti ner
di scoveryTi mer

Ti meout (d as DEVICE, t as Tl MERTYPE) as Bool ean =
now >= d.tinme(t)
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Set Timer(d as DEVICE, t as TI MERTYPE) =
d.tine(t):= now + d.duration(t)

4.3 Communication Model

In AsmL the host's object id is used as its hardware address.
hwAdr (h as APPLI CATION) as String = asString(h)

4.3.1 IP Address Space
struct ure ADDRESS

mask as String

adr as String

port as | nteger

asString() as String = adr

t hi sDevi ce = ADDRESS("","0.0.0.0",0)
Unspeci fi edl PAdr(a as ADDRESS) as Bool ean = (a = thisDevice)

43.1.1  Multicast and Broadcast Addresses
We distinguish two different multicast groups: devices and control points. Each multicast group is uniquely
identified by a distinguished IP address.

control Points
devi ces

ADDRESS( cont rol Poi nt Netl d, "2. 2. 2. 255", 0)
ADDRESS( devi ceNet I d, "1. 1. 1. 255", 0)

The distinguished IP address 255.255.255.255 is used for broadcast.
br oadcast = ADDRESS("","255. 255. 255. 255", 0)

4.3.2 Representation of Messages
var MESSAGEs as Set[ MESSAGE] = {}

enum MSGTYPE

adverti senment

search

request

response

revocation

dhcpoffer

dhcpdi scover
Depending on the type of the message the data may include different fields of information each encoded as a
string. The content is therefore a map from field identifiers to their respective values. The number of fields is
determined by the type of the message.

enum Fl ELD
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Devi ce

Service

Action

Ar gunent s
Lifetinme

Har dwar eAddr ess
NewAddr ess
SearchPattern
Resul t

structure DATA
f as FIELD -> String

service() as String = f(Service)
action() as String = f(Action)
args() as String = f(Argunents)

duration() as Integer
hwAdr () as String
newAdr () as ADDRESS
search() as String

Integer.fronttring(f(Lifetine))

f (Har dwar eAddr ess)

ADDRESS( devi ceNet | d, f ( NewAddr ess) , 0)
f (SearchPatt ern)

enptycontent as DATA = DATA({|->})

cl ass MESSACE
sndr as ADDRESS
rcvr as ADDRESS
data as DATA
t YPE as MBGTYPE
var tine as Integer

4.3.3 Sending and Receiving Messages

The underlying communication protocol is based on an asynchronous communication model. For simplicity,
we assume unbounded communication bandwidth. Control points as well as devices may send and receive any
finite number of messages at a time.

4331 Agents
Each agent has a private mailbox into which messages can be inserted by other agents.
class AGENT()
var nail box as Set[ MESSAGE] = {}
43.3.2 Applications
An application is an agent with a unique IP address and belongs to a certain network. It outputs its messages to
the local network it belongs to.
cl ass APPLI CATI ON(a as ADDRESS, n as COVMUNI CATOR) extends AGENT()
var adr as ADDRESS = a
var network as COVMUNI CATOR = n
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Qutput (s as ADDRESS, r as ADDRESS, ¢ as DATA, t as MSGIYPE) =
let m= new MESSAGE(s, r, ¢, t, now)
MESSAGES(n) := true
networ k. mai | box(m := true

4.4 Network Model

Each communicator has a netid, an address table and a routing table.
cl ass COVMUNI CATOR(t as String,
atbl as ADDRESS -> Set[ ADDRESS],
rtbl as ADDRESS -> COVMUNI CATOR) extends ACENT()
netid as String =t
addressTabl e as ADDRESS -> Set [ ADDRESS] = at bl
var routingTabl e as ADDRESS -> COVMUNI CATOR = rt bl

441 RunNetwork
cl ass COVMUNI CATOR. . .

RunNet wor k() =
choose nsg in nmail box do
mai | box(nmsg) := fal se

if nsg.rcvr = broadcast then
/[l limted broadcast to all |ocal applications
forall a in APPLI CATI ONs() where a.network = nme do
Del i ver MessageToMai | box(nsg, br oadcast, a)

el se
i f addressTabl e(nmsg.rcvr) <> undef then
forall adr in addressTabl e(nsg.rcvr) do
/1if the address is |ocal
if adr.mask = netid then
choose a in APPLI CATI ONs() where a.adr = adr do
Del i ver MessageToMai | box( nsg, adr, a)
el se
[1obs! ttl is not inplenmented
i f routingTabl e(adr) <> undef then
Del i ver MessageToMai | box(nmsg, adr, routi ngTabl e(adr))

Del i ver MessageToMai | box(m as MESSAGE, adr as ADDRESS, ag as AGENT) =
l et msg = new MESSAGE(m sndr, mrcvr, mdata, mtYPE, mtine)
MESSAGES ( msQ) = true
ag. mai | box(nsg) := true

4.4.2 DHCP Server

The behavior of dhcp servers is unspecified.
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cl ass DHCPSERVER( adr' as ADDRESS, network' as COVMJINI CATOR)
extends APPL| CATI ON(adr', network')

4.5 Control Point Model

Control points may invoke actions. Each action request refers to a particular target device via its address (dadr),
and contains an action call with a given name (actn) and arguments (args) targeted to a specific service (srvc)
within that device.

structure ACTI ONREQUEST
dadr as ADDRESS
srvc as String
actn as String
args as String

NoActi on = ACTI ONREQUEST(t hi sDevi ce,"","","")
A control point is a host that has a fixed type and UID.
cl ass CONTROLPO NT(adr' as ADDRESS,
net wor k' as COVMUNI CATCR,
type' as String,
uid as String) extends APPLI CATI ON(adr', network')
t YPE as String = type'
uid as String = uid

In a given state, we associate with each control point a (possibly empty) set of advertisements. Conceptually,
advertisements are messages of type advertisement.
cl ass CONTROLPQO NT. . .

var ads as Set[ MESSAGE] = {}

Run the control point.
cl ass CONTROLPO NT. . .
RunCont rol Poi nt () =
Sear chFor Devi ces()
Cont r ol Devi ces()
Updat eAds()
Enpt yMai | box()

Enpt yMai | box() =
forall min mail box do
mai | box(m := fal se

4.5.1 Search for Devices

When a control point is added to the network, the UPnP discovery protocol allows that control point to search
for devices of interest on the network. To specify the devices of interest for a given control point, a monitored

function searchPattern yields a corresponding search pattern. The search pattern may either be a UID or a type
of a device. We assume here that a search for devices may be invoked at any time.
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cl ass CONTROLPO NT. . .
var searchPattern as String =
Sear chFor Devi ces() =
if searchPattern <> t hen
CQut put (adr, devi ces, DATA({ SearchPattern |-> searchPattern}), search)
searchPattern := ""

4.5.2 Processing Ads
cl ass CONTROLPO NT. . .
Updat eAds() =
I ncl udeNewAds()
RenoveExpi r edAds()
RenoveRevokedAds()

I ncl udeNewAds() =
forall min mail box where mtYPE = adverti senment do
mtime = now + mdata.duration() // set expiration tine
ads(m := true [/l save the ad

RenoveExpi redAds() =
forall ad in ads where ad.tine <= now do
ads(ad): = fal se

RenoveRevokedAds() =
forall min mail box where mtYPE = revocati on do
forall ad in ads where ad.data = mdata and ad.sndr = m sndr do
ads(ad) := fal se

4.5.3 Controlling Devices

Each control point has a monitored function action that may contain a request to be issued by the control point.
cl ass CONTROLPQO NT. . .
var action as ACTI ONREQUEST = NoActi on
Cont rol Devi ces() =
I nvokeActi on()
ProcessResponse()

I nvokeAction() =
if action <> NoAction then
Qut put (adr, acti on. dadr, DATA({ Ser vi ce | -> action.srvc,
Acti on | -> action.actn
Arguments |-> action.args}), request)
action := NoAction

ProcessResponse() =
forall min mail box where mtYPE = response do
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Pri nt Response(nme, m /1l external function

4.6 Device Model

The AsmL model for UPnP devices formalizes device behavior through the program of device agents. In a
given machine state, each device agent executes the rule RunUPnPDevice defined below. The status of a device
is either alive, byebye or inactive. It is given by the shared function st at us.

enum DEVI CESTATUS
alive
byebye
i nactive

cl ass DEVI CE(adr' as ADDRESS
net wor k' as COVMUNI CATOR
type' as String,
uid" as String,
srvcs' as Set[ SERVI CE]
ads' as Set[ DATA],
duration' as TIMERTYPE -> | nteger,

time' as TIMERTYPE -> Integer) extends APPLI CATI ON(adr' , network')

t YPE as String = type

uid as String = uid

var srvcs as Set[ SERVI CE] = srvcs
ads as Set [ DATA] = ads
duration as TI MERTYPE -> | nteger = duration
var tinme as TI MERTYPE -> | nteger =tine

var status as DEVI CESTATUS = alive

RunDevi ce() =
if status <> inactive then

RunAddr essi ng()
RunbDi scovery()
RunDescri ption()
RunCont rol ()
RunPresent ati on()
RunEventi ng()

4.6.1 Addressing

cl ass DEVI CE. ..
var Aut oConfi guredl PAdr as Bool ean = fal se
var Conti nueAut ol P as Bool ean = fal se
Support sAut ol PAdr as Bool ean = true

RunAddr essi ng() =
i f Unspecifiedl PAAr(adr) or AutoConfi guredl PAdr then
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RunDHCPcl i ent () / | DHCP
i f Unspecifiedl PAdr(adr) and not DhcpOfiferRecei ved() then
i f Autol PEnabl ed() then RunAut ol PAddressing() //AutolP

Aut ol PEnabl ed() as Bool ean =
Support sAut ol PAdr and
(Ti meout (ne, dhcpd ientTi ner) or Conti nueAut ol P)

DhcpOf f er Recei ved() as Bool ean =
exi sts min mail box where mtYPE = dhcpoffer and m data. hwAdr () = hwAdr ( ne)

cl ass DEVI CE. ..

var candi dat eAdr as ADDRESS = t hi sDevi ce
4.6.1.1 Dynamic Host Configuration Protocol
class DEVICE. ..

var Switchl PAdr Event as Bool ean = true

var |Issuelnitial Discover as Bool ean = true

RunDHCPcl ient () =

i f DhcpOfferReceived() then
i f Switchl PAdrEvent then
choose min mail box where mtYPE = dhcpoffer and
m dat a. hwAdr () = hwAdr (ne) do
| et newAdr = m data. newAdr ()

mei | box(m = fal se
MESSAGES (M = fal se
adr = newAdr
Aut oConfi guredl PAdr : = fal se

Adverti seNewAds( newAdr)
Revoked dAds(adr)

el sei f Ti meout (e, dhcpCient Timer) or
I ssuelnitial Di scover then
[l provide the hardware address of the device in the nmessage data
CQut put (adr, broadcast, DATA({Har dwar eAddress | -> hwAdr(ne)}), dhcpdi scover)
Set Ti ner (ne, dhcpd i ent Ti ner)
I ssuelnitial Di scover := fal se

Revoked dAds(a as ADDRESS) =
i f not Unspecifiedl PAdr(adr) then
forall ad in ads do
Qut put (a, control Points, ad, revocation)

Adverti seNewAds(a as ADDRESS) =

forall ad in ads do
Qut put (a, control Points, ad, advertisenent)
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46.1.2  Auto-IP Addressing

class DEVICE. ..
var Candi dateAdrlsValid as Bool ean = fal se
var node as AUTO PMODE = choosel PAdr

RunAut ol PAddr essi ng() =
mat ch node with
choosel PAdr : Choosel PAdr ()
Conti nueAutol P : = true
pr obe : Probe()
checkl PAdr : Checkl PAdr ()

Choosel PAdr () =

candi dat eAdr : = guessAut ol PAdr ( ne)
node : = probe
Probe() =

Candi dat eAdrisValid : =
not (exi sts h in APPLI CATI ONs() where h.adr = candi dat eAdr)
nmode : = checkl PAdr

Checkl PAdr () =
i f Candi dateAdrlsValid then

adr = candi dat eAdr
Aut oConfi guredl PAdr : = true
Cont i nueAut ol P .= fal se
el se
node : = choosel PAdr

4.6.2 Discovery
cl ass DEVI CE. ..
RunDi scovery() =
i f not Unspecifiedl PAdr(adr) then
RespondToSear ch()
i f Tinmeout(nme, discoveryTiner) then
match status with
alive:
Set Ti nmer (ne, di scoveryTi ner)
Not i f yDevi ceAvai | abl e( cont r ol Poi nt s)

byebye:
Not i f yDevi ceUnavai | abl e()
status : = inactive

Not i f yDevi ceAvai |l abl e(rcvr as ADDRESS) =
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forall a in ads do
Qut put (adr, rcvr, a, advertisenent)

Not i f yDevi ceUnavai |l abl e() =
forall a in ads do
Qut put (adr, control Points, a, revocation)

RespondToSear ch() =
if (exists min mailbox where mtYPE = search) then
choose min mail box where mtYPE = search do
mai | box(m fal se
MESSAGEs(m) : = fal se
i f SearchhMatches(n) and status=alive then
Not i f yDevi ceAvai | abl e( m sndr)

Sear chMat ches(m as MESSAGE) as Bool ean =
(m data.search() = tYPE or mdata.search() = uid)

4.6.3 Description
cl ass DEVI CE. ..
RunDescri ption() = skip

4.6.4 Presentation
cl ass DEVICE. ..
RunPresentation() = skip

4.6.5 Eventing
cl ass DEVICE. ..
RunEventing() = skip

4.6.6 Control
cl ass DEVI CE. . .
RunControl () =
i f not Unspecifiedl PAdr(adr) then
choose min mail box where mt YPE=request and
(exists s in srvcs where mdata.service()=s.Getld()) do
let s = unique s in srvcs where mdata. service()=s.Getld()

let res = s.Ilnvoke( ACTI ONCALL(m dat a. action(), mdata.args()))

mai | box(m := fal se

Qut put (adr, msndr, DATA({Result |-> res.asString()}), response)

[/clean up the mail box
forall min mail box where Unwant edMessage(n) do
mai | box(m) := fal se
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Unwant edMessage(m as MESSACE) as Bool ean =
m t YPE = dhcpdi scover or
(mtYPE = dhcpoffer and not AutoConfi guredl PAdr
and not Unspeci fi edl PAdr(adr))

enum AUTO PMODE
choosel PAdr
pr obe
checkl PAdr

4.6.7 SERVICE Interface

Each service implements the SERVICE interface that allows the device to get the id of this service and to invoke
an action on this service.
structure ACTI ONCALL

nane as String /I name of the action

args as String [l argunents ..

enum RESULTSTATUS
ok
err

structure RESULT
stat as RESULTSTATUS //normal result or an error tag
res as String //the result val ue

i nterface SERVI CE
Getld() as String
I nvoke(actn as ACTI ONCALL) as RESULT

5 Conclusions

We construct a high-level Abstract State Machine model for Universal Plug and Play. The model is based on the
ASM paradigm for distributed systems with real-time constraints and is executable in principle. For practical
execution, we use AsmL, the Abstract state machine Language, developed at Microsoft Research and integrated
with Visual Studio and COM. This gives us an AsmL model, a refined version of the ASM model. The third
part of this project is a GUI by means of which the runs of the AsmL model are controlled and inspected at
various levels of detail as required for e.g. simulation and conformance testing.

While the ASM approach is very general, the domain of communication software is important enough to
command a particular attention. There is a stream of ASM work specific to this domain; a good example is the
SDL paper [14]. The current paper is another example. The common method in the stream is to turn,
systematically and gradually, the given informal descriptions of complex distributed systems, like the UPnP
standard [1], into high-level executable models. Our ASM model of the UPnP protocol is on the level of
abstraction of the informal description. The basic objects of the protocol are present in the model, and players of
the protocol become agents of the model. Moreover, the ASM model is component-based so that it splits into
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three separate submodels (for control points, devices and the communication network respectively) with clearly
identified interfaces.

Even though the current version of our UPnP model does not cover all protocol steps, the resulting
formalization captures all the significant aspects of UPnP: concurrency, communication and timing. The
abstract operational view of ASMs thereby allows a seamless integration of control and data-oriented aspects of
behavior specifications. Moreover, we combine synchronous and asynchronous execution paradigms,
associated with the application programs and the communication network respectively, in one common model.
In that sense, there are no conceptual difficulties to include the missing details (protocol steps) as they all rely
on the same architectural model. This becomes obvious by inspecting and running the executable model in
[15].
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6 Appendix I: AsmL model of CD Player

The following is a sample CD Player device specification.
creat eCDPLAYER(net w as COVMUNI CATCR) as DEVI CE =
let uid = "Device" + asString(size(DEVICEs)+1) //create a new U D
| et changer = new CHANGEDI SC()
| et player = new PLAYCD()
let ads = { DATA({Lifetine |-> "50",
Devi ce | -> "CDPl ayer"}),
DATA({Lifetine |-> "50",
Service |-> "CDPl ayer:: ChangeDi sc"}),
DATA({Lifetine |-> "50",
Service |-> "CDPlayer::PlayCD'}) }

let dmap = { dhcpdientTiner |-> 30,
di scoveryTinmer |-> 50 }
let tmap = { dhcpdientTiner |-> now + 30,
di scoveryTinmer |-> now }
| et dev = new CDPLAYER(netw, uid, changer, player, ads, dmap, tmap)
changer. devi ce : = dev
pl ayer.device := dev

return(dev as DEVI CE)

cl ass CDPLAYER(netw as COVMUNI CATOR,
duid'" as String,
changer' as CHANGEDI SC,
pl ayer' as PLAYCD,
di scoveryads as Set[ DATA],
dmap' as TI MERTYPE -> | nt eger,
tmap' as TI MERTYPE -> | nteger)
ext ends DEVI CE(t hi sDevi ce,
netw ,
"CD Pl ayer",
dui d',
{changer' as SERVI CE,
pl ayer' as SERVI CE},
di scoveryads,

dmap',

tmap')
changer as CHANGEDI SC = changer’
pl ayer as PLAYCD = pl ayer'

6.1 Extended SERVICE interface
i nterface Ext SERVI CE ext ends SERVI CE
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Get UPnP related data.

i nterface Ext SERVI CE. ..
Get Type() as String
GetU D() as String

Get signature information (variable, constant, sensor names, action names).
i nterface Ext SERVI CE. ..
Get StateVars() as String
Get St at eConstants() as String
Get St at eSensors() as String
Get Actions() as Set[String]
Get values of state functions.
i nterface Ext SERVICE. ..
Get StateVar Val ue(v as String) as String
Get St at eConst ant Val ue(v as String) as String

Probe the sensors.

i nterface Ext SERVICE. ..
| sSt at eSensor Enabl ed(v as String) as Integer

Get St at eSensor Val ue(v as String) as String

Set Sensor Val ue(sensor as String, val as String)
Get the value of the monitored function holding the pending action call.
i nterface Ext SERVI CE. ..

Get Pendi ngActionCal | () as String
Get high-level description of the state formulated in natural language.
i nterface Ext SERVI CE. ..

Get St at eDescription() as String
Get the value of the last result.
i nterface Ext SERVICE. ..

Get ActionResult() as String

6.2 CHANGEDISC Service
cl ass CHANGEDI SC i npl enent s Ext SERVI CE
var devi ce as CDPLAYER = undef

6.2.1 State

6.2.1.1  UPnP state variables
cl ass CHANGEDI SC. . .
var CccupiedSlots as Set[Integer] = {}
var Current Sl ot as | nteger =0
var Door | sOpen as Bool ean fal se
6.2.1.2  Sensors
cl ass CHANGEDI SC. . .
var Door | sStuck as Bool ean

fal se
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6.2.1.3 Constants

cl ass CHANGEDI SC. . .
all Slots as Set[lnteger] = {0..4}

6.2.14  Action call and result

cl ass CHANGEDI SC. . .
var action as ACTI ONCALL
var res as RESULT

ACTI ONCALL("","")
RESULT( ok, "")

6.2.2 ExtSERVICE methods

6.2.2.1 UPnP data

cl ass CHANGEDI SC. . .
Get Type() as String
GetU D() as String

6.2.2.2  Signature
cl ass CHANGEDI SC. . .

Get StateVars() as String =
"{Cccupi edSl ot s, Current Sl ot, Door | sOCpen}"
Get St at eConstants() as String =
"{all Sl ots}"
Get St at eSensors() as String
"{Door | sSt uck, t rayHasDi sc}"
Get Actions() as Set[String]
({"AddDi sc", "Next Di sc", "PrevDi sc", "RandonDi sc",
" OQpenDoor ", " C oseDoor", "Toggl eDoor ",
"HasTrayDi sc", "1 sDoor Open"})
6.2.2.3  Values
cl ass CHANGEDI SC. . .
Get St ateVarVal ue(v as String) as String =
match v with
"Cccupi edSl ot s" : Cccupi edSlots. asString()
"Current Sl ot” : CurrentSlot.asString()
" Door | sQpen” . DoorlsQpen. asString()
Get St at eConst ant Val ue(v as String) as String
match v with
"all Sl ot s" : allSlots.asString()

" ChangeDi sc"
(device.uid +

:: ChangeDi sc")

6.2.2.4  Probe sensors
cl ass CHANGEDI SC. . .
Get St at eSensor Val ue(v as String) as String =
match v with
" Door | sSt uck" : DoorlsStuck.asString()
"trayHasDi sc” . trayHasDi sc().asString()
| sSt at eSensor Enabl ed(v as String) as Integer =
match v with
"Door | sSt uck" 1
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"trayHasDi sc”
i f DoorlsCOpen then
1
el se
0
Set Sensor Val ue(v as String, val as String)
match v with
" Door | sSt uck"
Doorl sStuck := (val = "true")
"trayHasDi sc"
i f DoorlsQOpen then
Occupi edSl ots(CurrentSlot) := (va
6.2.2.5 GetPendingActionCall
cl ass CHANGEDI SC. . .
Get Pendi ngActionCall () as String =
if action.nane = "" then

"true")

el se
action.name + "(" + action.args + ")"
6.2.2.6  GetStateDescription
cl ass CHANGEDI SC. . .
Get St at eDescription() as String =
let s1 = if DoorlsCpen then
"1. Door is open.\n"
el se
"1. Door is closed\n"

let s2 = if trayHasDi sc() then
"2. There is a CD on the tray.\n"
el se
"2. There is no CD on the tray.\n"
let s3 = if successors() = {} then
"3. Current disc has no successors.\n"
el se
"3. Current disc has a successor.\n"
let s4 = if successors() = {} then
"4. Current disc has no predecessors.\n"
el se
"4. Current disc has a predecessor.\n"
let sb = if CccupiedSlots = {} then
"5. The CD player is enpty.\n"
el se
"5. The CD player is not enpty.\n"
let s6 = if OccupiedSlots = all Slots then

"6. The CD player is full.\n"
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el se
"6. The CD player has enpty slots.\n"
let s7 = if DoorlsStuck then
"7. The door is stuck."
el se
"7. The door is functional."
return(sl + s2 + s3 + s4 + sb + s6 + s7)
6.2.2.7  GetActionResult
cl ass CHANGEDI SC. . .
Get ActionResult() as String =
asString(res)

6.2.3 SERVICE methods

6231 Getld
cl ass CHANGEDI SC. . .
Get 1 d() as String = "ChangeDi sc"
6.2.3.2 Invoke
cl ass CHANGEDI SC. . .
I nvoke(a as ACTI ONCALL) as RESULT =

machi ne

action := a

res = RESULT( ok, "")
step

fireAction()
step

return res

fireAction() =
mat ch action.nane with

" AddDi sc" : AddDi sc()
"Next Di sc" . NextDisc()
"PrevDi sc" : PrevDisc()
"RandonDi sc” : RandonDi sc()
" OQpenDoor " . OpenDoor ()
"Cl oseDoor" : O oseDoor ()

"Toggl eDoor" : Toggl eDoor ()
"HasTrayDi sc": HasTrayDi sc()
"1 sDoor Open" : | sDoor Open()

6.2.4 UPnP Action Definitions

6.2.41 Derived functions
cl ass CHANGEDI SC. . .
trayHasDi sc() as Bool ean =
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Current Sl ot in Qccupi edSl ots

successors() as Set[lnteger] =
({e | e in OccupiedSlots where e gt CurrentSlot})

predecessors() as Set[lnteger] =
({e | ein OccupiedSlots where e |t CurrentSlot})

6.2.42  Error conditions
cl ass CHANGEDI SC. . .
UPnPerror (code as Integer) as Bool ean =
mat ch code with
701 : CccupiedSlots
702 : CccupiedSlots
704 : Doorl sStuck
oth : false
6.2.43  AddDisc
cl ass CHANGEDI SC. . .
AddDi sc() =
i f not(UPnPerror(702) or (UPnPerror(704) and not DoorlsQpen)) then
Door | sOQpen : = true
choose slot in allSlots difference Cccupi edSl ots do
CurrentSlot := slot
el se
if UPnPerror(704) and not (DoorlsQpen) then
i f UPnPerror(702) then
res := RESULT(err,"702/704")
el se
res :
el se
res := RESULT(err,"702")
6.2.4.4Next Di sc
cl ass CHANGEDI SC. . .

{}

all Slots

RESULT(err, "704")

Next Di sc() =
i f not(UPnPerror(701) or (UPnPerror(704) and DoorlsQOpen)) then
Door |l sQpen : = fal se
i f successors() ne {} then
Current Sl ot := setm n(successors())
el se
Current Sl ot := setnin(CccupiedSlots)
el se

if UPnPerror(704) and DoorlsOpen then
i f UPnPerror(701) then
res := RESULT(err,"701/704")
el se
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res := RESULT(err,"704")
el se
res := RESULT(err,"701")
6.2.45 PrevDisc
cl ass CHANGEDI SC. . .

PrevDi sc() =
i f not(UPnPerror(701) or (UPnPerror(704) and DoorlsQOpen)) then
Door |l sQpen : = fal se
i f predecessors() ne {} then
Current Sl ot : = setnmax(predecessors())
el se
Current Sl ot : = setmax(Cccupi edSl ot s)
el se

if UPnPerror(704) and DoorlsOpen then
if UPnPerror(701) then
res := RESULT(err,"701/704")
el se
res :
el se
res := RESULT(err,"701")
6.2.4.6 RandomDisc
cl ass CHANGEDI SC. . .

RESULT(err, "704")

RandonDi sc() =
if not (UPnPerror(701) or (UPnPerror(704) and DoorlsQpen)) then
Doorl sQpen : = fal se
choose e in Cccupi edSl ots do
CurrentSlot := e
el se

i f UPnPerror(704) and DoorlsOpen then
i f UPnPerror(701) then

res := RESULT(err,"701/704")
el se
res := RESULT(err,"704")
el se

res := RESULT(err,"701")
6.2.4.7  OpenDoor
cl ass CHANGEDI SC. . .
OpenDoor () =
if not (UPnPerror(704) and not DoorlsQpen) then
Door | sOQpen : = true
el se
res := RESULT(err,"704")
6.2.4.8 CloseDoor
cl ass CHANGEDI SC. . .
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G oseDoor () =
if not (UPnPerror(704) and DoorlsOpen) then
Door | sOpen : = fal se
el se
res := RESULT(err,"704")

6.2.49 ToggleDoor
cl ass CHANGEDI SC. . .

Toggl eDoor () =
i f not UPnPerror(704) then
Door | sQpen : = not Doorl sOpen
el se
res := RESULT(err,"704")
6.2.4.10 HasTrayDisc
cl ass CHANGEDI SC. . .
HasTrayDi sc() =
res: = RESULT(ok,trayHasDi sc().asString())
6.2.4.11 IsDoorOpen
cl ass CHANGEDI SC. . .
| sDoor Open() =
res: = RESULT( ok, Door | sOpen. asString())
6.2.4.12 Helper functions
cl ass CHANGEDI SC. . .
setmax(s as Set[Integer]) as Integer =
(unique e | ein s where (forall d in s holds e gte d))
setmn(s as Set[Integer]) as Integer =
(unique e | e in s where (forall din s holds e lte d))

6.3 PLAYCD Service
cl ass PLAYCD i npl ements Ext SERVI CE
var devi ce as CDPLAYER = undef

6.3.1 State

6.3.1.1 UPnDP state variables
cl ass PLAYCD. ..

var Pl ayMode as String = "Stopped”
var PlayProgramas String = "None"
var TrackNunber as Integer =1
var TrackOffset as Integer =1
6.3.1.2  Sensors
cl ass PLAYCD.. .
var Di sclsUnreadabl e as Bool ean = fal se
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6.3.1.3
cl ass
D s

6.3.14
cl ass
var
var

6.3.2
cl ass
Get
Get
d

Get

Get

Get

Get
{

Get

Constants
PLAYCD. . .
cTOC as Integer -> Integer = {1 |-> 10,

Next action and last result
PLAYCD. . .
action as ACTI ONCALL
res as RESULT

ACTI ONCALL("","")
RESULT( ok, "")

ExtSERVICE
PLAYCD. . .
Type() as String =
Pl ayCD'
UD) as String =
evice.uid + "::PlayCD'
StateVars() as String =
{ Pl ayMbde, Pl ayPr ogram Tr ackNunber, Tr ackCf f set } "
St ateConstants() as String =
{Di scTOC}"
St at eSensors() as String
{Di scl sUnreadabl e}"
Actions() as Set[String]
"Pl ay"”
" Pause"
" St op"
" Set Pl ayPr ogr ant
" Sel ect Track"
" Next Tr ack"
"PrevTrack"}
St at eVar Val ue(v as String) as String =

match v with

Get

" Pl ayMode" . asString(Pl ayMde)
"Pl ayProgram : asString(PlayProgram
"TrackNunber” : asString(TrackNunber)
"TrackOFfset” : asString(TrackO fset)
ot hers o

St at eConst ant VaI ue(v as String) as String =

match v with

Get

"Di scTOC' : asString(Di scTOC)
ot hers o

St at eSensor Val ue(v as String) as String =

match v with
"Di scl sUnreadabl e" : asString(Di scl sUnreadabl e)
ot hers o
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| sSt at eSensor Enabl ed(v as String) as Integer =

1

Get Pendi ngActionCal | () as String =
if action.nane = "" then
el se

action.name + "(" + action.args + ")"
Get St at eDescription() as String =
"Pl ayCD state description not inplenented"
Set Sensor Val ue(sensor as String, val as String) =
mat ch sensor with
"Di scl sUnr eadabl e" : DisclsUnreadable := (val = "true")
ot hers : skip
6.3.2.1  GetActionResult
cl ass PLAYCD. . .
Get ActionResult() as String =
asString(res)

6.3.3 SERVICE

6.3.3.1 Getld
cl ass PLAYCD. ..
Getld() as String = "PlayCD'
6.3.3.2 Invoke
cl ass PLAYCD. ..
I nvoke(a as ACTI ONCALL) as RESULT =

machi ne

action := a

res = RESULT(ok,"")
step

fireAction()
step

return res

fireAction() =
mat ch action. nane with

"Pl ay"” : Play()

" Pause" . Pause()

" St op” . Stop()

"Set Pl ayProgrant : SetPl ayProgramaction. args)

" Sel ect Track" . Sel ect Track(asl nteger(action. args))
" Next Tr ack” . Next Track()

"PrevTrack” . PrevTrack()

ot hers : skip
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6.3.4 UPnP Action Definitions

6.3.4.1 Derived functions
cl ass PLAYCD. ..
tracks() as Set[Integer] = dom(Di scTOC)

di scNunber of Tracks() as Integer = size(tracks())

trackDuration() as Integer =
if TrackNunmber = 0 then 0 el se Di scTOC(Tr ackNunber)

i sValidTrack(i as Integer) as Bool ean =
(i > 0) and (i < di scNunberof Tracks())

i sLast Track() as Boolean = (TrackNumnber
i sFirstTrack() as Bool ean (TrackNunber

di scNunmber of Tracks())
1)

i sRandon{) as Bool ean =
Pl ayProgram i n {" ONCE_RANDOM', " REPEAT_RANDOM'}

i sRepeat ed() as Bool ean =
Pl ayProgram i n {"REPEAT | N ORDER', " REPEAT_ RANDOM }

di scHasTracks() as Bool ean = di scNunber of Tracks() > 0
di scHasTooManyTr acks() as Bool ean = di scNunmber of Tracks() > 255
6.3.4.2  Error conditions
cl ass PLAYCD. . .
UPnPerror (code as Integer) as Bool ean =
mat ch code with
501 : not (Di scl sUnreadabl e) and UPnPerror(701)
701 : not (device. changer.trayHasDi sc()) and
not (devi ce. changer . Door | sOpen)
703 : devi ce. changer. Door | sOQpen
711 : not(di scHasTracks()) and
Di scl sUnr eadabl e and
UPnPerror (701)
712 : di scHasTooManyTracks() and
Di scl sUnr eadabl e and
UPnPerror (701)
799 . exists e in {701, 703,711, 712} where UPnPerror(e)

6.34.3 Play
cl ass PLAYCD. . .
Play() =
i f not (UPnPerror(501) or UPnPerror(799)) then
Pl ayMbde : = "Pl ayi ng"
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el se
i f UPnPerror(501) then
i f UPnPerror(799) then
res := RESULT(err,"501/7??")

el se
res := RESULT(err, "501")
el se
res := RESULT(err,"7??")
6.3.44  Pause
cl ass PLAYCD. . .
Pause() =
i f not (UPnPerror(501) or UPnPerror(799)) then
Pl ayMbde : = "Paused"
el se

i f UPnPerror(501) then
i f UPnPerror(799) then
res := RESULT(err, "501/7??")
el se
res :
el se
res := RESULT(err,"7??")
6.34.5 Stop
cl ass PLAYCD. ..
Stop() =
Pl ayMode .= " St opped”
TrackOffset := 0
i f device.changer.trayHasDi sc() then
TrackNunber := 1
el se
TrackNunmber := 0
6.3.4.6  SetPlayProgram
cl ass PLAYCD. . .
Set Pl ayProgram(pgm as String) = PlayProgram:= pgm
6.3.4.7  SelectTrack
cl ass PLAYCD. . .
Sel ect Track(newlrack as Integer) =
i f newTrack in tracks() and not (UPnPerror(799)) then

RESULT(err, "501")

TrackNunber : = newTlrack
TrackOffset := 0
el se

if UPnPerror(799) then res := RESULT(err,"7??")

6.3.4.8 NextTrack
cl ass PLAYCD. ..
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Next Track() =
i f not(UPnPerror(799)) then
i f isRandon() then
choose t in tracks() do TrackNunber :=t
el seif isLastTrack() then
TrackNunmber := 1
el se
TrackNunber := TrackNumber + 1
TrackOffset := 0
el se
res := RESULT(err,"7??")

6.3.49  PrevTrack
cl ass PLAYCD.. .
PrevTrack() =
i f not(UPnPerror(799)) then
i f isRandon() then
choose t in tracks() do TrackNunber :=t
el seif isFirstTrack() then
Tr ackNunber di scNunber of Tr acks()
el se
TrackNunber := TrackNumber - 1
TrackOffset := 0
el se
res := RESULT(err,"7??")

7 Appendix II: IServer Interface

The following contains the declarations of all the | Ser ver interface methods and the definition of the class
UPnPModel Ser ver implementing those methods. This interface is used by the GUI to visualize the AsmL state
and to interact with the model.

7.1 IServer Declaration
interface | Server. ..
shared guid as GUI D = "3CB6F20B- 4041- 424C- A356- D48525A969ED"

7.1.1 General

interface | Server. ..
Initialize()
Reinitialize()

Step()

Create_NETWORK(info as String) as String
Creat e_ CONTROLPO NT(info as String) as String
Create DEVICE(info as String) as String

-43 -



7.1.2 NETWORK
interface | Server...

NETWORK _LoseMessage(netw as String, nsg as String)

NETWORK_Ter mi nat e(netw as Stri ng)
NETWORK_St ep(netw as String)

NETWORK _Col | ect Message(netw as String)
NETWORK_Del i ver Message(netw as String,

NETWORK Get MessageCont ent (netw as Stri ng,
NETWORK _Get Mbde(netw as String) as String

7.1.3 CONTROLPOINT
interface | Server...

nmsg as String)

NETWORK ReadMessagesl nTransit(netw as String) as String
NETWORK Get MessageSender (netw as String,
NETWORK_Cet MessageRecei ver (netw as String, nmsg as String) as String

nmseg as String) as String

nmsg as String) as String

CONTROLPO NT_Search(ctrl as String, searchPattern as String)

CONTROLPO NT_Terni nate(ctrl as String)

CONTROLPO NT_I nvokeAction(ctrl as String,
srvc as String,
actn as String,
args as String)

CONTROLPO NT_Di scover(ctrl as String,

CONTROLPO NT_Get | nMessage(ctrl as String,

what as String)
CONTROLPO NT_Get Qut Box(ctrl as String) as String
CONTROLPO NT_Get I nBox(ctrl as String) as String
CONTROLPO NT_Get Advertisements(ctrl as String) as String
CONTROLPO NT_Get Mbde(ctrl as String) as String

nmsg as String) as String

CONTROLPO NT_Del et el nMessage(ctrl as String, nsg as String)
CONTROLPO NT_Savel nMessagel nAds(ctrl as String, nsg as String)
CONTROLPO NT_Get Qut Message(ctrl as String, nsg as String) as String
CONTROLPO NT_Get Ad(ctrl as String, nmsg as String) as String

nmsg as String)

CONTROLPO NT_Del et eAd(ctrl as String,
CONTROLPO NT_I nvokeServi ceAction(ctrl
dadr
srvce
actn
args

as
as
as
as
as

String,
String,
String,
String,
String)

CONTROLPO NT_Get Ul D(ctrl as String) as String
CONTROLPO NT_Get | PADR(ctrl as String) as String

CONTROLPO NT_Step(ctrl as String)

CONTROLPO NT_Get Pattern(ctrl as String) as String
CONTROLPO NT_Get Action(ctrl as String) as String
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7.1.4 DEVICE
interface | Server. ..
DEVI CE_Set Sensor (dev as String, sensor as String, val as String)
DEVI CE_Cet Sensor (dev as String, sensor as String) as String
DEVI CE_Term nat e(dev as String)
DEVI CE_Exit(dev as String)
DEVI CE_St ep(dev as String)
DEVI CE_Get UUI D(dev as String) as String
DEVI CE_GCet Type(dev as String) as String
DEVI CE_CGet Mbde(dev as String) as String
DEVI CE_Cet I nBox(dev as String) as String
DEVI CE_Cet | nBoxMessage(dev as String, nsg as String) as String
DEVI CE_Cet Qut Box(dev as String) as String
DEVI CE_Cet Qut BoxMessage(dev as String, nsg as String) as String
DEVI CE_Cet Servi ces(dev as String) as String
DEVI CE_Cet Servi ceUUl D(dev as String, svc as String) as String
DEVI CE_Cet Servi ceType(dev as String, svc as String) as String
DEVI CE_Cet Servi ceMbde(dev as String, svc as String) as String
DEVI CE_Cet Servi ceSt ateVars(dev as String, svc as String) as String
DEVI CE_Cet Servi ceSt at eVar Val ue(dev as String, svc as String,
% as String) as String
DEVI CE_Cet Servi ceSensors(dev as String,
svc as String) as String
DEVI CE_Cet Servi ceSensor Val ue(dev as Stri ng,
svc as String,
sensor as String) as String
DEVI CE_| sSer vi ceSensor Enabl ed(dev as Stri ng,
svc as String,
sensor as String) as |nteger
DEVI CE_Cet Ser vi cePendi ngActi onCal | (dev as Stri ng,
svc as String) as String
DEVI CE_GCet Servi ceActi onResul t (dev as Stri ng,
svc as String) as String
DEVI CE_Cet Servi ceSt at eDescri ption(dev as String,
svc as String) as String
DEVI CE_Set Ser vi ceSensor Val ue(dev as Stri ng,
svc as String,
sensor as String,
val as String)
DEVI CE_Cet Ser vi ceSt at eConst ant s(dev as String,
svc as String) as String
DEVI CE_Cet Ser vi ceSt at eConst ant Val ue(dev as Stri ng,
svc as String,
cons as String) as String
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DEVI CE_Cet | PADR(dev as String) as String

DEVI CE_Cet Servi ceActi ons(dev as
DEVI CE_Set St at us(dev as Stri ng,

7.1.5 Simulation Information
interface | Server. ..
Get NETWORKTypes() as String
Get DEVI CETypes() as String
Get CONTROLPO NTTypes() as String
Get \rOF St eps() as I nteger

7.1.6 MESSAGE

interface | Server. ..
MESSAGE Get (nmsg as String) as St
MESSAGE Get Content (nsg as String
MESSAGE_Cet Header (nmsg as String)
MESSAGE_Cet Recei ver (nsg as Strin
MESSAGE Get Sender (nsg as String)

String, svc as String) as String
stat as String)

ring

) as String
as String

g) as String
as String

MESSAGE Get Tine(nsg as String) as String
MESSAGE Get Type(nsg as String) as String

7.1.7 Time

interface | Server. ..
Set Nowm(n as | nteger)
I ncrNow(n as | nteger)
Get Now() as I nteger

7.1.8 DHCP Server

interface | Server. ..
DHCPSer ver Repl y(rcvr as String,
DHCPSer ver Get Mai | box() as String
DHCPSer ver Del et eMsg(nmsg as Strin

7.1.9 Fire

interface | Server...
Fire()
NETWORK_Fi re(netw as String)
CONTROLPO NT_Fire(ctrl as String
DEVI CE_Fire(dev as String)

/lend interface | Server

7.1.10 Other

interface | Server...
Get _Networks() as String
NETWORK _Get Type(netw as String)

id as String, adr as String)

9)

)

as String

- 46 -



NETWORK Get | P(netw as String) as String

7.1.11 Creation of Server
get COMCl asses() as Seq[GQUI D] =
[ GUI D( " 6390E481- FD89- 41C2- 8552- EE96EF2918E6") |

creat eCOM nstance(clid as GU D) as |Dispatch =
new UPnPMbdel Server ()

7.2 IServer Implementation
cl ass UPnPModel Server inplenents | Server, AUTOVATI ON

7.2.1 Create_ NETWORK
cl ass UPnPModel Server. ..
Create NETWORK(v as String) as String =
POPUP( " Creat e NETWORK i s not i npl enented")
return("")

7.2.2 Create_ CONTROLPOINT
cl ass UPnPModel Server. ..
Creat e CONTROLPO NT(v as String) as String =
choose a i n avail abl eCont rol Poi nt Addr esses() do
let ctrl = new CONTROLPO NT(a, control Poi nt Network, v, "")
CONTROLPO NTs(ctrl) := true
return(asString(ctrl))
i f none
return("")

7.2.3 Create_ DEVICE

Only devices of type CD Player are supported below, the argument v is ignored. Each device has
devi ceNet wor k as its network communicator.
cl ass UPnPModel Server. ..
Create DEVICE(v as String) as String =
| et dev = creat eCDPLAYER(devi ceNet wor k)
DEVI CEs(dev) := true
return(asString(dev))

7.24 NETWORK
cl ass UPnPModel Server. ..
NETWORK LoseMessage(netw as String, nmsg as String) =
| dToNet wor k(netw) . mai | box(l1 dToMsG nsg)) : = fal se
NETWORK Term nate(netw as String) =
COVMUNI CATORs (| dToNet wor k(netw)) : = fal se
NETWORK St ep(netw as String) =

try
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| dToNet wor k( net w) . RunNet wor k()
now : = now + 1
catch
e as hject : POPUP("Exception in RunNetwork: " + e.asString())
NETWORK Col | ect Message(netw as String) =
POPUP( " NETWORK_Col | ect Message not i npl enented!")
NETWORK Del i ver Message(netw as String, nsg as String) =
POPUP( " NETWORK _Del i ver Message not i npl enent ed")
/11 dToNet wor k( netw) . Del i ver Message( | dToMSE nsq) )
NETWORK _ReadMessagesl| nTransit(netw as String) as String =
| dToNet wor k( netw) . mai | box. asStri ng()
NETWORK_Cet MessageSender (netw as String, nmsg as String) as String =
| dTOMSG( nsg) . sndr. asString()
NETWORK Get MessageRecei ver (netw as Stri ng,
nmsg as String) as String =
| dTOMSG( nsg) . rcvr. asString()
NETWORK Get MessageContent (netw as String, nsg as String) as String =
| dToMSGE nmeg) . dat a. asStri ng()
NETWORK _Get Mode(netw as String) as String =
"active"

725 CONTROLPOINT
cl ass UPnPMbdel Server. ..
CONTROLPO NT_Search(ctrl as String, pattern as String) =
POPUP( " Not i npl enent ed, use ' CONTROLPO NT_Di scover'")
CONTROLPO NT_Terni nate(ctrl as String) =
CONTROLPO NTs( 1 dToControl Point(ctrl)) := fal se
CONTROLPO NT_I nvokeAction(ctrl as String, srvc as String,
actn as String, args as String) =
POPUP( " Not i npl enment ed, use ' CONTROLPO NT_I nvokeServi ceAction'!")
CONTROLPOI NT_Di scover(ctrl as String, pat as String) =
I dToControl Point (ctrl).searchPattern := pat
CONTROLPO NT_Get Qut Box(ctrl as String) as String =
gy
CONTROLPO NT_Get I nBox(ctrl as String) as String =
| dToCont rol Poi nt (ctrl). mail box.asString()
CONTROLPO NT_Get Adverti senments(ctrl as String) as String =
I dToControl Point (ctrl).ads.asString()
CONTROLPO NT_Get Mode(ctrl as String) as String =

CONTROLPO NT_Get | nMessage(ctrl as String, nmsg as String) as String =
POPUP( " CONTROLPO NT_Cet | nMessage not i npl enent ed! ")

return("")
CONTROLPO NT_Del et el nMessage(ctrl as String, nsg as String) =
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I dToControl Point (ctrl). mail box(ldToMSE nsg)) := fal se
CONTROLPO NT_Savel nMessagel nAds(ctrl as String, nsg as String) =
let ¢ = IdToControl Point(ctrl)
let m= 1dToMsSQ nsq)
c.mail box(m := fal se
c.ads(m = true
CONTROLPO NT_Get Qut Message(ctrl as String,nmsg as String) as String =
POPUP( " CONTROLPO NT_Get Qut Message not i npl enent ed! ")
return("")
CONTROLPO NT_Get Ad(ctrl as String, nsg as String) as String =
POPUP( " CONTROLPO NT_Cet Ad not i npl emented!")
return("")
CONTROLPO NT_Del et eAd(ctrl as String, msg as String) =
I dToControl Point (ctrl).ads(ldToMsSG neg)) := fal se
CONTROLPO NT_I nvokeServi ceAction(ctrl as String,
dadr as String,
srvc as String,
actn as String,
args as String) =
I dToControl Point(ctrl).action :=
ACTI ONREQUEST( ADDRESS( devi ceNet | d, dadr, 0), srvc, actn, args)
CONTROLPO NT_Get Ul D(ctrl as String) as String =
| dToControl Poi nt(ctrl).uid.asString()
CONTROLPO NT_Get | PADR(ctrl as String) as String =
I dToControl Point (ctrl).adr.asString()
CONTROLPO NT_Step(ctrl as String) =

try
I dToCont r ol Poi nt (ctrl). RunControl Point ()
now : = now + 1
catch
e as bj ect
POPUP(" Exception in RunControl Point: " + e.asString())

CONTROLPO NT_Get Pattern(ctrl as String) as String =
I dToControl Point (ctrl).searchPattern.asString()
CONTROLPO NT_Get Action(ctrl as String) as String =

let a = IdToControl Point(ctrl).action
if a = NoAction then
return("")
el se
return(a.dadr.asString() + ":" + a.srvc + ":" +

a.actn + "(" + a.args +")")

7.2.6 DEVICE
cl ass UPnPModel Server. ..

-49 -



DEVI CE_Set Sensor (dev as String, sensor as String, val as String) =
POPUP( " DEVI CE_Set Sensor not inpl enmented! ")

DEVI CE_Cet Sensor (dev as String, sensor as String) as String =
POPUP( " DEVI CE_Get Sensor not i npl enent ed! ")
return("device_sensor")

DEVI CE_Ter mi nate(dev as String) =

DEVI CEs( 1 dToDevi ce(dev)) := fal se

DEVI CE_Exit(dev as String) =

| dToDevi ce(dev) . st at us : = byebye
DEVI CE_Step(dev as String) =
try
| dToDevi ce(dev) . RunDevi ce()
now : = now + 1
catch

e as nject : POPUP("Exception in RunDevice: " + e.asString())
DEVI CE_Cet UUI D(dev as String) as String
| dToDevi ce(dev) . uid
DEVI CE_Cet Type(dev as String) as String
| dToDevi ce(dev) .t YPE
DEVI CE_Cet Mode(dev as String) as String
| dToDevi ce(dev). node. asString()
DEVI CE_Cet | nBox(devld as String) as String =
| dToDevi ce(devl d). mai |l box. asString()
DEVI CE_Cet | nBoxMessage(dev as String, nsg as String) as String =
MESSACGE_Get Header ( nmsg)
DEVI CE_Cet Qut Box(devld as String) as String =
gy
DEVI CE_Cet Qut BoxMessage(dev as String, nsg as String) as String =
MESSAGE Get Header (nsg)
DEVI CE_Cet Servi ces(dev as String) as String =
({(srvc as ExtSERVICE). Getld() |
srvc in | dToDevi ce(dev).srvcs}).asString()
DEVI CE_Cet Servi ceUUl D(dev as String, svc as String) as String =
| dToSrvc(Il dToDevi ce(dev), svc) . Get Ul ()
DEVI CE_Cet Servi ceType(dev as String, svc as String) as String =
| dToSrvc(|l dToDevi ce(dev), svc) . Get Type()
DEVI CE_Cet Servi ceMbde(dev as String, svc as String) as String =

DEVI CE_Cet Servi ceSt ateVars(dev as String, svc as String) as String =
| dToSrve( |l dToDevi ce(dev), svc). Get StateVars().asString()
DEVI CE_Cet Ser vi ceSt at eVar Val ue(dev as Stri ng,
svc as String,
% as String) as String =
| dToSrvc(I dToDevi ce(dev), svc) . Get St at eVar Val ue(v)
DEVI CE_Cet Servi ceSensors(dev as String,
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svc as String) as String =
| dToSrve( 1l dToDevi ce(dev), svc). Get St at eSensors() . asStri ng()
DEVI CE_Cet Servi ceSensor Val ue(dev as Stri ng,
svc as String,
sensor as String) as String =
| dToSrvc( |l dToDevi ce(dev), svc) . CGet St at eSensor Val ue(sensor)
DEVI CE_| sServi ceSensor Enabl ed(dev as Stri ng,
svc as String,
sensor as String) as Integer =
| dToSrvc(|l dToDevi ce(dev), svc) . | sSt at eSensor Enabl ed( sensor)
DEVI CE_Cet Ser vi cePendi ngActi onCal | (dev as String,
svc as String) as String =
I dToSrvc(|l dToDevi ce(dev), svc) . Get Pendi ngActi onCal | ()
DEVI CE_GCet Servi ceActi onResul t (dev as Stri ng,
svc as String) as String =
| dToSrve( 1l dToDevi ce(dev), svc). Get Acti onResul t (). asString()
DEVI CE_Cet Servi ceSt at eDescri ption(dev as String,
svc as String) as String =
| dToSrvc(|l dToDevi ce(dev), svc) . Get St at eDescri ption()
DEVI CE_Set Ser vi ceSensor Val ue(dev as Stri ng,
svc as String,
sensor as String,
val as String) =
| dToSrvc(| dToDevi ce(dev), svc) . Set Sensor Val ue(sensor, val)
DEVI CE_Cet Servi ceSt at eConst ant s(dev as Stri ng,
svc as String) as String =
| dToSrvc(Il dToDevi ce(dev), svc) . Get St at eConstants().asString()
DEVI CE_Cet Ser vi ceSt at eConst ant Val ue(dev as Stri ng,
svc as String,
cons as String) as String =
| dToSrvc(| dToDevi ce(dev), svc) . Get St at eConst ant Val ue( cons)
DEVI CE_Cet | PADR(dev as String) as String =
| dToDevi ce(dev). adr.asString()
DEVI CE_GCet Servi ceActions(dev as String, svc as String) as String =
| dToSrvc(Il dToDevi ce(dev), svc) . Get Actions().asString()
DEVI CE_Set St at us(dev as String, stat as String) =
match stat with

"alive" . 1 dToDevi ce(dev).status := alive
"byebye" : I dToDevi ce(dev).status : = byebye
"inactive" : |dToDevice(dev).status := inactive

7.2.7 Simulation Parameters
cl ass UPnPModel Server. ..
Get NETWORKTypes() as String =
"{Devi ce Network, Control Poi nt Network}"
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Get DEVI CETypes() as String = "{CD Pl ayer}"
Get CONTROLPO NTTypes() as String =
"{Control Point A Control Point B}"
GetNrOF Steps() as Integer =
POPUP( " Get N\r OF St eps not i npl enented! ")
return(0)

7.2.8 MESSAGE
cl ass UPnPMbdel Server. ..
MESSAGE Cet (nsg as String) as String =
let m= 1dToMSQE nsq)

return("From" + msndr.asString() + "," +
"To:" + mrcvr.asString() +"," +
"Type:" + mtYPE asString() + "," +
"Content:" + mdata.asString() + "," +

"Time:" + mtine.asString())
MESSAGE Get Content (nmsg as String) as String =
| dToMSGE neg) . data. f.asString()
MESSAGE Get Header (nsg as String) as String =
let m= 1dToMsQE nsQ)
return ("From" + msndr.asString() + "," +
"To:" + mrcvr.asString() + "," +
"Type:" + mtYPE asString())
MESSAGE Get Recei ver(nmsg as String) as String =
| dTOMSG( nmeg) . rcvr. asString()
MESSAGE Get Sender (nsg as String) as String =
| dTOMSG( nsg) . sndr. asString()
MESSAGE Get Ti ne(nsg as String) as String
| dTOMSG( nsg) . time.asString()
MESSAGE Get Type(nsg as String) as String
| dToMSGE nmeg) . t YPE. asString()

729 Time
cl ass UPnPModel Server. ..
Set Now(n as Integer) =
now :=n
IncrNowm(n as Integer) =
now : = now + n
Get Now() as Integer =
now

7.2.10 DHCP Server
cl ass UPnPModel Server. ..

DHCPSer ver Repl y(tenp as String, id as String, newAdr as String) =
let msg = | dToMsQE(i d)
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dhcpserver. mai | box(nsg) : = fal se
MESSAGEs(nsg) : = fal se
i f nsg.sndr <> thisDevice then
dhcpserver. Qut put (dhcpserverl P, nsg. sndr,
DATA( { Har dwar eAddress | -> nsg. dat a. hwAdr (),
NewAddr ess |-> newAdr}), dhcpoffer)
el se
dhcpserver. Qut put (dhcpserverl P, broadcast,
DATA( { Har dwar eAddress | -> nsg. dat a. hwAdr (),
NewAddr ess | -> newAdr}), dhcpoffer)

DHCPSer ver Get Mai | box() as String =
dhcpserver. mai | box. asString()

DHCPSer ver Del et eMsg(id as String) =
let neg = | dToM5EH i d)
dhcpserver. mai | box(nsg) : = fal se
MESSACGEs(nsg) : = fal se

7.2.11 Fire
cl ass UPnPModel Server. ..
Fire() =
try
RunUPNP()
catch
e as Object : POPUP("Exception in RunUPnP: " + e.asString())

NETWORK Fire(netw as String) =
try
| dToNet wor k( net w) . RunNet wor k()

catch
e as hject : POPUP("Exception in RunNetwork: " + e.asString())

CONTROLPO NT_Fire(ctrl as String) =

try
I dToCont rol Poi nt (ctrl). RunCont r ol Poi nt ()
catch
e as hj ect
POPUP( " Exception in RunControl Point: " + e.asString())

DEVI CE_Fire(dev as String) =

try
| dToDevi ce(dev) . RunDevi ce()
catch
e as nject : POPUP("Exception in RunDevice: " + e.asString())
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7.2.12 Step

The main rule of the simulation ASM.
cl ass UPnPModel Server. ..

Step() =
try
RunUPNP()
now : = now + 1
catch

e as hject : POPUP("Exception in RunUPnP: " + e.asString())

7.2.13 Initialization

The set of all possible control point/device addresses is given by the following static functions.
devi ceAddr essSpace as Set[ ADDRESS] =
{ ADDRESS( devi ceNet | d,
deviceNetld + ".1." + asString(i), 0) | i in {1..100}}
cont rol Poi nt Addr essSpace as Set[ ADDRESS] =
{ ADDRESS( cont r ol Poi nt Net I d,
control PointNetld + ".2." + asString(i), 0) | i in {1..100}}

The available addresses are given by the following derived functions.
avai | abl eDevi ceAddr esses() as Set[ ADDRESS] =
{a | a in deviceAddressSpace where
not (exists d in DEVICEs where d.adr = a)}
avai | abl eCont r ol Poi nt Addr esses() as Set[ ADDRESS] =
{a | a in control Poi nt Addr essSpace where
not (exists c in CONTROLPO NTs where c.adr = a)}

7.2.13.1 Device network communicator

deviceNetld as String = "1.1"

devi ceNet wor k as COVMUNI CATOR =

new COVMUNI CATOR( devi ceNet | d

[ *** addressTabl e
/11 ocal addresses
{devi ces |-> devi ceAddr essSpace} nerge
{d |-> {d} | d in deviceAddressSpace} nerge
{dhcpserver| P | -> {dhcpserverl| P}} nerge
/I nonl ocal addresses
{control Points |-> {control Points}} merge
{c |-> {c} | c in control Poi nt Addr essSpace},
[1*** routingTabl e
undef)

7.2.13.2 ControlPoint network communicator

control PointNetld as String = "2.2"

cont rol Poi nt Net wor k as COVMUNI CATOR =
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new COMMUNI CATOR( cont r ol Poi nt Net | d,
[/ *** addressTabl e
/ /1 ocal addresses
{control Points |-> control Poi nt Addr essSpace} nerge
{c |-> {c} | c in control Poi nt AddressSpace} nerge
/I nonl ocal addresses
{d |-> {d} | d in deviceAddressSpace} nerge
{devi ces |-> {devices}},
[1*** routingTabl e
undef)
7.2.13.3 DHCP server
There is a single DHCP server and it is connected to the device network.
dhcpserver| P as ADDRESS = ADDRESS(devi ceNetld, deviceNetld+".10.10",0)
dhcpserver as DHCPSERVER = new DHCPSERVER( dhcpserver| P, devi ceNet wor k)
7.2.13.4 The initialization rule.
cl ass UPnPModel Server . .
Initialize() =

now =0
COMMUNI CATORs = {devi ceNet wor k, contr ol Poi nt Net wor k}
DHCPSERVERS = {dhcpserver}

devi ceNetwor k. routi ngTabl e : =

{control Points |-> control Poi nt Net wor k} nerge

{c |-> control Poi nt Network | ¢ in control Poi nt Addr essSpace}
cont r ol Poi nt Net wor k. routi ngTabl e : =

{devi ces |-> deviceNetwork } nerge

{d |-> deviceNetwork | d in deviceAddressSpace}

7.2.14 Reinitialize
cl ass UPnPMbodel Server. .
Reinitialize() =

DEVI CEs = {}
CONTROLPO NTs = {}

MESSAGES = {}

devi ceNet wor k. mai | box : = {}

cont r ol Poi nt Net wor k. mai | box : = {}
dhcpserver. mai |l box := {}

now =0

7.2.15 other
cl ass UPnPModel Server . .
Get _Networks() as String =
asStri ng( COVWMUNI CATORs)
NETWORK Get Type(netw as String) as String =
asString(ldToNet wor k( netw) . neti d)
NETWORK Get | P(netw as String) as String = ""
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7.3 Global mappings from identifiers to agents.

7.3.1 IdToDevice

Map an id to the corresponding device.
| dToDevi ce(devld as String) as DEVICE =
uni que dev | dev in DEVI CEs where asString(dev) = devld

7.3.2 IdToNetwork

Map an id to the corresponding network.
| dToNet work(netwid as String) as COMUNI CATOR =

uni que netw | netw in COMMUNI CATORs where asString(netw) = netw d
7.3.3 1dToControlPoint
Map an id to the corresponding control point.
| dToControl Point(ctrlld as String) as CONTROLPO NT =

unique ctrl | ctrl in CONTROLPO NTs where asString(ctrl) = ctrlld

7.3.4 IdToMSG
| dToOMSGE nsgld as String) as MESSACE =
unique m| min MESSAGES where asString(m = nsgld

7.3.5 IdToSrvc
The id of a service is unique within the scope of a given device.
| dToSrvc(dev as DEVICE, sld as String) as Ext SERVI CE =
(uni que (srvc as Ext SERVI CE) |
srvc in dev.srvcs where (srvc as Ext SERVICE). Getld() = sld)

7.4 External Functions

74.1 guessCandidateAdr

External function that returns a new IP address for the given device.
guessAut ol PAdr(d as DEVI CE) as ADDRESS =
choose a in avail abl eDevi ceAddr esses() do
return(a)
i f none
return(thisDevice)

7.4.2 PrintResponse

External function that prints the response from a device in the control point.
Pri nt Response(ctrl as CONTROLPO NT, msg as MESSAGE) =
ski p
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