

 ChangeDisc,

PlayCD, ChangeDisc

PlayCD

10

.

9

8

7

6

5

4

3

2

1

.

.

.

.

.

.

CurrentSlot

AllSlots

Occupied
Slots

Occupied
Slots

DoorIsOpen

DoorIsStuck

Occupied
Slots

AGENT, where

PROGRAM

domain AGENT, static domain PROGRAM

program

program : AGENT → PROGRAM, forall a ∈ AGENT: program(a) ∈ PROGRAM

 Initial State:

 ASM Agents:

 Concurrency:

 Instantaneous Reactions:

 Atomicity:

 Discrete Time:

s

 s : Set of Integer

s s

s s

 s(2) := false
 s(3) := true

s m

 m : Map of Integer to Integer

m

 m(4) := 6

f

 f : Integer → Map of Integer to Integer

f(1) f(1)(2)=3 f(1)(4)=5

f

 f(1)(4) := 6

domain COMMUNICATOR, domain CONTROL⋅POINT, domain DEVICE

R2

R3

R1

R2

R3

R1

domain DHCP⋅SERVER

AGENT

COMMUNICATOR, CONTROL⋅POINT DEVICE DHCP⋅SERVER

AGENT ≡≡≡≡ APPLICATION ∪ COMMUNICATOR
APPLICATION ≡≡≡≡ CONTROL⋅POINT ∪ DEVICE ∪ DHCP⋅SERVER

→

 routingTable: COMMUNICATOR → Map of ADDRESS to (Set of COMMUNICATOR)

TIME

TIME ⊆ REAL ≥
DURATION

domain TIME, domain DURATION

now TIME now

monitored now : TIME initially startTime

a t

t t

active time(t) now t

domain TIMER⋅TYPE ≡≡≡≡ {dhcpClient, discovery, …}

duration : AGENT → Map of TIMER⋅TYPE to DURATION
time : AGENT → Map of TIMER⋅TYPE to TIME

t a t

SetTimer(a,t) ≡≡≡≡ time(a)(t):= now + duration(a)(t)

Timeout t a

Timeout : AGENT → Map of TIMER⋅TYPE to BOOL, Timeout(a,t) = now ≥ time(a)(t)

address

thisDevice

static domain ADDRESS

address : APPLICATION → ADDRESS

HW⋅ADDRESS

static domain HW⋅ADDRESS
hwAddress : DEVICE → HW⋅ADDRESS

MESSAGE

MSG⋅TYPE

domain MESSAGE initially empty
domain MSG⋅TYPE ≡≡≡≡ {advertisement, search, request, response,
 revocation, dhcpOffer, dhcpDiscover}

sndr : MESSAGE → ADDRESS
rcvr : MESSAGE → ADDRESS
type : MESSAGE → MSG⋅TYPE
data : MESSAGE → DATA

network : APPLICATION → COMMUNICATOR

mailbox : AGENT → Set of MESSAGE initially empty

Output(r:ADDRESS,d:DATA,t:MSG⋅TYPE)=
 extend MESSAGE with m

 sndr(m):=address(me)
 rcvr(m):=r
 data(m):=d
 type(m):=t
 mailbox(network(me)) := mailbox(network(me)) ∪ {m}

domain PROGRAM ≡≡≡≡ {RunControlPoint, RunDevice, RunNetwork}

∀ x ∈ AGENT: program(x) =
 RunControlPoint, if x ∈ CONTROLPOINT
 RunDevice, if x ∈ DEVICE
 RunNetwork, if x ∈ COMMUNICATOR

routingTable

routingTable

routingTable : COMMUNICATOR → Map of ADDRESS to COMMUNICATOR

addressTable addressTable

addressTable : COMMUNICATOR → Map of ADDRESS to Set of ADDRESS

ttl : MESSAGE → {0,1,2,3,4} initially 4

ReadyToDeliver m

ReadyToDeliver(m)

monitored ReadyToDeliver : MESSAGE → BOOL initially false

netid,

RunCommunicator ≡≡≡≡
 choose msg ∈ mailbox(me): ReadyToDeliver(msg) do
 mailbox(me):= mailbox(me) - {msg}
 if rcvr(msg) = broadcast then
 forall a ∈ APPLICATION: network(a) = me do
 DeliverMessageToMailbox(msg,address(a),a)
 else
 forall adr ∈ addressTable(me)(rcvr(msg)) do
 if netid(adr)= netid(me) then
 choose a ∈ APPLICATION: address(a) = adr do
 DeliverMessageToMailbox(msg,adr,a)
 else
 if ttl(msg) > 0 then
 let c = routingTable(me)(adr) in
 DeliverMessageToMailbox(msg,adr,c)

DeliverMessageToMailbox(msg:MESSAGE,adr:ADDRESS,ag:AGENT) =
 extend MESSAGE with m

 sndr(m):= sndr(msg),
 rcvr(m):= adr,
 type(m):= type(msg),
 data(m):= data(msg), ttl(m) := ttl(m)-1
 mailbox(ag):= mailbox(ag) ∪ {m}

monitored status : DEVICE → { inactive, alive, byebye }

RunDevice =
 if status(me) ≠ inactive then
 RunAddressing
 RunDiscovery
 RunDescription
 RunControl
 RunEventing
 RunPresentation

DhcpOffer(m) ≡≡≡≡
 (type(m) = dhcpoffer and hwAddressEncodedIn(data(m)) = hwAddress(me))

monitored ValidAutoIPAdr : DEVICE × ADDRESS → BOOL

RunAddressing ≡≡≡≡
 if address(me) = thisDevice or AutoConfiguredAddress(me) then

 RunDHCPclient
 if address(me) = thisDevice and ¬DhcpOfferReceived then
 choose address ∈ ADDRESS: ValidAutoIPAdr(me,address) do
 address(me):= address
 AutoConfiguredAddress(me):= true

 DhcpOfferReceived ≡≡≡≡ ∃∃∃∃ m ∈ mailbox(me): DhcpOffer(m)

monitored SwitchAddressEvent : DEVICE → BOOL initially false

IssueInitialDiscover : DEVICE → BOOL initially true

RunDHCPclient =
 choose m ∈ mailbox(me): DhcpOffer(m) do
 if SwitchAddressEvent (me) then
 address(me):= rcvr(m)
 AutoConfiguredIPAdr(me):= false
 AdvertiseNewAds(rcvr(m))
 RevokeOldAds(address(me))
 if ¬DhcpOfferReceived then
 if Timeout(me,dhcpClientTimer) or IssueInitialDiscover(me) then
 Output(255.255.255.255,dhcpdiscover,hwAddress(me))
 SetTimer(me,dhcpClientTimer)
 IssueInitialDiscover(me):= false
where
 DhcpOfferReceived ≡≡≡≡ exists m ∈ mailbox(me): DhcpOffer(m)

MatchingServiceRequest : SERVICE * MESSAGE → BOOL

RunDiscovery ≡≡≡≡
 NotifyAdsStatus
 RespondToSearch

NotifyAdsStatus ≡≡≡≡
 if address(me) ≠ thisDevice and Timeout(me,discoveryTimer) then

 SetTimer(me,discoveryTimer)
 if status(me) = alive then
 NotifyDeviceAvailable(controlPoints)
 if status(me) = byebye then
 NotifyDeviceUnavailable(controlPoints)
 status(me):= inactive

srvcs : DEVICE → Set of SERVICE

RespondToSearch ≡≡≡≡
 choose m ∈ mailbox(me) : type(m) = search do
 mailbox(me)(m) := false
 if exists s ∈ srvcs(me): MatchingServiceRequest(s,m) then
 NotifyDeviceAvailable(sndr(m))

Service Action Arguments

RunControl ≡≡≡≡
 if not address(me)=thisDevice then
 choose m ∈ mailbox(me) : type(m) = request and
 data(m)(Service) ∈ srvcs(me) do
 let res = Invoke(data(m)(Service),data(m)(Action),data(m)(Arguments))
 mailbox(me)(m) := false
 Output(address(me), sndr(m), {Result mapsto res}, response)

UPnPModelServer.

import COM

serverName = "UPnPModelServer"

IServer IDispatch

interface IServer extends IDispatch

Initialize IServer

var CONTROLPOINTs as Set[CONTROLPOINT] = {}

var DEVICEs as Set[DEVICE] = {}

var DHCPSERVERs as Set[DHCPSERVER] = {}

APPLICATIONs() as Set[APPLICATION] =

 {c as APPLICATION | c in CONTROLPOINTs}

 union {d as APPLICATION | d in DEVICEs}

 union {s as APPLICATION | s in DHCPSERVERs}

var COMMUNICATORs as Set[COMMUNICATOR] = {}

var now as Integer = 0

RunUPnP() =

 forall c in CONTROLPOINTs do

 c.RunControlPoint()

 forall d in DEVICEs do

 d.RunDevice()

 forall n in COMMUNICATORs do

 n.RunNetwork()

enum TIMERTYPE

 dhcpClientTimer

 discoveryTimer

Timeout(d as DEVICE, t as TIMERTYPE) as Boolean =

 now >= d.time(t)

SetTimer(d as DEVICE, t as TIMERTYPE) =

 d.time(t):= now + d.duration(t)

hwAdr(h as APPLICATION) as String = asString(h)

structure ADDRESS

 mask as String

 adr as String

 port as Integer

 asString() as String = adr

thisDevice = ADDRESS("","0.0.0.0",0)

UnspecifiedIPAdr(a as ADDRESS) as Boolean = (a = thisDevice)

controlPoints = ADDRESS(controlPointNetId,"2.2.2.255",0)

devices = ADDRESS(deviceNetId,"1.1.1.255",0)

broadcast = ADDRESS("","255.255.255.255",0)

var MESSAGEs as Set[MESSAGE] = {}

enum MSGTYPE

 advertisement

 search

 request

 response

 revocation

 dhcpoffer

 dhcpdiscover

enum FIELD

 Device

 Service

 Action

 Arguments

 Lifetime

 HardwareAddress

 NewAddress

 SearchPattern

 Result

structure DATA

 f as FIELD -> String

 service() as String = f(Service)

 action() as String = f(Action)

 args() as String = f(Arguments)

 duration() as Integer = Integer.fromString(f(Lifetime))

 hwAdr() as String = f(HardwareAddress)

 newAdr() as ADDRESS = ADDRESS(deviceNetId,f(NewAddress),0)

 search() as String = f(SearchPattern)

emptycontent as DATA = DATA({|->})

class MESSAGE

 sndr as ADDRESS

 rcvr as ADDRESS

 data as DATA

 tYPE as MSGTYPE

 var time as Integer

class AGENT()

 var mailbox as Set[MESSAGE] = {}

class APPLICATION(a as ADDRESS, n as COMMUNICATOR) extends AGENT()

 var adr as ADDRESS = a

 var network as COMMUNICATOR = n

 Output(s as ADDRESS, r as ADDRESS, c as DATA, t as MSGTYPE) =

 let m = new MESSAGE(s, r, c, t, now)

 MESSAGEs(m) := true

 network.mailbox(m) := true

class COMMUNICATOR(t as String,

 atbl as ADDRESS -> Set[ADDRESS],

 rtbl as ADDRESS -> COMMUNICATOR) extends AGENT()

 netid as String = t

 addressTable as ADDRESS -> Set[ADDRESS] = atbl

 var routingTable as ADDRESS -> COMMUNICATOR = rtbl

class COMMUNICATOR...

 RunNetwork() =

 choose msg in mailbox do

 mailbox(msg) := false

 if msg.rcvr = broadcast then

 // limited broadcast to all local applications

 forall a in APPLICATIONs() where a.network = me do

 DeliverMessageToMailbox(msg,broadcast,a)

 else

 if addressTable(msg.rcvr) <> undef then

 forall adr in addressTable(msg.rcvr) do

 //if the address is local

 if adr.mask = netid then

 choose a in APPLICATIONs() where a.adr = adr do

 DeliverMessageToMailbox(msg,adr,a)

 else

 //obs! ttl is not implemented

 if routingTable(adr) <> undef then

 DeliverMessageToMailbox(msg,adr,routingTable(adr))

DeliverMessageToMailbox(m as MESSAGE, adr as ADDRESS, ag as AGENT) =

 let msg = new MESSAGE(m.sndr, m.rcvr, m.data, m.tYPE, m.time)

 MESSAGEs(msg) := true

 ag.mailbox(msg) := true

class DHCPSERVER(adr' as ADDRESS, network' as COMMUNICATOR)

 extends APPLICATION(adr', network')

structure ACTIONREQUEST

 dadr as ADDRESS

 srvc as String

 actn as String

 args as String

NoAction = ACTIONREQUEST(thisDevice,"","","")

class CONTROLPOINT(adr' as ADDRESS,

 network' as COMMUNICATOR,

 type' as String,

 uid' as String) extends APPLICATION(adr',network')

 tYPE as String = type'

 uid as String = uid'

class CONTROLPOINT...

 var ads as Set[MESSAGE] = {}

class CONTROLPOINT...

 RunControlPoint() =

 SearchForDevices()

 ControlDevices()

 UpdateAds()

 EmptyMailbox()

 EmptyMailbox() =

 forall m in mailbox do

 mailbox(m) := false

class CONTROLPOINT...

 var searchPattern as String = ""

 SearchForDevices() =

 if searchPattern <> "" then

 Output(adr,devices,DATA({SearchPattern |-> searchPattern}), search)

 searchPattern := ""

class CONTROLPOINT...

 UpdateAds() =

 IncludeNewAds()

 RemoveExpiredAds()

 RemoveRevokedAds()

 IncludeNewAds() =

 forall m in mailbox where m.tYPE = advertisement do

 m.time := now + m.data.duration() // set expiration time

 ads(m) := true // save the ad

 RemoveExpiredAds() =

 forall ad in ads where ad.time <= now do

 ads(ad):= false

 RemoveRevokedAds() =

 forall m in mailbox where m.tYPE = revocation do

 forall ad in ads where ad.data = m.data and ad.sndr = m.sndr do

 ads(ad) := false

class CONTROLPOINT...

 var action as ACTIONREQUEST = NoAction

 ControlDevices() =

 InvokeAction()

 ProcessResponse()

 InvokeAction() =

 if action <> NoAction then

 Output(adr,action.dadr,DATA({Service |-> action.srvc,

 Action |-> action.actn,

 Arguments |-> action.args}), request)

 action := NoAction

 ProcessResponse() =

 forall m in mailbox where m.tYPE = response do

 PrintResponse(me, m) // external function

status

enum DEVICESTATUS

 alive

 byebye

 inactive

class DEVICE(adr' as ADDRESS,

 network' as COMMUNICATOR,

 type' as String,

 uid' as String,

 srvcs' as Set[SERVICE],

 ads' as Set[DATA],

 duration' as TIMERTYPE -> Integer,

 time' as TIMERTYPE -> Integer) extends APPLICATION(adr',network')

 tYPE as String = type'

 uid as String = uid'

 var srvcs as Set[SERVICE] = srvcs'

 ads as Set[DATA] = ads'

 duration as TIMERTYPE -> Integer = duration'

 var time as TIMERTYPE -> Integer = time'

 var status as DEVICESTATUS = alive

 RunDevice() =

 if status <> inactive then

 RunAddressing()

 RunDiscovery()

 RunDescription()

 RunControl()

 RunPresentation()

 RunEventing()

class DEVICE...

 var AutoConfiguredIPAdr as Boolean = false

 var ContinueAutoIP as Boolean = false

 SupportsAutoIPAdr as Boolean = true

 RunAddressing() =

 if UnspecifiedIPAdr(adr) or AutoConfiguredIPAdr then

 RunDHCPclient() //DHCP

 if UnspecifiedIPAdr(adr) and not DhcpOfferReceived() then

 if AutoIPEnabled() then RunAutoIPAddressing() //AutoIP

 AutoIPEnabled() as Boolean =

 SupportsAutoIPAdr and

 (Timeout(me,dhcpClientTimer) or ContinueAutoIP)

 DhcpOfferReceived() as Boolean =

 exists m in mailbox where m.tYPE = dhcpoffer and m.data.hwAdr() = hwAdr(me)

class DEVICE...

 var candidateAdr as ADDRESS = thisDevice

class DEVICE...

 var SwitchIPAdrEvent as Boolean = true

 var IssueInitialDiscover as Boolean = true

 RunDHCPclient() =

 if DhcpOfferReceived() then

 if SwitchIPAdrEvent then

 choose m in mailbox where m.tYPE = dhcpoffer and

 m.data.hwAdr() = hwAdr(me) do

 let newAdr = m.data.newAdr()

 mailbox(m) := false

 MESSAGEs(m) := false

 adr := newAdr

 AutoConfiguredIPAdr := false

 AdvertiseNewAds(newAdr)

 RevokeOldAds(adr)

 elseif Timeout(me,dhcpClientTimer) or

 IssueInitialDiscover then

 //provide the hardware address of the device in the message data

 Output(adr, broadcast,DATA({HardwareAddress |-> hwAdr(me)}),dhcpdiscover)

 SetTimer(me,dhcpClientTimer)

 IssueInitialDiscover := false

 RevokeOldAds(a as ADDRESS) =

 if not UnspecifiedIPAdr(adr) then

 forall ad in ads do

 Output(a, controlPoints, ad, revocation)

 AdvertiseNewAds(a as ADDRESS) =

 forall ad in ads do

 Output(a, controlPoints, ad, advertisement)

class DEVICE...

 var CandidateAdrIsValid as Boolean = false

 var mode as AUTOIPMODE = chooseIPAdr

 RunAutoIPAddressing() =

 match mode with

 chooseIPAdr : ChooseIPAdr()

 ContinueAutoIP := true

 probe : Probe()

 checkIPAdr : CheckIPAdr()

 ChooseIPAdr() =

 candidateAdr := guessAutoIPAdr(me)

 mode := probe

 Probe() =

 CandidateAdrIsValid :=

 not(exists h in APPLICATIONs() where h.adr = candidateAdr)

 mode := checkIPAdr

 CheckIPAdr() =

 if CandidateAdrIsValid then

 adr := candidateAdr

 AutoConfiguredIPAdr := true

 ContinueAutoIP := false

 else

 mode := chooseIPAdr

class DEVICE...

 RunDiscovery() =

 if not UnspecifiedIPAdr(adr) then

 RespondToSearch()

 if Timeout(me, discoveryTimer) then

 match status with

 alive:

 SetTimer(me, discoveryTimer)

 NotifyDeviceAvailable(controlPoints)

 byebye:

 NotifyDeviceUnavailable()

 status := inactive

 NotifyDeviceAvailable(rcvr as ADDRESS) =

 forall a in ads do

 Output(adr, rcvr, a, advertisement)

 NotifyDeviceUnavailable() =

 forall a in ads do

 Output(adr, controlPoints, a, revocation)

 RespondToSearch() =

 if (exists m in mailbox where m.tYPE = search) then

 choose m in mailbox where m.tYPE = search do

 mailbox(m) := false

 MESSAGEs(m) := false

 if SearchMatches(m) and status=alive then

 NotifyDeviceAvailable(m.sndr)

 SearchMatches(m as MESSAGE) as Boolean =

 (m.data.search() = tYPE or m.data.search() = uid)

class DEVICE...

 RunDescription() = skip

class DEVICE...

 RunPresentation() = skip

class DEVICE...

 RunEventing() = skip

class DEVICE...

 RunControl() =

 if not UnspecifiedIPAdr(adr) then

 choose m in mailbox where m.tYPE=request and

 (exists s in srvcs where m.data.service()=s.GetId()) do

 let s = unique s in srvcs where m.data.service()=s.GetId()

 let res = s.Invoke(ACTIONCALL(m.data.action(), m.data.args()))

 mailbox(m) := false

 Output(adr, m.sndr, DATA({Result |-> res.asString()}), response)

 //clean up the mailbox

 forall m in mailbox where UnwantedMessage(m) do

 mailbox(m) := false

 UnwantedMessage(m as MESSAGE) as Boolean =

 m.tYPE = dhcpdiscover or

 (m.tYPE = dhcpoffer and not AutoConfiguredIPAdr

 and not UnspecifiedIPAdr(adr))

enum AUTOIPMODE

 chooseIPAdr

 probe

 checkIPAdr

structure ACTIONCALL

 name as String //name of the action

 args as String //arguments ..

enum RESULTSTATUS

 ok

 err

structure RESULT

 stat as RESULTSTATUS //normal result or an error tag

 res as String //the result value

interface SERVICE

 GetId() as String

 Invoke(actn as ACTIONCALL) as RESULT

createCDPLAYER(netw as COMMUNICATOR) as DEVICE =

 let uid = "Device" + asString(size(DEVICEs)+1) //create a new UID

 let changer = new CHANGEDISC()

 let player = new PLAYCD()

 let ads = { DATA({Lifetime |-> "50",

 Device |-> "CDPlayer"}),

 DATA({Lifetime |-> "50",

 Service |-> "CDPlayer::ChangeDisc"}),

 DATA({Lifetime |-> "50",

 Service |-> "CDPlayer::PlayCD"}) }

 let dmap = { dhcpClientTimer |-> 30,

 discoveryTimer |-> 50 }

 let tmap = { dhcpClientTimer |-> now + 30,

 discoveryTimer |-> now }

 let dev = new CDPLAYER(netw, uid, changer, player, ads, dmap, tmap)

 changer.device := dev

 player.device := dev

 return(dev as DEVICE)

class CDPLAYER(netw' as COMMUNICATOR,

 duid' as String,

 changer' as CHANGEDISC,

 player' as PLAYCD,

 discoveryads as Set[DATA],

 dmap' as TIMERTYPE -> Integer,

 tmap' as TIMERTYPE -> Integer)

 extends DEVICE(thisDevice,

 netw',

 "CD Player",

 duid',

 {changer' as SERVICE,

 player' as SERVICE},

 discoveryads,

 dmap',

 tmap')

 changer as CHANGEDISC = changer'

 player as PLAYCD = player'

interface ExtSERVICE extends SERVICE

interface ExtSERVICE...

 GetType() as String

 GetUID() as String

interface ExtSERVICE...

 GetStateVars() as String

 GetStateConstants() as String

 GetStateSensors() as String

 GetActions() as Set[String]

interface ExtSERVICE...

 GetStateVarValue(v as String) as String

 GetStateConstantValue(v as String) as String

interface ExtSERVICE...
 IsStateSensorEnabled(v as String) as Integer

 GetStateSensorValue(v as String) as String

 SetSensorValue(sensor as String, val as String)

interface ExtSERVICE...

 GetPendingActionCall() as String

interface ExtSERVICE...

 GetStateDescription() as String

interface ExtSERVICE...

 GetActionResult() as String

class CHANGEDISC implements ExtSERVICE

 var device as CDPLAYER = undef

class CHANGEDISC...

 var OccupiedSlots as Set[Integer] = {}

 var CurrentSlot as Integer = 0

 var DoorIsOpen as Boolean = false

class CHANGEDISC...

 var DoorIsStuck as Boolean = false

class CHANGEDISC...

 allSlots as Set[Integer] = {0..4}

class CHANGEDISC...

 var action as ACTIONCALL = ACTIONCALL("","")

 var res as RESULT = RESULT(ok,"")

class CHANGEDISC...

 GetType() as String = "ChangeDisc"

 GetUID() as String = (device.uid + "::ChangeDisc")

class CHANGEDISC...

 GetStateVars() as String =

 "{OccupiedSlots,CurrentSlot,DoorIsOpen}"

 GetStateConstants() as String =

 "{allSlots}"

 GetStateSensors() as String =

 "{DoorIsStuck,trayHasDisc}"

 GetActions() as Set[String] =

 ({"AddDisc","NextDisc","PrevDisc","RandomDisc",

 "OpenDoor","CloseDoor","ToggleDoor",

 "HasTrayDisc","IsDoorOpen"})

class CHANGEDISC...

 GetStateVarValue(v as String) as String =

 match v with

 "OccupiedSlots" : OccupiedSlots.asString()

 "CurrentSlot" : CurrentSlot.asString()

 "DoorIsOpen" : DoorIsOpen.asString()

 GetStateConstantValue(v as String) as String =

 match v with

 "allSlots" : allSlots.asString()

class CHANGEDISC...

 GetStateSensorValue(v as String) as String =

 match v with

 "DoorIsStuck" : DoorIsStuck.asString()

 "trayHasDisc" : trayHasDisc().asString()

 IsStateSensorEnabled(v as String) as Integer =

 match v with

 "DoorIsStuck" : 1

 "trayHasDisc" :

 if DoorIsOpen then

 1

 else

 0

 SetSensorValue(v as String, val as String) =

 match v with

 "DoorIsStuck" :

 DoorIsStuck := (val = "true")

 "trayHasDisc" :

 if DoorIsOpen then

 OccupiedSlots(CurrentSlot) := (val = "true")

class CHANGEDISC...

 GetPendingActionCall() as String =

 if action.name = "" then

 ""

 else

 action.name + "(" + action.args + ")"

class CHANGEDISC...

 GetStateDescription() as String =

 let s1 = if DoorIsOpen then

 "1. Door is open.\n"

 else

 "1. Door is closed\n"

 let s2 = if trayHasDisc() then

 "2. There is a CD on the tray.\n"

 else

 "2. There is no CD on the tray.\n"

 let s3 = if successors() = {} then

 "3. Current disc has no successors.\n"

 else

 "3. Current disc has a successor.\n"

 let s4 = if successors() = {} then

 "4. Current disc has no predecessors.\n"

 else

 "4. Current disc has a predecessor.\n"

 let s5 = if OccupiedSlots = {} then

 "5. The CD player is empty.\n"

 else

 "5. The CD player is not empty.\n"

 let s6 = if OccupiedSlots = allSlots then

 "6. The CD player is full.\n"

 else

 "6. The CD player has empty slots.\n"

 let s7 = if DoorIsStuck then

 "7. The door is stuck."

 else

 "7. The door is functional."

 return(s1 + s2 + s3 + s4 + s5 + s6 + s7)

class CHANGEDISC...

 GetActionResult() as String =

 asString(res)

class CHANGEDISC...

 GetId() as String = "ChangeDisc"

class CHANGEDISC...

 Invoke(a as ACTIONCALL) as RESULT =

 machine

 action := a

 res := RESULT(ok,"")

 step

 fireAction()

 step

 return res

 fireAction() =

 match action.name with

 "AddDisc" : AddDisc()

 "NextDisc" : NextDisc()

 "PrevDisc" : PrevDisc()

 "RandomDisc" : RandomDisc()

 "OpenDoor" : OpenDoor()

 "CloseDoor" : CloseDoor()

 "ToggleDoor" : ToggleDoor()

 "HasTrayDisc": HasTrayDisc()

 "IsDoorOpen" : IsDoorOpen()

class CHANGEDISC...

 trayHasDisc() as Boolean =

 CurrentSlot in OccupiedSlots

 successors() as Set[Integer] =

 ({e | e in OccupiedSlots where e gt CurrentSlot})

 predecessors() as Set[Integer] =

 ({e | e in OccupiedSlots where e lt CurrentSlot})

class CHANGEDISC...

 UPnPerror(code as Integer) as Boolean =

 match code with

 701 : OccupiedSlots = {}

 702 : OccupiedSlots = allSlots

 704 : DoorIsStuck

 oth : false

class CHANGEDISC...

 AddDisc() =

 if not(UPnPerror(702) or (UPnPerror(704) and not DoorIsOpen)) then

 DoorIsOpen := true

 choose slot in allSlots difference OccupiedSlots do

 CurrentSlot := slot

 else

 if UPnPerror(704) and not(DoorIsOpen) then

 if UPnPerror(702) then

 res := RESULT(err,"702/704")

 else

 res := RESULT(err,"704")

 else

 res := RESULT(err,"702")

6.2.4.4 NextDisc
class CHANGEDISC...

 NextDisc() =

 if not(UPnPerror(701) or (UPnPerror(704) and DoorIsOpen)) then

 DoorIsOpen := false

 if successors() ne {} then

 CurrentSlot := setmin(successors())

 else

 CurrentSlot := setmin(OccupiedSlots)

 else

 if UPnPerror(704) and DoorIsOpen then

 if UPnPerror(701) then

 res := RESULT(err,"701/704")

 else

 res := RESULT(err,"704")

 else

 res := RESULT(err,"701")

class CHANGEDISC...

 PrevDisc() =

 if not(UPnPerror(701) or (UPnPerror(704) and DoorIsOpen)) then

 DoorIsOpen := false

 if predecessors() ne {} then

 CurrentSlot := setmax(predecessors())

 else

 CurrentSlot := setmax(OccupiedSlots)

 else

 if UPnPerror(704) and DoorIsOpen then

 if UPnPerror(701) then

 res := RESULT(err,"701/704")

 else

 res := RESULT(err,"704")

 else

 res := RESULT(err,"701")

class CHANGEDISC...

 RandomDisc() =

 if not (UPnPerror(701) or (UPnPerror(704) and DoorIsOpen)) then

 DoorIsOpen := false

 choose e in OccupiedSlots do

 CurrentSlot := e

 else

 if UPnPerror(704) and DoorIsOpen then

 if UPnPerror(701) then

 res := RESULT(err,"701/704")

 else

 res := RESULT(err,"704")

 else

 res := RESULT(err,"701")

class CHANGEDISC...

 OpenDoor() =

 if not (UPnPerror(704) and not DoorIsOpen) then

 DoorIsOpen := true

 else

 res := RESULT(err,"704")

class CHANGEDISC...

 CloseDoor() =

 if not (UPnPerror(704) and DoorIsOpen) then

 DoorIsOpen := false

 else

 res := RESULT(err,"704")

class CHANGEDISC...

 ToggleDoor() =

 if not UPnPerror(704) then

 DoorIsOpen := not DoorIsOpen

 else

 res := RESULT(err,"704")

class CHANGEDISC...

 HasTrayDisc() =

 res:= RESULT(ok,trayHasDisc().asString())

class CHANGEDISC...

 IsDoorOpen() =

 res:= RESULT(ok,DoorIsOpen.asString())

class CHANGEDISC...

setmax(s as Set[Integer]) as Integer =

 (unique e | e in s where (forall d in s holds e gte d))

setmin(s as Set[Integer]) as Integer =

 (unique e | e in s where (forall d in s holds e lte d))

class PLAYCD implements ExtSERVICE

 var device as CDPLAYER = undef

class PLAYCD...

 var PlayMode as String = "Stopped"

 var PlayProgram as String = "None"

 var TrackNumber as Integer = 1

 var TrackOffset as Integer = 1

class PLAYCD...

 var DiscIsUnreadable as Boolean = false

class PLAYCD...

 DiscTOC as Integer -> Integer = {1 |-> 10, 2 |-> 20, 3 |-> 20,

 4 |-> 20, 5 |-> 20}

class PLAYCD...

 var action as ACTIONCALL = ACTIONCALL("","")

 var res as RESULT = RESULT(ok,"")

class PLAYCD...

 GetType() as String =

 "PlayCD"

 GetUID() as String =

 device.uid + "::PlayCD"

 GetStateVars() as String =

 "{PlayMode,PlayProgram,TrackNumber,TrackOffset}"

 GetStateConstants() as String =

 "{DiscTOC}"

 GetStateSensors() as String =

 "{DiscIsUnreadable}"

 GetActions() as Set[String] =

 {"Play"

 ,"Pause"

 ,"Stop"

 ,"SetPlayProgram"

 ,"SelectTrack"

 ,"NextTrack"

 ,"PrevTrack"}

 GetStateVarValue(v as String) as String =

 match v with

 "PlayMode" : asString(PlayMode)

 "PlayProgram" : asString(PlayProgram)

 "TrackNumber" : asString(TrackNumber)

 "TrackOffset" : asString(TrackOffset)

 others : ""

 GetStateConstantValue(v as String) as String =

 match v with

 "DiscTOC" : asString(DiscTOC)

 others : ""

 GetStateSensorValue(v as String) as String =

 match v with

 "DiscIsUnreadable" : asString(DiscIsUnreadable)

 others : ""

 IsStateSensorEnabled(v as String) as Integer =

 1

 GetPendingActionCall() as String =

 if action.name = "" then

 ""

 else

 action.name + "(" + action.args + ")"

 GetStateDescription() as String =

 "PlayCD state description not implemented"

 SetSensorValue(sensor as String, val as String) =

 match sensor with

 "DiscIsUnreadable" : DiscIsUnreadable := (val = "true")

 others : skip

class PLAYCD...

 GetActionResult() as String =

 asString(res)

class PLAYCD...

 GetId() as String = "PlayCD"

class PLAYCD...

 Invoke(a as ACTIONCALL) as RESULT =

 machine

 action := a

 res := RESULT(ok,"")

 step

 fireAction()

 step

 return res

 fireAction() =

 match action.name with

 "Play" : Play()

 "Pause" : Pause()

 "Stop" : Stop()

 "SetPlayProgram" : SetPlayProgram(action.args)

 "SelectTrack" : SelectTrack(asInteger(action.args))

 "NextTrack" : NextTrack()

 "PrevTrack" : PrevTrack()

 others : skip

class PLAYCD...

 tracks() as Set[Integer] = dom(DiscTOC)

 discNumberofTracks() as Integer = size(tracks())

 trackDuration() as Integer =

 if TrackNumber = 0 then 0 else DiscTOC(TrackNumber)

 isValidTrack(i as Integer) as Boolean =

 (i > 0) and (i < discNumberofTracks())

 isLastTrack() as Boolean = (TrackNumber = discNumberofTracks())

 isFirstTrack() as Boolean = (TrackNumber = 1)

 isRandom() as Boolean =

 PlayProgram in {"ONCE_RANDOM", "REPEAT_RANDOM"}

 isRepeated() as Boolean =

 PlayProgram in {"REPEAT_IN_ORDER", "REPEAT_RANDOM"}

 discHasTracks() as Boolean = discNumberofTracks() > 0

 discHasTooManyTracks() as Boolean = discNumberofTracks() > 255

class PLAYCD...

 UPnPerror(code as Integer) as Boolean =

 match code with

 501 : not(DiscIsUnreadable) and UPnPerror(701)

 701 : not(device.changer.trayHasDisc()) and

 not(device.changer.DoorIsOpen)

 703 : device.changer.DoorIsOpen

 711 : not(discHasTracks()) and

 DiscIsUnreadable and

 UPnPerror(701)

 712 : discHasTooManyTracks() and

 DiscIsUnreadable and

 UPnPerror(701)

 799 : exists e in {701,703,711,712} where UPnPerror(e)

class PLAYCD...

 Play() =

 if not(UPnPerror(501) or UPnPerror(799)) then

 PlayMode := "Playing"

 else

 if UPnPerror(501) then

 if UPnPerror(799) then

 res := RESULT(err,"501/7??")

 else

 res := RESULT(err,"501")

 else

 res := RESULT(err,"7??")

class PLAYCD...

 Pause() =

 if not(UPnPerror(501) or UPnPerror(799)) then

 PlayMode := "Paused"

 else

 if UPnPerror(501) then

 if UPnPerror(799) then

 res := RESULT(err,"501/7??")

 else

 res := RESULT(err,"501")

 else

 res := RESULT(err,"7??")

class PLAYCD...

 Stop() =

 PlayMode := "Stopped"

 TrackOffset := 0

 if device.changer.trayHasDisc() then

 TrackNumber := 1

 else

 TrackNumber := 0

class PLAYCD...

 SetPlayProgram(pgm as String) = PlayProgram := pgm

class PLAYCD...

 SelectTrack(newTrack as Integer) =

 if newTrack in tracks() and not(UPnPerror(799)) then

 TrackNumber := newTrack

 TrackOffset := 0

 else

 if UPnPerror(799) then res := RESULT(err,"7??")

class PLAYCD...

 NextTrack() =

 if not(UPnPerror(799)) then

 if isRandom() then

 choose t in tracks() do TrackNumber := t

 elseif isLastTrack() then

 TrackNumber := 1

 else

 TrackNumber := TrackNumber + 1

 TrackOffset := 0

 else

 res := RESULT(err,"7??")

class PLAYCD...

 PrevTrack() =

 if not(UPnPerror(799)) then

 if isRandom() then

 choose t in tracks() do TrackNumber := t

 elseif isFirstTrack() then

 TrackNumber := discNumberofTracks()

 else

 TrackNumber := TrackNumber - 1

 TrackOffset := 0

 else

 res := RESULT(err,"7??")

IServer

UPnPModelServer

interface IServer...

 shared guid as GUID = "3CB6F20B-4041-424C-A356-D48525A969ED"

interface IServer...

 Initialize()

 Reinitialize()

 Step()

 Create_NETWORK(info as String) as String

 Create_CONTROLPOINT(info as String) as String

 Create_DEVICE(info as String) as String

interface IServer...

 NETWORK_LoseMessage(netw as String, msg as String)

 NETWORK_Terminate(netw as String)

 NETWORK_Step(netw as String)

 NETWORK_CollectMessage(netw as String)

 NETWORK_DeliverMessage(netw as String, msg as String)

 NETWORK_ReadMessagesInTransit(netw as String) as String

 NETWORK_GetMessageSender(netw as String, msg as String) as String

 NETWORK_GetMessageReceiver(netw as String, msg as String) as String

 NETWORK_GetMessageContent(netw as String, msg as String) as String

 NETWORK_GetMode(netw as String) as String

interface IServer...

 CONTROLPOINT_Search(ctrl as String, searchPattern as String)

 CONTROLPOINT_Terminate(ctrl as String)

 CONTROLPOINT_InvokeAction(ctrl as String,

 srvc as String,

 actn as String,

 args as String)

 CONTROLPOINT_Discover(ctrl as String, what as String)

 CONTROLPOINT_GetOutBox(ctrl as String) as String

 CONTROLPOINT_GetInBox(ctrl as String) as String

 CONTROLPOINT_GetAdvertisements(ctrl as String) as String

 CONTROLPOINT_GetMode(ctrl as String) as String

 CONTROLPOINT_GetInMessage(ctrl as String, msg as String) as String

 CONTROLPOINT_DeleteInMessage(ctrl as String, msg as String)

 CONTROLPOINT_SaveInMessageInAds(ctrl as String, msg as String)

 CONTROLPOINT_GetOutMessage(ctrl as String, msg as String) as String

 CONTROLPOINT_GetAd(ctrl as String, msg as String) as String

 CONTROLPOINT_DeleteAd(ctrl as String, msg as String)

 CONTROLPOINT_InvokeServiceAction(ctrl as String,

 dadr as String,

 srvc as String,

 actn as String,

 args as String)

 CONTROLPOINT_GetUID(ctrl as String) as String

 CONTROLPOINT_GetIPADR(ctrl as String) as String

 CONTROLPOINT_Step(ctrl as String)

 CONTROLPOINT_GetPattern(ctrl as String) as String

 CONTROLPOINT_GetAction(ctrl as String) as String

interface IServer...

 DEVICE_SetSensor(dev as String, sensor as String, val as String)

 DEVICE_GetSensor(dev as String, sensor as String) as String

 DEVICE_Terminate(dev as String)

 DEVICE_Exit(dev as String)

 DEVICE_Step(dev as String)

 DEVICE_GetUUID(dev as String) as String

 DEVICE_GetType(dev as String) as String

 DEVICE_GetMode(dev as String) as String

 DEVICE_GetInBox(dev as String) as String

 DEVICE_GetInBoxMessage(dev as String, msg as String) as String

 DEVICE_GetOutBox(dev as String) as String

 DEVICE_GetOutBoxMessage(dev as String, msg as String) as String

 DEVICE_GetServices(dev as String) as String

 DEVICE_GetServiceUUID(dev as String, svc as String) as String

 DEVICE_GetServiceType(dev as String, svc as String) as String

 DEVICE_GetServiceMode(dev as String, svc as String) as String

 DEVICE_GetServiceStateVars(dev as String, svc as String) as String

 DEVICE_GetServiceStateVarValue(dev as String, svc as String,

 v as String) as String

 DEVICE_GetServiceSensors(dev as String,

 svc as String) as String

 DEVICE_GetServiceSensorValue(dev as String,

 svc as String,

 sensor as String) as String

 DEVICE_IsServiceSensorEnabled(dev as String,

 svc as String,

 sensor as String) as Integer

 DEVICE_GetServicePendingActionCall(dev as String,

 svc as String) as String

 DEVICE_GetServiceActionResult(dev as String,

 svc as String) as String

 DEVICE_GetServiceStateDescription(dev as String,

 svc as String) as String

 DEVICE_SetServiceSensorValue(dev as String,

 svc as String,

 sensor as String,

 val as String)

 DEVICE_GetServiceStateConstants(dev as String,

 svc as String) as String

 DEVICE_GetServiceStateConstantValue(dev as String,

 svc as String,

 cons as String) as String

 DEVICE_GetIPADR(dev as String) as String

 DEVICE_GetServiceActions(dev as String, svc as String) as String

 DEVICE_SetStatus(dev as String, stat as String)

interface IServer...

 GetNETWORKTypes() as String

 GetDEVICETypes() as String

 GetCONTROLPOINTTypes() as String

 GetNrOfSteps() as Integer

interface IServer...

 MESSAGE_Get(msg as String) as String

 MESSAGE_GetContent(msg as String) as String

 MESSAGE_GetHeader(msg as String) as String

 MESSAGE_GetReceiver(msg as String) as String

 MESSAGE_GetSender(msg as String) as String

 MESSAGE_GetTime(msg as String) as String

 MESSAGE_GetType(msg as String) as String

interface IServer...

 SetNow(n as Integer)

 IncrNow(n as Integer)

 GetNow() as Integer

interface IServer...

 DHCPServerReply(rcvr as String, id as String, adr as String)

 DHCPServerGetMailbox() as String

 DHCPServerDeleteMsg(msg as String)

interface IServer...

 Fire()

 NETWORK_Fire(netw as String)

 CONTROLPOINT_Fire(ctrl as String)

 DEVICE_Fire(dev as String)

//end interface IServer

interface IServer...

 Get_Networks() as String

 NETWORK_GetType(netw as String) as String

 NETWORK_GetIP(netw as String) as String

getCOMClasses() as Seq[GUID] =

 [GUID("6390E481-FD89-41C2-8552-EE96EF2918E6")]

createCOMInstance(clid as GUID) as IDispatch =

 new UPnPModelServer()

class UPnPModelServer implements IServer, AUTOMATION

class UPnPModelServer...

 Create_NETWORK(v as String) as String =

 POPUP("Create_NETWORK is not implemented")

 return("")

class UPnPModelServer...

 Create_CONTROLPOINT(v as String) as String =

 choose a in availableControlPointAddresses() do

 let ctrl = new CONTROLPOINT(a, controlPointNetwork, v, "")

 CONTROLPOINTs(ctrl) := true

 return(asString(ctrl))

 ifnone

 return("")

deviceNetwork

class UPnPModelServer...

 Create_DEVICE(v as String) as String =

 let dev = createCDPLAYER(deviceNetwork)

 DEVICEs(dev) := true

 return(asString(dev))

class UPnPModelServer...

 NETWORK_LoseMessage(netw as String, msg as String) =

 IdToNetwork(netw).mailbox(IdToMSG(msg)) := false

 NETWORK_Terminate(netw as String) =

 COMMUNICATORs(IdToNetwork(netw)) := false

 NETWORK_Step(netw as String) =

 try

 IdToNetwork(netw).RunNetwork()

 now := now + 1

 catch

 e as Object : POPUP("Exception in RunNetwork: " + e.asString())

 NETWORK_CollectMessage(netw as String) =

 POPUP("NETWORK_CollectMessage not implemented!")

 NETWORK_DeliverMessage(netw as String, msg as String) =

 POPUP("NETWORK_DeliverMessage not implemented")

 //IdToNetwork(netw).DeliverMessage(IdToMSG(msg))

 NETWORK_ReadMessagesInTransit(netw as String) as String =

 IdToNetwork(netw).mailbox.asString()

 NETWORK_GetMessageSender(netw as String, msg as String) as String =

 IdToMSG(msg).sndr.asString()

 NETWORK_GetMessageReceiver(netw as String,

 msg as String) as String =

 IdToMSG(msg).rcvr.asString()

 NETWORK_GetMessageContent(netw as String, msg as String) as String =

 IdToMSG(msg).data.asString()

 NETWORK_GetMode(netw as String) as String =

 "active"

class UPnPModelServer...

 CONTROLPOINT_Search(ctrl as String, pattern as String) =

 POPUP("Not implemented, use 'CONTROLPOINT_Discover'")

 CONTROLPOINT_Terminate(ctrl as String) =

 CONTROLPOINTs(IdToControlPoint(ctrl)) := false

 CONTROLPOINT_InvokeAction(ctrl as String, srvc as String,

 actn as String, args as String) =

 POPUP("Not implemented, use 'CONTROLPOINT_InvokeServiceAction'!")

 CONTROLPOINT_Discover(ctrl as String, pat as String) =

 IdToControlPoint(ctrl).searchPattern := pat

 CONTROLPOINT_GetOutBox(ctrl as String) as String =

 "{}"

 CONTROLPOINT_GetInBox(ctrl as String) as String =

 IdToControlPoint(ctrl).mailbox.asString()

 CONTROLPOINT_GetAdvertisements(ctrl as String) as String =

 IdToControlPoint(ctrl).ads.asString()

 CONTROLPOINT_GetMode(ctrl as String) as String =

 ""

 CONTROLPOINT_GetInMessage(ctrl as String, msg as String) as String =

 POPUP("CONTROLPOINT_GetInMessage not implemented!")

 return("")

 CONTROLPOINT_DeleteInMessage(ctrl as String, msg as String) =

 IdToControlPoint(ctrl).mailbox(IdToMSG(msg)) := false

 CONTROLPOINT_SaveInMessageInAds(ctrl as String, msg as String) =

 let c = IdToControlPoint(ctrl)

 let m = IdToMSG(msg)

 c.mailbox(m) := false

 c.ads(m) := true

 CONTROLPOINT_GetOutMessage(ctrl as String,msg as String) as String =

 POPUP("CONTROLPOINT_GetOutMessage not implemented!")

 return("")

 CONTROLPOINT_GetAd(ctrl as String, msg as String) as String =

 POPUP("CONTROLPOINT_GetAd not implemented!")

 return("")

 CONTROLPOINT_DeleteAd(ctrl as String, msg as String) =

 IdToControlPoint(ctrl).ads(IdToMSG(msg)) := false

 CONTROLPOINT_InvokeServiceAction(ctrl as String,

 dadr as String,

 srvc as String,

 actn as String,

 args as String) =

 IdToControlPoint(ctrl).action :=

 ACTIONREQUEST(ADDRESS(deviceNetId,dadr,0), srvc, actn, args)

 CONTROLPOINT_GetUID(ctrl as String) as String =

 IdToControlPoint(ctrl).uid.asString()

 CONTROLPOINT_GetIPADR(ctrl as String) as String =

 IdToControlPoint(ctrl).adr.asString()

 CONTROLPOINT_Step(ctrl as String) =

 try

 IdToControlPoint(ctrl).RunControlPoint()

 now := now + 1

 catch

 e as Object :

 POPUP("Exception in RunControlPoint: " + e.asString())

 CONTROLPOINT_GetPattern(ctrl as String) as String =

 IdToControlPoint(ctrl).searchPattern.asString()

 CONTROLPOINT_GetAction(ctrl as String) as String =

 let a = IdToControlPoint(ctrl).action

 if a = NoAction then

 return("")

 else

 return(a.dadr.asString() + ":" + a.srvc + ":" +

 a.actn + "(" + a.args + ")")

class UPnPModelServer...

 DEVICE_SetSensor(dev as String, sensor as String, val as String) =

 POPUP("DEVICE_SetSensor not implemented!")

 DEVICE_GetSensor(dev as String, sensor as String) as String =

 POPUP("DEVICE_GetSensor not implemented!")

 return("device_sensor")

 DEVICE_Terminate(dev as String) =

 DEVICEs(IdToDevice(dev)) := false

 DEVICE_Exit(dev as String) =

 IdToDevice(dev).status := byebye

 DEVICE_Step(dev as String) =

 try

 IdToDevice(dev).RunDevice()

 now := now + 1

 catch

 e as Object : POPUP("Exception in RunDevice: " + e.asString())

 DEVICE_GetUUID(dev as String) as String =

 IdToDevice(dev).uid

 DEVICE_GetType(dev as String) as String =

 IdToDevice(dev).tYPE

 DEVICE_GetMode(dev as String) as String =

 IdToDevice(dev).mode.asString()

 DEVICE_GetInBox(devId as String) as String =

 IdToDevice(devId).mailbox.asString()

 DEVICE_GetInBoxMessage(dev as String, msg as String) as String =

 MESSAGE_GetHeader(msg)

 DEVICE_GetOutBox(devId as String) as String =

 "{}"

 DEVICE_GetOutBoxMessage(dev as String, msg as String) as String =

 MESSAGE_GetHeader(msg)

 DEVICE_GetServices(dev as String) as String =

 ({(srvc as ExtSERVICE).GetId() |

 srvc in IdToDevice(dev).srvcs}).asString()

 DEVICE_GetServiceUUID(dev as String, svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetUID()

 DEVICE_GetServiceType(dev as String, svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetType()

 DEVICE_GetServiceMode(dev as String, svc as String) as String =

 ""

 DEVICE_GetServiceStateVars(dev as String, svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateVars().asString()

 DEVICE_GetServiceStateVarValue(dev as String,

 svc as String,

 v as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateVarValue(v)

 DEVICE_GetServiceSensors(dev as String,

 svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateSensors().asString()

 DEVICE_GetServiceSensorValue(dev as String,

 svc as String,

 sensor as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateSensorValue(sensor)

 DEVICE_IsServiceSensorEnabled(dev as String,

 svc as String,

 sensor as String) as Integer =

 IdToSrvc(IdToDevice(dev),svc).IsStateSensorEnabled(sensor)

 DEVICE_GetServicePendingActionCall(dev as String,

 svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetPendingActionCall()

 DEVICE_GetServiceActionResult(dev as String,

 svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetActionResult().asString()

 DEVICE_GetServiceStateDescription(dev as String,

 svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateDescription()

 DEVICE_SetServiceSensorValue(dev as String,

 svc as String,

 sensor as String,

 val as String) =

 IdToSrvc(IdToDevice(dev),svc).SetSensorValue(sensor, val)

 DEVICE_GetServiceStateConstants(dev as String,

 svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateConstants().asString()

 DEVICE_GetServiceStateConstantValue(dev as String,

 svc as String,

 cons as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetStateConstantValue(cons)

 DEVICE_GetIPADR(dev as String) as String =

 IdToDevice(dev).adr.asString()

 DEVICE_GetServiceActions(dev as String, svc as String) as String =

 IdToSrvc(IdToDevice(dev),svc).GetActions().asString()

 DEVICE_SetStatus(dev as String, stat as String) =

 match stat with

 "alive" : IdToDevice(dev).status := alive

 "byebye" : IdToDevice(dev).status := byebye

 "inactive" : IdToDevice(dev).status := inactive

class UPnPModelServer...

 GetNETWORKTypes() as String =

 "{Device Network,ControlPoint Network}"

 GetDEVICETypes() as String = "{CD Player}"

 GetCONTROLPOINTTypes() as String =

 "{Control Point A,Control Point B}"

 GetNrOfSteps() as Integer =

 POPUP("GetNrOfSteps not implemented!")

 return(0)

class UPnPModelServer...

 MESSAGE_Get(msg as String) as String =

 let m = IdToMSG(msg)

 return("From:" + m.sndr.asString() + "," +

 "To:" + m.rcvr.asString() + "," +

 "Type:" + m.tYPE.asString() + "," +

 "Content:" + m.data.asString() + "," +

 "Time:" + m.time.asString())

 MESSAGE_GetContent(msg as String) as String =

 IdToMSG(msg).data.f.asString()

 MESSAGE_GetHeader(msg as String) as String =

 let m = IdToMSG(msg)

 return ("From:" + m.sndr.asString() + "," +

 "To:" + m.rcvr.asString() + "," +

 "Type:" + m.tYPE.asString())

 MESSAGE_GetReceiver(msg as String) as String =

 IdToMSG(msg).rcvr.asString()

 MESSAGE_GetSender(msg as String) as String =

 IdToMSG(msg).sndr.asString()

 MESSAGE_GetTime(msg as String) as String =

 IdToMSG(msg).time.asString()

 MESSAGE_GetType(msg as String) as String =

 IdToMSG(msg).tYPE.asString()

class UPnPModelServer...

 SetNow(n as Integer) =

 now := n

 IncrNow(n as Integer) =

 now := now + n

 GetNow() as Integer =

 now

class UPnPModelServer...

 DHCPServerReply(temp as String, id as String, newAdr as String) =

 let msg = IdToMSG(id)

 dhcpserver.mailbox(msg) := false

 MESSAGEs(msg) := false

 if msg.sndr <> thisDevice then

 dhcpserver.Output(dhcpserverIP, msg.sndr,

 DATA({HardwareAddress |-> msg.data.hwAdr(),

 NewAddress |-> newAdr}), dhcpoffer)

 else

 dhcpserver.Output(dhcpserverIP, broadcast,

 DATA({HardwareAddress |-> msg.data.hwAdr(),

 NewAddress |-> newAdr}), dhcpoffer)

 DHCPServerGetMailbox() as String =

 dhcpserver.mailbox.asString()

 DHCPServerDeleteMsg(id as String) =

 let msg = IdToMSG(id)

 dhcpserver.mailbox(msg) := false

 MESSAGEs(msg) := false

class UPnPModelServer...

 Fire() =

 try

 RunUPnP()

 catch

 e as Object : POPUP("Exception in RunUPnP: " + e.asString())

 NETWORK_Fire(netw as String) =

 try

 IdToNetwork(netw).RunNetwork()

 catch

 e as Object : POPUP("Exception in RunNetwork: " + e.asString())

 CONTROLPOINT_Fire(ctrl as String) =

 try

 IdToControlPoint(ctrl).RunControlPoint()

 catch

 e as Object :

 POPUP("Exception in RunControlPoint: " + e.asString())

 DEVICE_Fire(dev as String) =

 try

 IdToDevice(dev).RunDevice()

 catch

 e as Object : POPUP("Exception in RunDevice: " + e.asString())

class UPnPModelServer...

 Step() =

 try

 RunUPnP()

 now := now + 1

 catch

 e as Object : POPUP("Exception in RunUPnP: " + e.asString())

deviceAddressSpace as Set[ADDRESS] =

 {ADDRESS(deviceNetId,

 deviceNetId + ".1." + asString(i), 0) | i in {1..100}}

controlPointAddressSpace as Set[ADDRESS] =

 {ADDRESS(controlPointNetId,

 controlPointNetId + ".2." + asString(i), 0) | i in {1..100}}

availableDeviceAddresses() as Set[ADDRESS] =

 {a | a in deviceAddressSpace where

 not (exists d in DEVICEs where d.adr = a)}

availableControlPointAddresses() as Set[ADDRESS] =

 {a | a in controlPointAddressSpace where

 not (exists c in CONTROLPOINTs where c.adr = a)}

deviceNetId as String = "1.1"

deviceNetwork as COMMUNICATOR =

 new COMMUNICATOR(deviceNetId,

 //*** addressTable

 //local addresses

 {devices |-> deviceAddressSpace} merge

 {d |-> {d} | d in deviceAddressSpace} merge

 {dhcpserverIP |-> {dhcpserverIP}} merge

 //nonlocal addresses

 {controlPoints |-> {controlPoints}} merge

 {c |-> {c} | c in controlPointAddressSpace},

 //*** routingTable

 undef)

controlPointNetId as String = "2.2"

controlPointNetwork as COMMUNICATOR =

 new COMMUNICATOR(controlPointNetId,

 //*** addressTable

 //local addresses

 {controlPoints |-> controlPointAddressSpace} merge

 {c |-> {c} | c in controlPointAddressSpace} merge

 //nonlocal addresses

 {d |-> {d} | d in deviceAddressSpace} merge

 {devices |-> {devices}},

 //*** routingTable

 undef)

dhcpserverIP as ADDRESS = ADDRESS(deviceNetId, deviceNetId+".10.10",0)

dhcpserver as DHCPSERVER = new DHCPSERVER(dhcpserverIP,deviceNetwork)

class UPnPModelServer...

 Initialize() =

 now := 0

 COMMUNICATORs := {deviceNetwork, controlPointNetwork}

 DHCPSERVERs := {dhcpserver}

 deviceNetwork.routingTable :=

 {controlPoints |-> controlPointNetwork} merge

 {c |-> controlPointNetwork | c in controlPointAddressSpace}

 controlPointNetwork.routingTable :=

 {devices |-> deviceNetwork } merge

 {d |-> deviceNetwork | d in deviceAddressSpace}

class UPnPModelServer...

 Reinitialize() =

 DEVICEs := {}

 CONTROLPOINTs := {}

 MESSAGEs := {}

 deviceNetwork.mailbox := {}

 controlPointNetwork.mailbox := {}

 dhcpserver.mailbox := {}

 now := 0

class UPnPModelServer...

 Get_Networks() as String =

 asString(COMMUNICATORs)

 NETWORK_GetType(netw as String) as String =

 asString(IdToNetwork(netw).netid)

 NETWORK_GetIP(netw as String) as String = ""

IdToDevice(devId as String) as DEVICE =

 unique dev | dev in DEVICEs where asString(dev) = devId

IdToNetwork(netwId as String) as COMMUNICATOR =

 unique netw | netw in COMMUNICATORs where asString(netw) = netwId

IdToControlPoint(ctrlId as String) as CONTROLPOINT =

 unique ctrl | ctrl in CONTROLPOINTs where asString(ctrl) = ctrlId

IdToMSG(msgId as String) as MESSAGE =

 unique m | m in MESSAGEs where asString(m) = msgId

IdToSrvc(dev as DEVICE, sId as String) as ExtSERVICE =

 (unique (srvc as ExtSERVICE) |

 srvc in dev.srvcs where (srvc as ExtSERVICE).GetId() = sId)

guessAutoIPAdr(d as DEVICE) as ADDRESS =

 choose a in availableDeviceAddresses() do

 return(a)

 ifnone

 return(thisDevice)

PrintResponse(ctrl as CONTROLPOINT, msg as MESSAGE) =

 skip

