
Fixed Point Logics

Anuj Dawar�

University of Cambridge Computer Laboratory

Cambridge CB2 3QG, UK.

Yuri Gurevich

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA.

September 16, 2001

Abstract

We consider �xed point logics, i.e. extensions of �rst order predicate

logic with operators de�ning �xed points. A number of such operators,

generalizing inductive de�nitions, have been studied in the context of �nite

model theory, including nondeterministic and alternating operators. We

review results established in �nite model theory, and also consider the ex-

pressive power of the resulting logics on in�nite structures. In particular,

we establish the relationship between in
ationary and nondeterministic

�xed point logics and second order logic, and we consider questions re-

lated to the determinacy of games associated with alternating �xed points.

1 Introduction

In this paper, we are concerned with the expressive power of �xed point logics.
These are logics formed by extending �rst order predicate logic with an operator
for forming �xed points of relational operators. That is to say, by viewing
formulas with free relational variables as de�ning maps on the space of relations,
we can apply an operator that allows us to de�ne �xed points of the map. The
study of such logics has its roots in the study of inductive de�nability (see
[15, 4]) in the context of generalized recursion theory. The kind of question
considered there is this: �x a structure A (typically this is the structure of
arithmetic, often generalized to any \acceptable" structure), and a collection
of formulas F de�ning relational operators on A ; we wish to characterize the
class of relations on A that are inductively de�ned by F . The next step is to
introduce an explicit construct into the logic which allows us to de�ne the �xed

�Research supported by EPSRC grants GR/L69596 and GR/N23028.

1

point of a relational operator, and close the language under this construct thus
obtaining a richer logic. This latter idea has its origins in �nite model theory,
where a variety of such �xed point logics have been extensively studied (see
[8]). This is largely due to the fact that questions about their expressive power
on �nite structures have turned out to be intimately related to signi�cant open
questions in computational complexity theory. In particular, the logics LFP and
IFP, which are obtained by closing �rst order logic under the formation of least
and in
ationary �xed points respectively (detailed de�nitions are given in the
following two sections), have been shown to have expressive power equivalent, on
�nite ordered structures, to the computational complexity class P. This has also
led to the de�nition of a larger variety of �xed point operators, corresponding
to other computational complexity classes.

In this paper, following a survey of the known relationships of these logics on
�nite models, we examine their expressive power on in�nite structures, where
some of the questions turn out to be easier to resolve, while others appear
more challenging. It is hoped that this preliminary study of these logics on
in�nite structures will stimulate further interest in them outside of �nite model
theory, and possibly cast some new light on the nature of these logics even when
interpreted on �nite structures.

In what follows, we de�ne precisely the logics LFP and IFP, and summarise
results on their expressive power on �nite structures. We also consider three
other �xed point logics|NFP, AFP and PFP|incorporating nondeterministic,
alternating and partial �xed point operators respectively. On �nite structures,
the last two have been shown to be equivalent in expressive power, while NFP
has expressive power that is intermediate between that of IFP and AFP. More-
over, on ordered �nite structures, the expressive power of NFP is equivalent to
the polynomial time hierarchy, and that of its alternation-free positive fragment
is equivalent to the complexity class NP, while the expressive power of PFP is
equivalent to the class PSPACE. Moreover, it has been shown that the problems
of separating the expressive power of these logics on �nite structures, even in
the absence of order, are equivalent to the separation of the corresponding com-
plexity classes, which are notoriously open problems. Alongside a brief survey
of these results, we investigate the expressive power of these logics on in�nite
structures. In particular, we compare their expressive power to that of second
order logic, showing that their relationship with the latter is quite analogous
to their relationship to complexity classes in the �nite case. We end with an
investigation of a problem of determinacy related to the de�nition of AFP.

2 Preliminaries

We begin with a brief review of standard notions of inductive de�nability, which
will permit us to �x notation. Below, when we refer to a formula, we mean a
formula of some logic extending �rst order predicate logic. In particular, we
assume that we have available the propositional connectives ^, _ and :, and
the �rst order quanti�ers 9 and 8.

2

Let '(R;x) be a formula, where R is a relation symbol, and x is a tuple
of �rst order variables whose length k is the same as the arity of R. If A is
a structure, with universe A, interpreting all symbols in ' other than those
displayed, we think of ' as de�ning a map � from Pow(Ak)|the set of all
k-ary relations on A|to Pow(Ak) given by

�(P) = fa j (A ; P; a) j= 'g:

This view of a formula de�ning an operator on the space of relations gives a
natural formalisation of inductive de�nitions. For instance, if � is a monotone
map, we can speak of the least relation R such that R(x) $ '(R;x). We call
this relation the least �xed point of the operator de�ned by '. Even if � is not
monotone, we can construct a �xed point of the map by taking the limit of the
sequence of relations (indexed by ordinals) given by:

R� =
[
�<�

�(R�);

which we call the in
ationary �xed point of the operator �.
These two kinds of �xed point construction appear under various names

in the literature. For instance, they are called monotone and non-monotone
inductions in [4, 16]. Our aim here is not merely to study the relations de�nable
by such inductions, but to consider the logics obtained by allowing explicit
operators for forming such relations. The term \in
ationary �xed point" and
the logic obtained by closing �rst order logic under an operator for de�ning such
�xed points were �rst introduced in [11].

3 Least Fixed Point Logic

In [5], Aho and Ullman proposed enriching the language of relational algebra
(essentially equivalent to �rst order predicate logic) with an explicit syntactic
construct for forming the least �xed point of monotone operators. Chandra and
Harel [6] followed up this proposal in introducing a query language allowing the
application of the least �xed point operator to positive formulas, providing a
syntactic criterion in place of monotonicity. The result is the �rst of the �xed
point logics we consider|LFP|which is obtained by closing �rst order logic
simultaneously under all the formula forming operations of �rst order logic along
with the rule:

if R is a k-ary relation variable, x is a k-tuple of �rst order variables,
t is a k-tuple of terms and ' is a formula in which R occurs only
positively, then

[lzR;x '](t)

is a formula, in which all occurrences of R are bound, and all occur-
rences of the variables in x excpet those occurring in t are bound.1

1The notation used here for the �xed point operators is introduced here for the �rst time,
as there does not appear to be a standard accepted notation for these operators.

3

The intended semantics of this formula formation rule is that, for any struc-
ture A , A j= [lzR;x '](t) if, and only if, tA|the tuple of elements of A de�ned
by the terms t|is in the least �xed point of the monotone operator de�ned by
'(R;x) on Ak.

The least �xed point can be obtained as the limit of the sequence of relations:

R0 = ;
R�+1 = �(R�)
R� =

S
�<�R� for limit ordinals �:

(1)

We de�ne the closure ordinal of the operator � to be the least ordinal � such
that R� = R�+1.

Example 1 1. Let ' be the formula

x = y _ 9z(E(x; z) ^ R(z; y));

then [lzR;xy '](u; v) is a formula in two free variables (u and v) which
de�nes the re
exive and transitive closure of E.

The relation Rn (for �nite ordinals n) would be the set of pairs of elements
with an E-path of length less than n. On a �nite graph G, the closure
ordinal of the operator would be one greater than the maximum diameter
of a connected component of G. The closure ordinal is at most ! on any
structure.

2. Let ' be the formula 8y(y < x ! P (y)). Then, (z) � [lzP;x '](z)
de�nes the well-founded part of the binary relation <. In particular, if <
is a linear order, it de�nes the longest well-ordered initial segment. The
closure ordinal of the operator on a linear order is the length of this initial
segment. Moreover, the sentence 8z (z) is true in a structure A if, and
only if, the relation < is well-founded in A .

It is not too diÆcult to show that for any formula '(x) of LFP, the set
f(A ; c) j A is �nite and A j= '[c]g is decidable in polynomial time [6]. The
crucial point to observe is that the closure ordinal of any formula on a �nite
structure must be bounded by a �xed polynomial in the number of elements in
the structures (a polynomial whose degree depends only on the formula, and not
on the structure). This is because the sequence of relations R� is increasing,
since � is monotone. Thus, if the symbol R is k-ary, on a structure with n

elements there is no increasing sequence of k-ary relations longer than nk, and
a �xed point must therefore be reached by that stage.

A converse to this proposition holds when we restrict ourselves to �nite
structures which incorporate a linear order. That is, if we distinguish a binary
relation symbol < and consider only structures in which this symbol is inter-
preted as a linear order, we have that every polynomial time decidable class of
such structures is de�nable by a sentence of LFP (see [13, 18]).

4

Immerman [13] establishes a normal form for LFP on �nite structures, by
showing that every formula of LFP is equivalent to one of the form

9x [lzR;y '](x; : : : ; x);

where ' contains no occurrences of lz. In particular, this requires that the
natural hierarchy formed by interleaving negation with lz collapses. This result
crucially depends on the restriction to �nite structures. To be precise, one can
show the following using Immerman's methods:

Proposition 2 For each �rst order formula '(R), there is a �rst order formula

 , positive in S, such that the predicate de�ned by :lzR;x ' is also de�ned by

9y[lzS;yx](x) in any structure A where the closure ordinal of ' is not a limit.

The proof of this proposition relies on the construction of an inductive de�nition
of the stage comparison relation (see [15, Section 2A]). Given the sequence of
relations as given in (1), the rank of a tuple a, denoted jaj, is de�ned to be the
least � such that a 2 R�+1 if there is such an �, and 1 otherwise. The stage
comparison theorem [15, Theorem 2A.2] guarantees the existence of a formula
�(x;y; S), positive in S such that [lzS;yx �](u;v) de�nes the relation juj < jvj.
This can then be used to de�ne a formula �(y) which de�nes the set of tuples of
maximal rank other than1. By standard methods of combining inductions [15],
we then obtain the desired formula, which is equivalent to 9y(�(y) ^ jyj < jxj).

In contrast, it can be shown by a standard diagonalisation of the truth
predicate that on the structure (!;<)|the ordering of the natural numbers|
the interleaving of lz with negation yields an in�nite hierarchy.

4 In
ationary Fixed Point Logic

In general, an operator F : Pow(Ak)! Pow(Ak) is called in
ationary if for any
S � Ak, S � F (S). Hence, associated with any operator F , there is a natural
in
ationary operator F 0 de�ned by F 0(S) = S [F (S) for all S. Iterating F 0

always yields a �xed point, which we call the in
ationary �xed point of F . Note,
there are monotone operators which are not in
ationary and in
ationary oper-
ators that are not monotone (see [11]). However, if an operator F is monotone,
the �xed point reached by iterating the corresponding in
ationary operator F 0

is, indeed, the least �xed point of F .
The logic IFP is de�ned with a syntax similar to LFP, but with an operator

iz, which allows us to form formulas of the form [izR;x '](t). The semantics of
the formula is given by the rule that A j= [izR;x '](t) if, and only if, the tuple
of elements interpreting t is in the union of the sequence of relations given by:

R� =
[
�<�

�(R�): (2)

This is equivalent to the de�nition given in three clauses in (1), except that
at each stage, we take the union with the previous stages. In particular, this

5

guarantees that the sequence of stages is increasing (and hence converges) even
when the operator is not monotone. For this reason, we do not need to restrict
the application of iz to positive formulas. However, for positive formulas, the
�xed point that is reached is the same as the least �xed point, as indicated
above. It follows from this that the language IFP is at least as expressive as
LFP.

It was shown by Gurevich and Shelah [12] that on �nite structures, every
formula of IFP is equivalent to a formula of LFP. The proof relies crucially
on the fact that on �nite structures, every inductive sequence has a last stage.
This fails on in�nite structures and it is not known whether the two logics are
equivalent in expressive power. To be precise, there are two versions of the open
question:

Question: Is there a formula ' of IFP and a structure A such that
for every formula of LFP, A 6j= ('$)?

Is there a formula ' of IFP such that for every formula of LFP,
there is a structure A such that A 6j= ('$)?

Clearly, a positive answer to the �rst would also provide a positive answer to
the second.

We are in a position to resolve the relationship of IFP and LFP on one
in�nite structure of interest, namely (!;<), i.e. the usual ordering of the natural
numbers, and hence on the structure of arithmetic. It is known that there are
�rst order de�nable operators '(R) such that izR;x ' is not equivalent to the
least �xed point of any monotone �rst order formula. Aczel [4] gives an example
of such a formula, where izR;x ' de�nes a well ordering whose length is greater
than any recursive ordinal, while it is known that the closure ordinal of any
monotone �rst order formula is recursive.

However, on the structure (!;<) (and, indeed, on all structures called ac-

ceptable in [15]), it is still the case that every formula of IFP is equivalent to
one of LFP. This follows from a general characterization of classes of induc-
tive de�nitions in [16]. In particular, Theorem 15 in that paper states that,
for any acceptable structure A : \If F is a typical, non-monotone class of op-

erators on A , then F�IND is the smallest F-compact Spector class on A such

that every relation in F is � on �". For the de�nitions of the terms used
in this statement, we refer the reader to [16]. Here, we note that F�IND is
the set of relations that are obtainable as in
ationary �xed points of operators
in F . In [16], the collections of operators that are generally considered are
those given by quanti�er-alternation fragments of higher order logics. Here, we
consider classes F of operators de�nable in LFP with a �xed number of alter-
nations of the operator lz with negation. In particular, let M0 denote the set
of �rst-order de�nable operators, and Mi+1 be the collection of operators that
can be obtained by the application of lz and positive �rst order operators on
the negation of operators in Mi. We note that, for n � 1, Mn is a typical,

non-monotone class of operators in the sense of [16], and that Mn0 , for n0 > n

is an Mn-compact Spector class such that every relation in Mn is � on �. It

6

then follows that Mn�IND � Mn0 . In other words, if '(R;x) is a formula of
LFP de�ning an operator, then izR;x ' is also de�nable in LFP. From this, it
immediately follows, by an induction on the structure of the IFP formula, that
every formula of IFP is equivalent to a formula of LFP.

One consequence of this observation is that there is an LFP formula de�ning
the non-recursive ordinal given by Aczel. However, this formula must necessarily
involve nesting the operator lz inside a negation symbol.

If we do not restrict ourselves to acceptable structures, the methods of [16]
do not work, but there is still something we can say about the �xed points in
an arbitrary IFP formula. To state it precisely, de�ne MFP (for monotone �xed

point logic) to be the fragment of IFP where the iz operator can only be applied
to formulas which de�ne monotone operators. MFP is not a syntactically de�ned
fragment of IFP. Indeed, it can be shown that it is undecidable whether a given
formula '(R;x) of IFP de�nes a monotone operator [11]. Nonetheless, we are
able to assert the following:

Proposition 3 Every formula of IFP is equivalent to a formula of MFP.

In the context of �nite structures, Proposition 3 is weaker than the main
result proved by Gurevich and Shelah in [12], namely that every IFP formula is
equivalent to one of LFP. However, they also provided a separate, simpler proof
of this proposition in an appendix, a proof which it turns out can be adapted
to arbitrary structures. The construction shows that for every formula '(R;x)
of LFP, there is a formula '0 de�ning a monotone operator such that izR;x '

0

de�nes the same predicate as izR;x '. The only change that is required in
adapting their construction to arbitrary structures, is where, in [12, page 277],
the construction of the formula Nice(Q; x) contains the �rst order condition that
the relation Q is a linear quasi-order, we need to replace it by the LFP condition
that Q is a well quasi-order.

One might ask what a good candidate formula, or a candidate structure
might be that might provide a positive answer to the open question on page 6.
No obvious candidates spring to mind. Any well-ordered structure A is ruled
out by the results mentioned above for acceptable structures. Moreover, if A is
countably categorical, then the expressive power of both LFP and IFP collapses
to that of �rst order logic on A , as in�nite inductions are not possible, thus
ruling A out as a possible candidate. If we are to �nd reasonable candidates, A
must present suÆcient structure that in�nite inductions are possible, but which
can more readily be exploited by IFP than by LFP.

5 Second Order Logic

In this section we examine the relationship of the �xed point logics LFP and
IFP with the standard second order logic|with quanti�cation over relations.

In the context of �nite structures, an early result due to Fagin [9] shows
that a collection of �nite structures is de�nable by a sentence of existential
second order logic if, and only if, membership in the collection is decidable by

7

a nondeterministic Turing machine operating in polynomial time. Since it is
also known that every collection of �nite structures de�nable by an IFP formula
corresponds to a problem computable in polynomial time, it follows that every
formula in IFP corresponds to a �1

1 global predicate on �nite structures. That is,
it is equivalent to both a �1

1 and to a �
1
1 formula. However, this fact can also be

established directly without recourse to facts about computational complexity,
as we show below. If we remove the restriction to �nite structures, the best that
we can say is that every formula of IFP is �1

2. We begin by establishing this
latter fact.

Suppose then that we have a k-ary predicate symbol R, a k-tuple of variables
x and a �1

2 formula (R;x) in the vocabulary � [fRg.2 We wish to show that
the predicate expression

izR;x

is also �1
2.

Let �(R;x) and �(R;x) be �
1
2 and �1

2 formulas equivalent to .
Let < be a new 2k-ary relation symbol. For k-tuples of variables x and y,

we write x < y instead of < (x;y). Similarly, x = y abbreviates the formulaV
16i6k(xi = yi), and we write x 6 y for the formula x < y _ x = y.
De�ne the formula lo(<) to be the conjunction of the following three formu-

las:
8x8y(x < y _ y < x _ x = y) (Linearity)
8x8y:(x < y ^ y < x) (Anti-symmetry)
8x8y8z[(x < y ^ y < z)! x < z] (Transitivity)

That is, lo(<) is a �rst order formula that asserts that < linearly orders the set
of k-tuples.

De�ne the formula wo(<) to be the conjunction of lo(<) with the following
formula, in which O is a k-ary relation symbol:

8O(9xO(x) ! (9zO(z) ^ 8y(O(y) ! z 6 y))):

That is, wo(<) is a �1
1 formula that asserts that < is a well-order.

For any structure A , if (A ; <) j= wo(<), we can assign to each k-tuple a
from A a unique ordinal �(a) such that the well-ordered set fb 2 Ak j b < ag
is order-isomorphic to �(a).

Recall that on A , the predicate de�ned by izR;x is given by the union of
the stages:

R� =
[
�<�

�(R�):

Thus, for any structure A and any well-ordering < of its k-tuples, there is a
unique 2k-ary relation IA on A such that

IA (a;b) if, and only if, b 2 R�(a)

2Strictly speaking, the formula is not �1
2. What is meant is that the formula is equivalent

to both a �1
2
and a �1

2
formula.

8

In particular, if the well-ordering< is long enough (at least as long as the closure
ordinal of), then the second projection of IA , i.e. fb j IA (a;b) for some ag is
exactly izR;x .

We will now write a �1
2 formula �(<; I) such that for any (A ; <), IA is the

unique relation S such that

(A ; <; S) j= �(<; I):

In other words, � de�nes IA implicitly.
Before proceeding to the construction of �, we introduce a notational conven-

tion. For any k-tuple of variables z not occurring in , we write (I(z);x) for
the formula obtained from (R;x) by replacing all occurrences of R(t) (where
t is any k-tuple of terms) by I(z; t). Similarly, we write (9zI(z);x) for the
formula obtained from (R;x) by replacing all occurrences of R(t) by the sub-
formula 9zI(z; t).

By the de�nition of R�,

a 2 R� if, and only if, for some � < � a 2 � (R�):

This is now easily turned into the required formula � given by

8x8y(I(x;y)$ 9z[z < x ^ (I(z);y)]):

Note that the subformula occurs both positively and negatively in the
above formula. By replacing the positive occurrence with � and the negative
occurrence with �, we see that the above formula is, in fact, �1

2.
The predicate izR;x is then de�ned by the following:

9 < 9I [wo(<) ^ � ^ 9yI(y;x)]: (3)

The formula is true of b in A if there is some well-ordering<, some corresponding
IA and some a such that IA (a;b). In other words, b 2 R�(a). Thus, the
relation de�ned by (3) is clearly contained in izR;x . On the other hand, since
the closure ordinal of has cardinality at most card(Ak), for every tuple in
izR;x , there is some well-ordering of A

k that makes (3) true.
Note that, since wo(<) is �1

1 and � is �
1
2, it follows that (3) is �

1
2.

The predicate izR;x is also de�ned by the following:

8 < 8I [(wo(<) ^ � ^ (8x(�(9zI(z);x) ! 9zI(z;x)))) ! 9zI(z;x)]: (4)

The formula is true of a tuple b in A if, for every well-ordering <, and corre-
sponding IA , that satisfy

8x(�(9zI(z);x) ! 9zI(z;x)); (5)

there is some a such that IA (a;b). The condition (5) asserts that the stages of
IA along the order < reach a �xed point. That is, if we let P be the projection
fb j IA (a;b) for some ag, then (5) asserts that �(P) � P .

The subformulas wo(<) and � (which are �1
1 and �1

2 respectively) occur
negatively in (4), while � (which is �1

2) occurs positively. Thus, the entire
formula (4) is �1

2. This establishes the desired result.
A couple of re�nements of the result are possible when we restrict ourselves

to just in�nite structures or just �nite structures.

9

In�nite Structures If A is an in�nite structure, the cardinality of Ak is just
the same as A. Thus, since the closure ordinal of has cardinality at most that
of Ak, there is a well-ordering of A long enough to represent this ordinal. In
other words, in the above construction, we can take < to be a binary relation,
and I can be (k + 1)-ary rather than 2k-ary. A 2k-ary I is necessary, however,
for �nite structures.

Finite Structures If A is a �nite structure, then any linear order of the
elements (or the k-tuples) of A is a well-order. Thus, we can replace wo(<)
in the construction of the formulas (3) and (4) by lo(<). This means that, if
our original formula is �1

1, we can construct (3) and (4) to be �1
1 and �1

1

respectively, and we get the result that, on �nite structures, every IFP formula
is �1

1.
Note that the result for in�nite structures cannot be improved to �1

1, as it
is known that on the structure (!;<), every �1

1 formula is equivalent to the
least �xed point of a positive �rst order formula [15]. It therefore follows that
all predicates in �1

1 [�1
1 can be expressed in LFP on this structure, and as

�1
1 6= �1

1 [14], each is strictly larger than �1
1

Well-Founded Quanti�cation Call a binary relation R well-founded if there
is no in�nite chain of elements (ai j i 2 !), with R(ai+1; ai) for all i. We can
extend this de�nition naturally to relations of arity 2k by considering them as
binary relations on k-tuples. De�ne W�1

1 to be the collection of global pred-
icates de�nable by existential second order formulas, where the interpretation
of the second order quanti�ers is restricted to well-founded relations. Similarly,
let W�1

1 denote the complements of W�1
1 predicates, and W�1

1 denote those
predicates that are both W�1

1 and W�1
1. Then, it is easily checked that the

argument we have given shows that every IFP formula is W�1
1 on all structures

(�nite or in�nite).

6 Partial Fixed Point Logic

The logic PFP (for partial �xed point) was introduced in [2] as a variant of
IFP on �nite structures. Let '(R;x) be an arbitrary formula de�ning a (not
necessarily monotone) operator � and consider the sequence of relations (for
�nite �):

R0 = ;
R�+1 = �(R�)

(6)

This sequence is not necessarily increasing. Still, on �nite structures, it either
converges to a �xed point, or settles into a cycle of period greater than 1. We
de�ne the partial �xed point of � to be the �xed point that is reached in the
former case, and the empty relation in the latter case. The logic PFP is obtained
by closing �rst order logic simultaneously under the formula formation rules of
�rst order logic and the rule that allows us to form the formula [pzR;x '](t)

10

from the formula '. This is used to denote that t is a tuple in the partial �xed
point of '(R;x).

The signi�cance of PFP lies in the fact (shown in [2], based on [18]) that the
properties of ordered �nite structures de�nable in PFP are exactly those that
are computable in polynomial space. Moreover, Abiteboul and Vianu [3] showed
that the expressive power of PFP and IFP are equivalent on �nite structures
(without any assumption of order) if, and only if, the complexity classes P and
PSPACE coincide.

This may be contrasted with the comparison of PFP and second order logic.
The relations of these logics to complexity classes show that on ordered �nite
structures, PFP is at least as expressive as second order logic and, under reason-
able complexity theoretic assumptions (namely that the polynomial hierarchy is
properly contained in PSPACE) is strictly more expressive. However, without
the assumption of order, it can be easily proved that there are second order
de�nable properties that are not expressible in PFP. For instance there is no
sentence of PFP that is true in exactly the �nite structures of even size [2].

These comparisons do not easily carry over when we consider in�nite struc-
tures. The problem that arises immediately is that the semantics of PFP does
not extend to in�nite structures. In de�ning the sequence of relations R� in (6),
we did not specify what happens at limit ordinals. There is no obvious choice.
Taking the union of earlier stages does not seem sensible, as the stages are not
increasing to start with. Perhaps the issue is best illustrated with an example.
On �nite structures, the power of PFP derives in part from the possibility of
having the sequence of stages R� be of length exponential in the size of the
�nite structure.

Consider the formula given by:

[R(x) ^ 9y(y < x ^ :R(y))] _ [:R(x) ^ 8y(y < x! R(y))] _ 8y R(y):

The operator de�ned by this formula on a �nite structure A which interprets
< as a linear order has as its �xed point the universe A of A . However, before
this �xed point is reached, every subset of A occurs as some stage R� of the
induction. In particular, if we denote the elements of A, in order, by 0; : : : ; n�1,
then for all a < 2n, Ra is the set of i 2 A such that bit i in the binary
representation of a is 1.

When the operator de�ned by the formula is interpreted on the in�nite
structure (!;<), we �nd that every �nite subset of ! occurs as a �nite stage R�
of the induction. Now, there are a number of ways one could choose to de�ne
R� for limit �. We could de�ne R� =

S
�<�R� , which in this example would

give us R! = !, a �xed point. Alternatively, we could de�ne R� = fx j f� j x 2
R�g is co�nal in �g, or R� = fx j f� j x 2 R�g is a �nal segment of �g. In the
present example, the �rst of these would yield R! = !, and the second R! = ;.

What is clear is that in order to give a semantics to the operator which would
yield a sequence of stages that would include all subsets of ! and which would
converge to a �xed point in 2! stages, we would require a de�nable well-ordering
of the power-set of !.

11

However, there is a �xed point logic, AFP|for alternating �xed point logic,
which is equivalent in expressive power to PFP on �nite structures, and which
extends naturally into the in�nite. In order to de�ne it, it is easier to �rst
consider the nondeterministic �xed point logic, NFP of which AFP is a natural
extension. We turn our attention to these next.

7 Nondeterministic Fixed Points

The logic NFP of nondeterministic �xed points was introduced in [1] as another
variant of IFP, with expressive power intermediate between IFP and PFP3.
In terms of computational complexity NFP (or, strictly speaking its positive
fragment) bears the same relationship to the complexity class NP that IFP
bears to P and PFP bears to PSPACE. Before going into these connections,
however, we present the de�nitions, which are somewhat more involved than for
the earlier logics.

The logical operator nz forming nondeterministic �xed points is applied to
a pair of formulas '0(R;x) and '1(R;x), where R is a k-ary relation symbol and
x is a k-tuple of �rst-order variables. On any given structure A , each formula
determines an operator. We write �0 and �1 for the operators de�ned by '0
and '1 respectively. These two operators determine a sequence of relations as
with in
ationary inductions. However, the relations now are not indexed by
ordinals but by ordinal-length binary strings. Towards this end, we introduce
some notation for such binary strings.

For any ordinal �, a binary string of length � is any function b : �! f0; 1g.
For two binary strings b and c, we say that b is an initial segment of c, written
b � c, if the length of b is less than or equal to the length of c and b is the
restriction of c to the length of b. We say b is a proper initial segment of c,
written b � c, if b � c and b 6= c. For any binary string b of length �, we
write b � 0 for the unique binary string c of length � + 1 such that b � c and
c(�) = 0. Similarly, b � 1 is the unique binary string c of length �+ 1 such that
b � c and c(�) = 1. For binary strings b and c, we also write b � c to denote the
concatenation of the two strings. If b and c have length � and
 respectively,
then b � c is de�ned to be the string d of length � +
 such that, if � < �,
d(�) = b(�), and if � = � + Æ, then d(�) = c(Æ). We write " for the empty
string, i.e. the unique binary string of length 0.

On any structure A , the two formulas '0 and '1, de�ning the operators �0

and �1 determine a class of relations Rb, for any binary string b. These are
de�ned as follows:

R" = ;
Rc�0 = �0(Rc) [Rc
Rc�1 = �1(Rc) [Rc
Rc =

S
b�cRb if length(c) is a limit ordinal:

(7)

3Note that the logic we call NFP was not so called in [1]. There, the name NFP was used
for what we call PFP.

12

Note that Rb is de�ned for binary strings of arbitrary ordinal length, irrespective
of the cardinality of A. This is analogous to the case of deterministic in
ationary
inductions, where the stages R� are de�ned for all ordinals �, irrespective of
the cardinality of A.

Note also that the stages are increasing, in the sense that, if b � c, then Rb �
Rc. This implies that each sequence must reach a �xed point: If card(A) = �,
then for every string b such that length(b) < �+, there is a c such that b � c,
with length(c) < �+, and Rc = Rc�0 = Rc�1.

4 We de�ne the nondeterministic

�xed point of the pair of operators �0 and �1 on A to be the relation that is
the union of these �xed points, i.e.:

[
fRc j length(c) < �+ and Rc = Rc�0 = Rc�1g:

Because of the in
ationary nature of the de�nition, by the comments above,
this is just the same as:

[
fRc j length(c) < �+g:

or even fx j x 2 Rc for some binary string cg.
We de�ne the logic NFP, whose syntax is similar to IFP, except that the iz

formation rule is replaced by the following:

� If R is a relation symbol of arity k, x is a tuple of variables of length k,
'0 and '1 are any formulas of NFP and t is a tuple of terms of length k,
then

[nzR;x ('0; '1)](t)

is a formula of NFP,

For the semantics, we say that the formula [nzR;x ('0; '1)](t) is true in A if tA ,
the interpretation of t in A , is in the relation that is the nondeterministic �xed
point of the pair of operators �0 and �1, as de�ned above.

If we de�ne the positive fragment of NFP to consist of those formulas in
which the operator nz does not occur within the scope of a negation symbol,
we can obtain a normal form for this fragment on �nite structures. Every
positive NFP formula is equivalent to one of the form:

9x [nzR;x ('0; '1)](x; : : : ; x)

where '0 and '1 are �rst order. This can be shown by techniques analogous
to those used to prove the corresponding result for IFP (see [7]). Moreover,
a class of �nite ordered structures is de�nable in positive NFP if, and only
if, it is decidable by a nondeterministic machine in polynomial time, i.e. it
is in the complexity class NP [1]. The proof of this last statement can be
extended to show that a class of �nite ordered structures is de�nable in NFP

4Here, �+ denotes the least in�nite cardinal greater than �. In particular, if � is �nite,
�+ = !.

13

(without restriction to positive formulas) if, and only if, it is de�nable by a
formula of second order logic. Here, we establish this by proving a more general
statement, which extends beyond �nite structures: NFP and second order logic
are equivalent over all well-ordered structures.

One direction of this equivalence holds without the assumption of an order:

Theorem 4 For every formula ' of NFP, there is a formula of second order

logic, such that for any structure A , A j= ' if, and only if, A j= .

The proof of Theorem 4 is an adaptation of the translation of IFP into second
order logic given in Section 5.

To be precise, given formulas 0(R) and 1(R), the relation de�ned by
nzR;x (0; 1) is given by a formula like (3):

9 < 9I [wo(<) ^ � ^ 9yI(y;x)]:

where to construct the formula �, we introduce the notation lim(y) to denote
the formula that states that the ordinal corresponding to y under < is a limit,
zero(y) for the formula that says y is the �rst element in the order and y =
succ(z) to denote that the ordinal corresponding to y is the successor of the
ordinal corresponding to z. The formula � is now given by:

8y[zero(y) ^8x(:I((y;x))_
lim(y) ^8x(I(y;x) $ 9z(z < y ^ I(z;x)))_
9z(y = succ(z)^8x(I(y;x) $ 0(I(z);x))_
9z(y = succ(z)^8x(I(y;x) $ 1(I(z);x))]

Note, however, that, unlike in the case of IFP, we cannot replace the second
order existential quanti�ers by universal quanti�ers.

In the other direction, we wish to show

Theorem 5 For every formula ' of second order logic, there is a formula of

NFP, such that for any structure A which interprets < as a well-ordering of its

universe, A j= ' if, and only if, A j= .

Note that the well-ordering is essential. In the language of equality, for instance,
second order logic is far more expressive than NFP.

Proof of Theorem 5: It suÆces to show that if �(R) is a formula of NFP
containing a relation symbol R, there is a formula of NFP equivalent to 9R�.
We carry out the construction for unary R below, giving an indication at the
end how to generalize it to relation symbols of arbitrary arity.

We also assume that the formula 9R� has one free �rst-order variable y, so
that on any structure A , it de�nes a subset of the universe of A . The generaliza-
tion to predicates of higher arity is immediate. If 9R� contains no free variables,
we can still consider y to be free. In this case, 9R� de�nes either all of A, or the
empty set, depending on whether or not A j= 9R�. The reason for doing this is
because the nondeterministic induction naturally de�nes a predicate. Thus, we
construct a pair of formulas whose nondeterministic �xed point will yield the

14

predicate de�ned by 9R�. The idea is that the sequence of choices (of applying
'0 or '1) will encode the relation R. That is, for each possible choice of R, there
is a string such that the relation constructed by following that string encodes
within it the relation R.

Before proceeding to the description of the formulas '0 and '1, it is best to
understand their operation in terms of the simultaneous inductive de�nition of
three sets R, S and T . Thus, for any three such sets, we think of �0(R;S; T) as
yielding three sets R0, S0 and T 0, and similarly for �1. When we actually write
out the formulas, we will combine these into one relation.

We wish to de�ne �0 such that, if �0(R;S; T) = (R0; S0; T 0) and a is the
<-least element of A that is not in S (provided there is such an element), then:

R0 = R

S0 =

�
S [fag if S 6= A

S otherwise.

T 0 =

�
fb j A j= �[R; b]g if S = A

T otherwise.

Similarly, we de�ne �1 such that, if �1(R;S; T) = (R0; S0; T 0) and a is the
<-least element of A that is not in S, then:

R0 =

�
R [fag if S 6= A

R otherwise.

S0 =

�
S [fag if S 6= A

S otherwise.

T 0 =

�
fb j A j= �[R; b]g if S = A

T otherwise.

Thus, each of �0 and �1 always extends S by exactly one element (provided that
S is not already the whole universe). Furthermore, �1 also adds this element
to R, while �0 does not. Finally, T is unchanged by either of these operators,
unless S has already exhausted the universe, at which point the elements of
T are determined by the formula � and the relation R. In the following, we
permit ourselves an abuse of notation, by writing Rb, Sb and Tb for the relations
obtained by applications of the operators �0 and �1 as determined by the binary
string b, starting with all three sets being empty.

Let � denote the ordinal that is the order type of< in A , and let o : A! � be
the order isomorphism between (A;<) and �. Then, the following observations
are immediate. If b is any binary string of length � or less, then

Sb = fa 2 A j o(a) < length(b)g
Rb = fa 2 A j b(o(a)) = 1g
Tb = ;

In particular, if length(b) = �, then Sb = A. Moreover, for any set B � A,
there is a binary string b of length � such that B = Rb. The string b is given
by b(
) = 1 if, and only if, a 2 B, where o(a) =
.

15

If c is a binary string of length � + 1, and b is the initial segment of c of
length �, then we have the following:

Sc = Sb = A

Rc = Rb
Tc = fa j A j= �[Rb; a]g

Moreover, for any c0 such that c � c0, Sc = Sc0 , Rc = Rc0 and Tc = Tc0 and a
�xed point is reached.

Thus, the union of all Tc such that c is a binary string of length �+1 is the
set:

fa j A j= �[Rb; a] for some b of length �:g

By our earlier observation, this is the same as

fa j A j= �[B; a] for some set B � Ag;

which is just
fa j A j= 9R�[a]g:

Finally, we write our formulas '0 and '1. For this, we fold the simultaneous
inductions of the three sets into one nondeterministic induction of a binary
relation. We assume that A has at least three elements in it and we write a0,
a1 and a2 to denote the elements of A such that o(ao) = 0, o(a1) = 1 and
o(a2) = 2. We then de�ne a nondeterministic induction of a binary relation X ,
whose stages at any binary string b are given by:

Xb = fa0g �Rb [fa1g � Sb [fa2g � Tb:

The formula '0(X; x; y) is now given by the following:

[x = a1 ^ 8z(z < y ! X(a1; z))] _ [x = a2 ^ 8z(X(a1; z)) ^ �(X(a0); y)]:

In the above, x = a1, etc. can be replaced by appropriate de�nitions, using
<. Also, �(X(a0); y) denotes the formula obtained from � by replacing all
occurrences of subformulas of the form R(t) by X(a0; t).

Similarly, the formula '1(X; x; y) is given by:

[(x = a0 _ x = a1) ^ (:X(a1; y)) ^ 8z(z < y ! X(a1; z))]_
[x = a2 ^ 8z(X(a1; z)) ^ �(X(a0); y)]:

By the argument we have given, it follows that the predicate de�ned by
nzX;x;y ('0; '1) on A is the set:

fa0g �A [fa1g �A [fa2g � fa j A j= 9R�[a]g:

Thus, the formula 9R� is equivalent on A to [nzX;x;y ('0; '1)](a2; y).
Finally, we note that if 9R� contains more than one free variable (say k),

then the relation T in the above has to be k-ary. For this, we make X k + 1-
ary, and pad appropriately its projections de�ning R and S. Similarly, if the

16

symbol R has arity k greater than 1, we must choose X to be k + 1-ary and
use a well-ordering of k-tuples in the de�nition. Such a well-ordering is easily
de�nable from < by taking the lexicographical order.

The logic NFP was introduced in the context of �nite model theory as a
natural counterpart to IFP. It bears the same relationship to nondeterministic
computation that IFP has to deterministic computation. What we have shown
is that one natural way of extending its scope to in�nite structures (i.e. by
de�ning its semantics in terms of ordinal length binary strings) extends some of
these relationships into the in�nite. The correspondence between NFP, as we
de�ned it, and second order logic on well-ordered structures appears as a natural
generalisation of that between the two on ordered �nite structures. However,
there may be other natural ways of introducing a nondeterministic induction
principle, and we invite the reader to consider alternatives.

8 Alternating Fixed Point Logic

The previous section demonstrated the close relationship between nondeter-
ministic �xed point constructions and second order logic in the presence of a
well-ordering. The correspondence is precise in that the alternation of negation
with the nz operator matches the alternation of second order quanti�ers. The
logic AFP of alternating �xed points can be seen as extending NFP to allow an
unbounded number of alternations. This logic was introduced in [1], where it
was established that AFP has the same expressive power on �nite structures as
PFP. While alternating �xed points (and, indeed, nondeterministic �xed points)
were de�ned in [1] in terms of trees, for the purpose of de�ning such construc-
tions on in�nite structures, we describe them in terms of games.

Suppose we have two formulas '0(R;x) and '1(R;x) which de�ne a pair of
operators �0 and �1 on a structure A . Then, as in the previous section, we
obtain a series of relations Rb, for ordinal-length binary strings b. While the
nondeterministic �xed point of �0 and �1 would be obtained by taking the union
of all these relations, the alternating �xed point is obtained by a rather more
involved method of combining these relations. This method is best described in
terms of a two player game, which we call the string construction game.

Let � be an ordinal. A play of length � between players P-I and P-II will
produce a binary string of length �. An ordinal � < � is said to be P-I's turn if
� = 0, or � is a limit ordinal or the predecessor of � is P-II's turn. � is said to
be P-II's turn if its predecessor is P-I's turn. At any stage � < � of the game,
a value in f0; 1g has been assigned to every ordinal
 < �. At this stage, if � is
P-I's turn, then P-I assigns either 0 or 1 to the ordinal �. Otherwise, it is P-II's
turn, and P-II assigns a value of either 0 or 1 to �. As can be seen, the result
of a play of length � is a binary string b of length �.

Given a tuple a 2 A , we say that P-I wins a play of the string construction
game, if a 2 Rb, where b is the binary string constructed in the play. We say
that P-I has a winning strategy on a if, no matter how P-II plays, P-I can
always force the construction of a string b such that a 2 Rb. Now, we are ready

17

to de�ne the alternating �xed point of the two operators �0 and �1: it is the
relation consisting of all tuples a for which P-I has a winning strategy in the
string construction game on a.

Finally, we de�ne the logic AFP as similar to NFP, except that the nz
formula formation rule is replaced by the rule

� If R is a relation symbol of arity k, x is a tuple of variables of length k,
t is a tuple of terms of length k and '0 and '1 are any formulas of AFP,
then

[azR;x ('0; '1)](t)

is a formula of AFP of arity k.

For the semantics, we say that

[azR;x ('0; '1)](t)

is true in A if, and only if, tA is in the alternating �xed point of the pair of
operators de�ned by '0(R;x) and '1(R;x).

In terms of expressive power, we can show that every formula of NFP is
equivalent to a formula of AFP.

Lemma 6 Every formula of NFP is equivalent to one of AFP.

Proof: It suÆces to show that the predicate [nzR;x (0; 1)] is de�nable by
means of the az operator. To do this, we construct two operators �0 and �1,
which we think of as operating on a pair of relations (R;P). As in the proof of
Theorem 5, these can be coded into a single relation for the purpose of writing
the formulas. The two operators are de�ned by, �0(R;P) = (R0; P 0) where:

R0 =

�
 0(R) if R = P

R otherwise.
P 0 = R

and �1(R;P) = (R0; P 0) where:

R0 =

�
 1(R) if R = P

R otherwise.
P 0 = R

This ensures that in the string construction game played with these two opera-
tors, whenever it is P-II's turn, the result of applying the operation is merely to
copy the relation R into P . However, when it is P-I's turn, either the formula
 0 or 1 is evaluated, depending on which operator P-I chooses to play. This
ensures that for any binary string b, P-I has a strategy for de�ning the relation
Rb determined by b and the two formulas 0 and 1. It follows that the alter-
nating �xed point of the two operators �0 and �1 is exactly [nzR;x (0; 1)].

18

One kind of question that immediately arises from the de�nition of alternat-
ing �xed points is whether the string construction game is always determined.
That is, for any pair of formulas '0 and '1 de�ning a pair of operators �0 and
�1 on a structure A , and any tuple a 2 A , is it necessarily the case that one
of P-I or P-II has a winning strategy in the string construction game on a? As
we shall see below, the game is not determined for all A . However, in order to
classify some structures (and formulas) on which it is determined, it is useful to
introduce some terminology.

For �xed A ;�0 and �1, we say that a binary string b is closed if Rb = Rb�0 =
Rb�1. For an ordinal �, we say that the induction of �0 and �1 on A is closed
at � if all strings of length � are closed. This allows us to state the following
result:

Theorem 7 If the induction of �0 and �1 on A is closed at !, then, for any

tuple a from A , the corresponding string construction game is determined.

Proof: To establish the result, it suÆces to prove that the set of strings fb j
a 2 Rbg is an open set in the standard product topology on !2 derived from the
discrete topology on 2. This is because, by the theorem of Gale and Stewart
[10], if the set of winning strings is an open set, then the game is determined.

To see that the set fb j a 2 Rbg is an open set, we observe that by the
in
ationary nature of the operators, if a 2 Rb, then there is a �nite string c � b

such that a 2 Rc, and therefore, a 2 Rb0 for all !-length strings b0 such that
c � b0.

We also have, from Gale and Stewart [10], a set W of !-length strings such
that if W is the set of winning strings for P-I in an !-length string construction
game, then the game is indeterminate. We next see that this yields a structure
(albeit an uncountable one), where the game we have de�ned is indeterminate.

Let A be a structure whose universe A is the union of three disjoint sets,
O = f0g � !, P = f1g � !2, and a singleton fag. A interprets two binary
relations: �= f((0;m); (0; n)) j m < ng, the standard ordering on O; and
E = f((0;m); (1; s)) j s(m) = 1g. A also interprets a unary relation symbol S as
the subset of P encoding the undetermined winning setW of Gale and Stewart.

Now, it is easy to construct the desired �rst order de�nable operators �0

and �1. It is easiest to think of them as de�ning, simultaneously, a pair of
unary relations R and S (as in the proof of Theorem 5). If there is an element
of O that is not in S, let x be the least such element (according to the order
�) and let �0(R;S) = (R;S [fxg) and �1(R;S) = (R [fxg; S [fxg); if
O � S and W (pR), where pR 2 P is the element (1; fm j (0;m) 2 Rg), then
�0(R;S) = �1(R;S) = (R [fag; S); otherwise �0(R;S) = �1(R;S) = (R;S).

It can be easily checked that the induction of �0 and �1 on A closes at !+1,
and neither P-I nor P-II has a winning strategy on a.

This leaves open the question of whether the game is determined on every
countable structure. What we can show is that there is a pair of formulas (even
�rst order formulas) for which determinacy of the string construction game is
independent of ZFC. We establish this below.

19

Theorem 8 There are two �rst order de�nable operators �0 and �1 such that

the determinacy of the game they de�ne on (!;<) is independent of ZFC.

Proof: We �rst de�ne a pair of operators which have the required property on
the structure of arithmetic (!;<;+;�), and then note at the end how they can
be modi�ed to obtain operators that work on the order (!;<). We use the fact
that there is a �1

1 subset W of !2 such that the question whether P-I has a
winning strategy to construct an !-length string in W is independent of ZFC
(see [17, 6A.12 and 6G.7]).

Since W is �1
1, there is a �rst order formula �(X;R), where X and R are

unary relation symbols, such that (!;<;+;�; R) j= 9X� if, and only if, bR 2W ,
where bR : ! ! f0; 1g is the string given by bR(n) = 1 if, and only if, n 2 R.

We de�ne the operators �0 and �1 so that they construct three relations X ,
R and T , where T is only changed at the last stage, and 0 is included in T if,
and only if, (!;<;+;�) satis�es �(X;R). R is constructed in the �rst ! moves
of the game, using an auxiliary relation S. In the next ! moves, we construct
X , using an auxiliary relation Y , as well as a relation Z that guarantees that
the construction of X is entirely under the control of player P-I, as in the proof
of Lemma 6. Thus, the operators are de�ned in terms of the simultaneous
de�nition of six sets, as follows

First, we de�ne �0 such that �0(X;Y; Z;R; S; T) = (X 0; Y 0; Z 0; R0; S0; T 0),
where:

R0 = R

S0 =

�
S [fxg if S 6= !

S otherwise.
where x is the least element not in S

X 0 = X

Y 0 =

�
Y if S 6= ! or Y 6= Z or Y = !

Y [fyg otherwise
where y is the least element not in Y

Z 0 = Y

T 0 =

�
T [f0g if S = Y = ! and �(X;R)
T otherwise.

20

Similarly, we de�ne �1 such that, if �1(R;S; T) = (R0; S0; T 0):

R0 =

�
R [fxg if S 6= !

R otherwise.
where x is the least element not in S

S0 =

�
S [fxg if S 6= !

S otherwise.
where x is the least element not in S

X 0 =

�
X if S 6= ! or Y 6= Z or Y = !

X [fyg otherwise
where y is the least element not in Y

Y 0 =

�
Y if S 6= ! or Y 6= Z or Y = !

Y [fyg otherwise
where y is the least element not in Y

Z 0 = Y

T 0 =

�
T [f0g if S = Y = ! and �(X;R)
T otherwise.

To complete the argument, note that after ! moves of the game, a binary string
bR has been constructed, and the relation R is a subset of !. S is used as
a counter for these �rst ! moves. In the next ! moves, a set X is built up,
with Y used as a counter, and Z used to ensure that X can only be changed
at stages that are P-I's turn. Finally, at stage ! + ! + 1, 0 is included in T

if, and only if, �(X;R) holds. Since, after ! moves, P-I is entirely in control
of constructing X , he has a winning strategy for the inclusion of 0 in T if, and
only if, (!;<;R) j= 9X�. But, this is true if, and only if, bR 2 W . Thus, P-I
can ensure that 0 2 T after !+!+1 steps if, and only if, he can ensure that at
stage !, bR 2 W . It follows that the existence of a winning strategy for either
player is independent of ZFC.

Finally, note that the relations + and � are inductively de�nable (in IFP, for
instance) in the structure (!;<). Thus, the operators we have de�ned could be
modi�ed, so that in the �rst ! stages, these two relations are de�ned. Indeed,
since their interpretation is �xed in advance, they can be constructed simulta-
neously with R, and we obtain the required operators in the language of order.
Moreover, the induction still closes at stage ! + ! + 1.

As indicated in the proof, the induction de�ned by the two operators con-
structed closes at ! + ! + 1. By similar techniques, we can de�ne two AFP
formulas whose induction closes at ! + 1, which have the same property. Es-
sentially, the additional ! steps used to simulate the existential second order
quanti�er can be built into the de�nition of the operator. This should be com-
pared with Theorem 7.

Finally, we note that the closure ordinals considered above are small, com-
pared to what is possible. This is established by the following result.

Theorem 9 There are two �rst order de�nable operators �0 and �1 such that

the induction of �0 and �1 on (!;<) is not closed at any countable ordinal.

21

Proof: It is again easiest to describe the operators in terms of the simultaneous
iterative construction, this time, of a pair of binary relations R and S and a
unary relation T .

Choose any �rst-order de�nable order on ! � !, of order-type !. Let (x; y)
be the least pair in this order that is not in the relation S, if there is such a
pair. We wish to de�ne �0 such that if �0(R;S; T) = (R0; S0; T 0) then:

R0 = R

S0 =

�
S [f(x; y)g if S 6= ! � !

S otherwise.

T 0 =

�
fb j 8a (R(a; b)! T (a))g if S = ! � !

T otherwise.

Similarly, we de�ne �1 such that, if �1(R;S; T) = (R0; S0; T 0) and (x; y) is the
least pair that is not in S, then:

R0 =

�
R [f(x; y)g if S 6= ! � !

R otherwise.

S0 =

�
S [f(x; y)g if S 6= ! � !

S otherwise.

T 0 =

�
fb j 8a (R(a; b)! T (a))g if S = ! � !

T otherwise.

We then have, that for any binary string b of length !, Sb = !�!. Moreover,
for any binary relation R on !, there is a string b of length !, such that Rb = R.
In particular, for any countable ordinal �, there is a string b such that Rb is a
well-ordering of length �.

After stage !, neither R nor S change. Moreover, both operators act in
the same way on T . The induction reaches a �xed point when T contains the
well-founded part of R (compare Example 1.2). The length of this induction is
the same as the height of the well-founded part of R. If Rb is a well-ordering of
length �, and c is a string of length �, then Tb�c 6= Tb�c�0 = Tb�c�1, and closure is
not reached until !+�.5 Since R can be Any binary relation on !, we conclude
that there is no countable ordinal at which the induction of �0 and �1 is closed.

We believe that this strongly suggests that one might be able to �nd a count-
able structure and two AFP (or even �rst order) de�nable operators for which
one can prove (in ZFC) that the string construction game is indeterminate.

References

[1] S. Abiteboul, M. Y. Vardi, and V. Vianu. Fixpoint logics, relational ma-
chines, and computational complexity. In Proc. 7th IEEE Symp. on Struc-

ture in Complexity Theory, 1992.

5Note that, if � � !2, then ! + � is just �.

22

[2] S. Abiteboul and V. Vianu. Datalog extensions for database queries and
updates. Journal of Computer and System Sciences, 43:62{124, 1991.

[3] S. Abiteboul and V. Vianu. Computing with �rst-order logic. Journal of

Computer and System Sciences, 50(2):309{335, 1995.

[4] P. Aczel. An introduction to inductive de�nitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739{782. North Holland, 1977.

[5] A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In
6th ACM Symp. on Principles of Programming Languages, pages 110{117,
1979.

[6] A. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25:99{128, 1982.

[7] A. Dawar. A restricted second order logic for �nite structures. Information

and Computation, 143:154{174, 1998.

[8] H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[9] R. Fagin. Generalized �rst-order spectra and polynomial-time recogniz-
able sets. In R. M. Karp, editor, Complexity of Computation, SIAM-AMS

Proceedings, Vol 7, pages 43{73, 1974.

[10] D. Gale and F.M. Stewart. In�nite games with perfect information. In Con-
tributions to the Theory of Games, volume 28 of Annals of Mathematical

Studies, pages 245{266. Princeton University Press, 1953.

[11] Y. Gurevich. Toward logic tailored for computational complexity. In
M. Richter et al., editors, Computation and Proof Theory, pages 175{216.
Springer Lecture Notes in Mathematics, 1984.

[12] Y. Gurevich and S. Shelah. Fixed-point extensions of �rst-order logic.
Annals of Pure and Applied Logic, 32:265{280, 1986.

[13] N. Immerman. Upper and lower bounds for �rst-order expressibility. Jour-
nal of Computer and System Sciences, 25:76{98, 1982.

[14] S.C. Kleene. Arithmetical predicates and function quanti�ers. Transactions
of the AMS, 79:312{340, 1955.

[15] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North
Holland, 1974.

[16] Y. N. Moschovakis. On nonmonotone inductive de�nability. Fundamenta

Mathematicae, 82:39{83, 1974.

[17] Y. N. Moschovakis. Descriptive Set Theory. North Holland, 1980.

[18] M. Y. Vardi. The complexity of relational query languages. In Proceedings

of the 14th ACM Symposium on the Theory of Computing, pages 137{146,
1982.

23

