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Abstract

Formulas of Hoare logic are asserted programs ϕ Π ψ where Π is a program
and ϕ,ψ are assertions. The language of programs varies; in the survey
[Apt 1980], one finds the language of while programs and various exten-
sions of it. But the assertions are traditionally expressed in first-order logic
(or extensions of it). In that sense, first-order logic is the underlying logic
of Hoare logic. We question the tradition and demonstrate, on the simple
example of while programs, that alternative assertion logics have some ad-
vantages. For some natural assertion logics, the expressivity hypothesis in
Cook’s completeness theorem is automatically satisfied.

The readers of this column know Quisani, an inquisitive former student of one of
us. This conversation is somewhat different because Quisani talks to both of the
authors at once. Taking into account the magnitudes of our literary talents, we
simplified the record of the conversation by blending the two authors into one who
prefers “we” to “I”. While it is great to talk to Quisani, his insatiable appetite
to motivation and detail can be a burden. In the appendix, we leave Quisani and
address some decision problems related to existential fixed-point logic, one of the
alternative assertion logics.

1Bull. of the Euro. Assoc. for Theoretical Computer Science, 70, Feb. 2000, 82–110.
2Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA.
3On leave of absence from the University of Michigan.
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We presume that the reader is familiar with the basics of first-order logic and
computation theory. We do not presume any familiarity with Hoare logic. Our
main reference on Hoare logic is [Apt 1981].

1 Background, while Programs, and Global Re-
lations

Quisani: In the introduction of your paper on existential fixed-point logic, you
promise to “show in Section 2 that the use of existential fixed-point logic removes
the need for an expressivity hypothesis in Cook’s completeness theorem for Hoare
logic” [BG 1987, page 20]. I don’t think you do that.

Author: The material on Cook’s completeness theorem was our original motivation
for the study of existential fixed-point logic. We are surprised that it isn’t in the
paper and we don’t have a good explanation.

Q: Did you intend to use existential fixed-point logic instead of first-order logic?

A: Exactly. First-order logic is used a little too readily in computer science. Some-
times there are logics more appropriate for the purpose.

Q: That sounds interesting. Tell me more about it. But please start at the beginning
and remind me what Hoare logic is. And don’t rely on my knowledge of [BG 1987]
either; I didn’t read it that carefully.

A: We start with the while programming language. Programs in that language are
defined inductively.

• For every variable x and every (first-order) term t,

x := t

is a program.

• If Π1,Π2 are programs and guard is a quantifier-free first-order formula, then

Π1; Π2

if guard then Π1 else Π2 fi
while guard do Π1 od

are programs.

A program of the form x := x will be denoted skip. Else-clauses of the form
else skip may be omitted. We will sometimes also omit the keywords fi and
od; if necessary, parentheses will be used to insure unambiguous parsing.
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Q: What is the input to a program? What does the program compute?

A: First we define the states of given program Π. Let v̄ ⇀↽ (v1, . . . , vk) be the list of
the (individual) variables of Π. We fix once and for all a canonic ordering of all
variables and we always list variables in the canonic order. Fix a structure A whose
vocabulary contains all function and relation symbols of Π. Over A, a state of Π
is (given by) a tuple ā ⇀↽ (a1, . . . , ak) of values for the variables of Π. (The point
of the canonic ordering is to let us write states as tuples rather than as (partial)
functions on the set of variables.)

Any state ā is a possible input to Π over A. We hope that the standard notation for
programs is clear enough so that we don’t need to explicitly define the computation
of a program on an input state. The definition is written out in full in [Cook 1978]
and [Apt 1981]. The computation of Π on input ā may or may not terminate. If
it terminates, set Π̂A(ā) equal to the final state. Over A, Π computes the partial
function ȳ = Π̂A(x̄). The graph of Π̂ was called the profile of Π in [BG 87]:

Profile Π(x̄, ȳ) ⇀↽ Π̂(x̄) = ȳ.

Q: You didn’t use the superscript A. I guess Profile Π is one of those global relations
that we talked about once. Please refresh my memory.

A: A j-ary global relation ρ of vocabulary Υ is a function that assigns to every
Υ-structure A a (local) j-ary relation ρA on A; it is required that ρ be abstract
in the following sense: every isomorphism between Υ-structures A and B is also
an isomorphism between the expanded structures (A, ρA) and (B, ρB) [Gurevich
1984]. Indeed, Profile Π is a global relation.

Q: What if you want to restrict attention to a class of structures, say, to finite
structures?

A: Let K be a class of structures. A j-ary K-global relation ρ of vocabulary Υ is a
function that assigns to every Υ-structure A in K a (local) j-ary relation ρA on A.
Again it is required that ρ is abstract, i.e., that it respects isomorphism between
structures in K.

2 Hoare Logic: Syntax and Semantics

A: We are ready to recall the Hoare logic (for while programs). A formula of the
Hoare logic is an asserted program

ϕ Π ψ
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where Π is a while program and the assertions ϕ, ψ are first-order formulas called
the precondition and postcondition respectively. The vocabulary of the asserted
program consists of the function and relation symbols that occur in ϕ,Π, or ψ.

Q: Define precisely the validity of an asserted program ϕ Π ψ.

A: There are two distinct definition of the validity or correctness of asserted pro-
grams. Without loss of generality, we may assume that the variables v̄ of Π are
exactly the free variables of ϕ and exactly the free variables of ψ. Suppose that A
ranges over structures whose vocabulary includes that of ϕ Π ψ.

Partial Correctness ϕ(v̄) Π(v̄) ψ(v̄) is partially correct (over A) if the formula
(
ϕ(x̄) ∧ Profile Π(x̄, ȳ)

)
→ ψ(ȳ),

is valid (over A).

Total Correctness ϕ Π ψ is totally correct (over A) if it is partially correct and
the formula

ϕ(x̄) → (∃ȳ)Profile (x̄, ȳ)
is valid (over A).

Q: As I see it, both forms of correctness say that ϕ at the beginning of a computa-
tion guarantees ψ at the end. The difference is that partial correctness gives this
guarantee only if the computation terminates, while total correctness requires the
computation to terminate and gives the guarantee.

A: Exactly. Let us concentrate today on partial correctness. We can discuss total
correctness some other time.

3 Proof System for Hoare Logic

Q: I guess Hoare logic has also axioms and rules of inference. Otherwise you would
not talk about its completeness.

A: Right. The traditional proof system H of Hoare logic for while programs com-
prises an axiom schema and four inference rules.

Assignment Axiom Schema

ϕ(t) x := t ϕ(x)

where ϕ(t) is the result of substituting the term t for the variable x in ϕ(x). (We
tacitly assume that bound variables in ϕ(x) are renamed if necessary to avoid
clashes with variables in t.)
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Consequence Rule

Premises: ϕ → ϕ′, ϕ′ Π ψ′, ψ′ → ψ.
Conclusion: ϕ Π ψ.

Composition Rule

Premises: ϕ Π1 χ, χ Π2 ψ.
Conclusion: ϕ Π1; Π2 ψ.

Conditional Rule

Premises: (ϕ ∧ guard) Π1 ψ, (ϕ ∧ ¬guard) Π2 ψ.
Conclusion: ϕ (if guard then Π1 else Π2 fi) ψ

Iteration Rule

Premise: (ϕ ∧ guard) Π ϕ.
Conclusion: ϕ (while guard do Π od) (ϕ ∧ ¬guard).

H is obviously sound for the Hoare logic, that is for the partial correctness version
of the logic. It is not sound for the total correctness version because of the Iteration
Rule.

Q: The Consequence Rule is impure. Two of the three premises are first-order impli-
cations rather than asserted formulas. One can dress up implications as asserted
skip programs.

A: One can, but it would make little difference. The logic would not provide a way
to prove such asserted skip programs. These two premises of the consequence
rule, whether viewed as implications or dressed up as asserted programs, have to
be obtained from someplace outside Hoare logic.

Q: Where would that be?

A: That depends on the context, so let us describe a few possible contexts and see
what the corresponding sources for implications might be. We defined validity of
asserted programs over a structure A, and indeed one often has a single structure
A in mind (for example the standard model of arithmetic) and wants to use Hoare
logic to deduce asserted programs valid over this A. Then of course the implications
in the consequence rule should also be valid in this fixed A. For some structures,
such as the field of real numbers, the first-order sentences true in A constitute a
recursively axiomatizable theory. In such a case, the source of the implications in
the consequence rule could be such an axiomatization plus the standard deductive
rules of first-order logic. For other structures, like the standard model of arith-
metic, the first-order theory is not recursively axiomatizable, and indeed there is
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no effective source for all arithmetical truths. But there are effective sources for all
the arithmetical truths ever actually needed. For example, the Zermelo-Fraenkel
(ZFC) axioms of set theory, generally regarded as the appropriate foundation for
all of mathematics, suffice to yield, via the deductive rules of first-order logic, all
the usual facts of number theory. So these axioms could be regarded as the source
of the implications in the consequence rule.

But Hoare logic can be used in other contexts. Specifically, we might have a class
K of structures in mind, and we might want to deduce asserted programs valid
in all structures from K. Then of course the implications in the consequence rule
should be valid in all structures from K as well. Whether there is an effective
source for these implications (i.e., whether they form a recursively axiomatizable
theory) depends, of course, on K. But even if there is no effective source for all
the K-valid implications, ZFC will usually provide an effective source for all the
implications one actually needs. Notice, by the way, that if K is the class of all
structures of a fixed vocabulary, then Gödel’s completeness theorem for first-order
logic provides the effective source we need.

4 Incompleteness of Hoare Logic

Q: But if Hoare logic needs to be supplemented with an external source of valid
implications, then it really isn’t complete. Why does the problem remain if the
implications in the consequence rule are regarded as asserted skip programs and
thus as the sort of thing H might conceivably prove?

A: The only asserted skip programs that could be proved without the consequence
rule are the trivial ones of the form ϕ skip ϕ, which are assignment axioms. Now
consider any non-trivial but partially correct

ϕ skip ψ.

For example, ϕ may be false while ψ is anything but false, or ψ may be true
while ϕ is anything but true. Any proof of this asserted program would have to
invoke the Consequence Rule and thus would require some valid implications, or
some asserted skip programs. And trivial ones are of no use here. So in order to
prove any non-trivial asserted skip program, we’d need some previously proved,
non-trivial, asserted skip programs.

So, to avoid an infinite regress, H needs an external source of implications.

Q: Why not incorporate the deductive apparatus of first-order logic into H? This
would allow us to derive all valid first-order implications.
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A: Good idea, but we are not interested in going into the details of a proof system for
first-order logic. It is simpler just to declare that every valid first-order implication
is an axiom:

FO Axiom Schema

All valid first-order implications ϕ → ψ

Notice the separation of concerns. Assertions apply to one state, and programs
transform states. Thus, the FO axiom schema reflects the static part of the proof
system, and H reflects the dynamics.

Q: In the FO Axiom Schema, does “valid” mean true in all structures for the vocab-
ulary, as usual in first-order logic?

A: Yes. So this schema is intended to be used in Hoare logic for deducing asserted
programs valid in all structures at once.

Q: If you were dealing with validity of asserted programs in just one structure A or
in a class of structures K, then you could just replace “valid” in the FO Axiom
Schema with “true in A” or with “valid in K.”

A: Right. We’ll call the resulting schemas the FO(A) or FO(K) Axiom Schemas.

Unfortunately, H + FO Axiom Schema isn’t complete either. An asserted program

true Π false

is partially correct if and only if Π never halts. H + FO Axiom Schema cannot
prove all partially correct assertions of that form.

Q: Sketch a proof.

A: This will require some basic computation theory. Notice that the set of asserted
programs provable in H + FO Axiom Schema is recursively enumerable. It suffices
to prove that the set of never halting while programs is not recursively enumerable.

Consider Turing machines that start on the empty tape. (We adopt the convention
that the tape is potentially infinite to the right but that it has a leftmost square,
which is the scanned square at the start of the computation.) Computation theory
tells us that the set of nonhalting machines is not recursively enumerable. Every
Turing machine M can be simulated by a while program ΠM such that ΠM never
halts if and only if M is non-halting. It follows that the set of never halting
programs is not recursively enumerable.

We sketch the construction of ΠM . Without loss of generality, we assume that
control states and tape symbols of M are natural numbers, the initial state is 1,
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the halting state is 0, and the blank is also 0. The idea is that ΠM will halt if and
only if its input structure A encodes a halting computation of M . Here’s how the
encoding works.

Given a halting computation of M , fix an integer n larger than the number of steps
in the computation and therefore also larger than the length of the segment of the
tape visited by M during the computation. Identify that segment of the tape with
an initial segment of [0, n], so 0 represents the leftmost tape square. Also assume
that n exceeds the integers serving as control states or as tape symbols. Let the
domain of the structure A be the interval [0, n] of integers. The vocabulary of A
consists of two constant symbols 0 and End, four unary function symbols S, P , Q,
and X, and a binary function symbol U . The interpretations of 0 and End in A are
0 and n, respectively. The interpretations of S and P in A are the successor and
predecessor functions, extended to the endpoints by SA(n) = n and PA(0) = 0.
QA(k) is the control state of M at step k of the computation, XA(k) is the square
scanned by M at step k, and UA(k, l) is the symbol in square l at step k. (If k is
larger than the number of steps in the computation, then we take “step k” to be
the same as the last actual step.)

Note that there is some ambiguity in this specification of A, because we could
increase n. In fact, it is convenient to allow somewhat more ambiguity. We regard
a structure A (for the vocabulary specified above) as coding the given computation
of M provided that

(1) Starting from 0 and iterating S, one eventually reaches End; say End = Sn(0).

(2) The set {0, S(0), S2(0), . . . , Sn−1(0), End} is the domain of a substructure A0

of A; that is, this set is closed under the interpretations in A of all the function
symbols.

(3) This substructure A0 is isomorphic to one of the sort described above.

Now we can describe a while program that halts exactly on those structures that
code halting computations of M . The program uses two variables, s and t (which
we think of as space and time) and it has the form

s := 0; t := 0;
while s 	= End do s := S(s);
s := 0;
Check,

where Check is a program to be described in a moment. The first two lines here
verify that condition (1) on our coding structures is satisfied; if (1) is violated,
then the while command never terminates. The third line just reinitializes s. The
real work will be done by the Check program which, as its name suggests, checks
that the functions behave properly on A0. It systematically searches for violations
of requirements (2) and (3). In some detail, it looks like
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if Q(0) 	= 1 ∨ Q(End) 	= 0 ∨ X(0) 	= 0 ∨ S(End) 	= End then loop fi;
while s 	= End do

if U(0, s) 	= 0 then loop fi;
s:=S(s) od;

if U(0, End) 	= 0 then loop fi;
s := 0;
while t 	= End do

if t = 0 ∧ P (t) 	= 0 then loop fi;
if P (S(t)) 	= t then loop fi;
while s 	= End do Local-Check; s:=S(s) od;
Local-Check;
s := 0; t := S(t)

od.

Here loop is a program that never terminates, for example while true do skip,
and Local-Check verifies that what happens in the step from stage t to stage S(t)
is in accordance with the instructions of M , i.e., that Q(t), X(t), and U(t,X(t))
are updated as specified by the instructions of M and that U(t, s) is not changed
if s 	= X(t). Local-Check is obtained by stringing together with semicolons sev-
eral conditional statements, each saying “if something is improperly updated then
loop.” Writing it out in detail seems a waste of time, unless you have some ques-
tions about it.

Q: Writing out Local-Check seems like an easy enough exercise. But what’s the
point of its second occurrence in the program?

A: The first occurrence, inside the while loop, ran the check only for s 	= End; the
second occurrence runs it for s = End also.

Q: Oh, it’s just like the line “if U(0,End) 	= 0 then loop fi”, which also covers
an End situation missed by the preceding loop.

A: Exactly.

Q: Was this incompleteness phenomenon known when Cook proved his completeness
theorem?

A: In his paper [Cook 1978] containing the completeness theorem, Cook points out
this same incompleteness for Hoare logic in the context of a single structure, namely
the standard model of arithmetic. This is the context of primary interest in that
paper.

Q: What exactly is “the same incompleteness” in a different context?

A: We mean incompleteness that is attributable to asserted programs of the form

9



trueΠ false and the fact that the non-halting problem isn’t recursively enumer-
able.

5 Cook’s Completeness Theorem

Q: If Hoare Logic is so hopelessly incomplete, then what is Cook’s theorem about?

A: To explain Cook’s theorem, we need a couple of definitions.

Let v̄ be the list of variables of a program Π, let ϕ(v̄) be a first-order formula with
free variables in v̄, and let A be a structure of sufficiently rich vocabulary. The
strongest postcondition PostΠ(ϕ) is the global relation

(∃x̄)[ϕ(x̄) ∧ Profile Π(x̄, v̄)].

So PostAΠ(ϕ) holds of just those states (in structure A) that are the final results of
(terminating) runs of Π starting in states that satisfy ϕ in A.

Q: I suppose the name “strongest postcondition” means that PostAΠ(ϕ) is the
strongest relation R on A such that ϕΠR(v̄) is valid.

A: Right.

Say that first-order logic is Cook expressive for a structure A if for all Π and ϕ as
above, the relation PostAΠ(ϕ) is first-order expressible in A. In other words, first-
order logic is expressive for A if and only if, for all Π and ϕ, there is a first-order
formula ψ(v̄) such that, for every state x̄ of Π over A, we have

x̄ ∈ PostAΠ(ϕ) ⇐⇒ A |= ψ(x̄)

Later, when we consider logics other than first-order, the same definition will be
applied to them: For each assertion ϕ in the logic, the strongest postcondition
should be expressible by an assertion in the logic. Also, we can talk about a logic
being expressive for a whole class K of structures, meaning that, for each program
Π and each assertion ϕ, there is a single ψ defining PostAΠ(ϕ) in all structures
A ∈ K simultaneously.

Theorem 1 (Cook 1978) If first-order logic is Cook expressive for A then H +
FO(A) Axiom Schema is complete for Hoare Logic, so that every asserted program
partially correct over A is provable in H + FO(A) Axiom Schema.

The proof is in [Cook 1978] and in the survey paper [Apt 1981].4

4We shall review this proof in Section 6.
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Q: I have a whole bunch of questions. Let me ask them in some random order. You
defined the strongest postcondition from the profile. It seems that the profile can
be defined from the strongest postcondition, so that the strongest postcondition
can be replaced by the profile in the definition of expressivity.

A: You are right. Let us leave the problem of defining the profile from the strongest
postcondition as an exercise; the solution is in [BG 1987].

Q: Let me try to formulate the weakest precondition PreΠ(ψ), the dual of the
strongest postcondition. It should be the global relation

{v̄ : (∃ȳ)[Profile (v̄, ȳ) ∧ ψ(v̄)}.

A: This is the weakest precondition with respect to total correctness. That is, it
is the weakest global relation R such that R(v̄)Πψ is valid in the sense of total
correctness. In the case of partial correctness you have a weaker global relation,
namely:

{v̄ : (∀ȳ)[Profile (v̄, ȳ) → ψ(v̄)]}.

Q: I see. It seems that the profile can also be defined from the weakest precondition,
so that the strongest postcondition can be replaced by the weakest precondition
in the definition of expressivity. Is this another exercise with a solution in [BG
1987]?

A: Sure. The observation that Cook’s theorem remains true (and its proof is some-
what simplified) when strongest postcondition expressivity is replaced with weakest
precondition expressivity is due to Clarke [Apt 1981, p. 439].

Q: Give me an example of a structure for which first-order logic is expressive.

A: The most important example is arithmetic, that is the standard model
〈N,+, ∗, 0, 1〉 of arithmetic [Cook 1978, Lemma 5]. Here N is the set of natural
numbers. More generally, first-order logic is expressive for a structure A if in A,
as in arithmetic, arbitrary finite sequences of elements can be coded in first-order
way by means of single elements.

Q: Why do you need such a coding?

A: Prove, by induction on program Π, that the profile of Π is first-order expressible.
The only difficult case arises when Π has the form while guard do Π0. For
simplicity, let us consider the case when Π has just one variable v, so that states of
Π over A are given by elements of A. By the induction hypothesis, you know that
Profile A

Π0(x,y) is expressible by some formula χ0(x, y). To express Profile A
Π(x, y) of
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Π, you say that there exists an element s coding a sequence 〈s0, s1, . . . , sn〉 such
that the following holds in A:

- s0 = x, sn = y,
- guard(si) ∧ χ0(si, si+1), for all i < n,
- ¬guard(sn).

If Π contains k variables then s should code a sequence of k-tuples. I trust you
can make the necessary modification.

Q: Sure, but this only shows that you need coding for a particular way of expressing
profiles. I admit that it looks like the natural way to do this, but might there be a
different approach that doesn’t need to code sequences? Can you give an example
of a structure for which first-order logic is not expressive?

A: Yes, the field 〈R, 0, 1,+, ∗〉 of real numbers is such an example. The program Π:

x:=0;
while x 	= y do x := x+ 1

halts if and only if the initial value of y (which is never altered) is a non-negative
integer. So if ψ(x, y) defined PostRΠ(true) then ψ(0, y) would define the set N
of natural numbers in the field R. But, by a celebrated theorem of Tarski, the
only subsets of R first-order definable from the field structure are finite unions
of intervals (including degenerate and infinite intervals) with algebraic endpoints.
Since N is not of that form, PostRΠ(true) is not first-order definable.

Q: OK, let us consider the case when A is arithmetic. I know that the first-order
theory of A is not recursively enumerable. The FO(A) Axiom Schema is a fake.

A: You have a point there. What Cook gives us is a clean separation of concerns.
The FO(Arithmetic) Axiom Schema takes care of the statics, and H takes care of
the dynamics. One may hope and expect that, in applications, proofs of asserted
programs will not require subtle arithmetical facts. Remember what we said earlier
about the arithmetical facts provable in ZFC: They from a recursively enumerable
set adequate for just about any application of H.

Q: I like the separation of concerns in Cook’s theorem, but FO(Arithmetic) is way too
complex. Cook’s incompleteness argument shows that the set of partially correct
asserted programs is at least as complex as the not recursively enumerable set of
nonhalting Turing machines. So there is no regular proof system for H, and the
completeness of H can be achieved only by liberalizing the notion of proof system.
However it is reasonable to expect a modest liberalization. The FO(Arithmetic)
Axiom Schema does not live up to this expectation. I remember that the set of
true arithmetical formulas is much more complex then the set of nonhalting Turing
machines.
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A: You are right. The set (of the Gödel numbers) of nonhalting Turing machines can
be described by an arithmetical formula, in fact by a Π0

1 arithmetical formula (see
for example [Rogers 1967, Section 14.3] or [Enderton 1977, page 556]). Far more
complex sets can be described by arithmetical formulas with nested unbounded
quantifiers. By Tarski’s theorem on undefinability of truth (see for example [En-
derton 1977, page 558]), the FO(Arithmetic) Axiom Schema is not expressible in
arithmetic.

But notice that this excess complexity is unavoidable as long as we allow arbitrary
first-order formulas as assertions. A sentence ϕ is true in the standard model of
arithmetic if and only if the asserted program true skip ϕ is true there. So the
set of true asserted programs is at least as complex as the set of true first-order
sentences.

Q: My other complaint is that Cook’s completeness theorem relates to single struc-
tures rather than to all structures at once.

A: Cook’s theorem can be modified to apply to a class K of structures. One should
replace the FO(A) Axiom Schema by the FO(K) Axiom Schema, and one then
gets deducibility of all asserted programs valid in K.

6 Generalized Cook’s Theorem

A: Although Cook’s completeness theorem is usually stated in the context of first-
order logic, it actually uses far weaker closure conditions on the logic. Let’s review
the proof and isolate what it assumes about the underlying logic.

Following [Cook 1978], we begin with two first-order vocabularies Υ1 ⊆ Υ2 and
build terms in the usual way from variables and function symbols. Where we may
deviate from traditional first-order logic is in the definition of formulas. Actu-
ally, three sorts of formulas are involved in Hoare logic and Cook’s completeness
theorem:

Guards These are the formulas that appear within programs, as the guards of
conditional statements and while-statements.

Assertions These appear as the pre- and post-conditions in asserted programs.

Sequents These are implications between assertions. They occur as premises in
the consequence rule.

We will consider various logics L but restrict attention to vocabularies Υ1 ⊆ Υ2.
Cook uses the smaller vocabulary Υ1 in programs, for the guards and for the terms
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in assignments, and he uses the larger vocabulary Υ2 in assertions. This makes
sense because the specification of a program may involve concepts not used in the
program itself. For example, a program deciding whether a graph contains a path
from one specified vertex to another is likely to use only the adjacency relation, not
the path relation. Then Υ2 could contain the path relation while Υ1 would not.
For many situations, however, one can assume that the two vocabularies coincide.

Syntax A logic L specifies what the formulas of any vocabulary are. It also
specifies which Υ1-formulas are guards, which Υ2-formulas are assertions, and what
the sequents are (but see condition 5 below). A possibly unfortunate custom, in
connection with some of the logics we shall consider, is to define “formula” rather
narrowly, so that sequents are not considered formulas. Because of this, we shall
formulate our general requirements on L just in terms of guards, assertions, and
sequents, not referring at all to L’s notion of formula. Later, when dealing with
specific logics, we shall use “formula” in the sense customary for those logics.

We require the following of our logics L.

1. Conjunction of a guard with a disjunction of negations of equations between
variables is again a guard.

2. Substituting an Υ1-term for a variable in an assertion produces an assertion.

3. The conjunction of an assertion with a guard or with the negation of a guard
is again an assertion.

4. Existentially quantifying an assertion produces an assertion.

5. Every implication between assertions is a sequent.

Q: An implication between assertions is also an assertion, isn’t that true?

A: Not necessarily. Some logics of interest to us do not employ implication in pro-
ducing assertions. Requirement 5 makes implication available in sequents even if
it isn’t available in assertions. But even in sequents, implication is required only
between assertions; we never need nested implications.

Q: These requirements look more technical than natural.

A: That’s true, because they were chosen to be just what’s needed for the proof
of Cook’s theorem. They could be replaced by more natural hypotheses that are
somewhat stronger than needed. For example, we could assume

• The guards are the quantifier-free Υ1-formulas in the sense of first-order logic.
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• All guards are assertions.

• The class of assertions is closed under renaming variables, under conjunction
and under existential quantification.

• The sequents are all the implications between assertions.

Q: These assumptions look better, and they clearly imply the old ones, except that
you forgot the requirement (2) that assertions be closed under substitution.

A: Substitution can be simulated with renaming variables, conjunction, and exis-
tential quantification. ϕ(t) is equivalent to ∃y (y = t ∧ ϕ(y)) for a fresh variable
y.

Semantics For our purposes, models for L are structures of vocabulary Υ2. If A
is such a structure and ϕ is an L formula in vocabulary Υ2, then the satisfaction
relationship A |= ϕ is defined. Equality is interpreted as identity. Any of the
standard propositional connectives and quantifiers present in L are interpreted in
the usual way. Sequents, like asserted programs, are regarded as true when they
are satisfied by all choices of values for their free variables; thus they should be
regarded as being implicitly universally quantified.

In what follows, we consider programs in vocabulary Υ1 and fix a class K of Υ2

structures.

Definition 2 L is expressive for K if, for any program Π and any L assertion ϕ,
the K-global relation PostΠ(ϕ) is expressible as an L assertion.

In other words, expressivity requires that there exists an L assertion ψ(x̄) such
that, for every A ∈ K and every state x̄ of A, we have

x̄ ∈ PostAΠ(ϕ) ⇐⇒ A |= ψ(x̄).

Let HL be the version of Hoare logic H where the guards, assertions and sequents
are those of L. Further, let HL(K) be the result of adding all K-valid L-sequents
to HL as axioms.

Theorem 3 Assume that L is expressive for K. Then every K-valid asserted
program is deducible in HL(K).

The proof of Cook’s theorem, in the form stated above, requires nothing more
than the traditional proof for first-order logic. We just have to pay attention to
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the constructions actually used in the logic. Nevertheless, we shall give the proof
and point out where the hypotheses are used.

Our hypotheses (2) and (3) are used in the very formulation of HL. Substitution
of terms for variables in an assertion occurs in the assignment axiom schema, and
conjunction of assertions with guards and negated guards occurs in the conditional
rule and the iteration rule. The purpose of the other three hypotheses will become
clear during the proof. Throughout this discussion, validity, both of sequents and
of asserted programs, will mean K-validity, i.e., truth in all structures from the
fixed class K.

Proof We must show that a valid asserted program ϕ Π ψ is deducible. To do
this we proceed by induction on the structure of the program Π.

Suppose first that Π is an assignment, x := t. Then validity of the asserted
program ϕ Π ψ(x) means exactly that the sequent ϕ → ψ(t) is valid. (Here we
use requirement (5) for the first time.) But from this sequent and the instance
ψ(t) Π ψ(x) of the assignment rule (and, to be pedantic, the valid sequent ψ(x) →
ψ(x)), we deduce the required ϕ Π ψ(x) by the consequence rule.

Next, suppose Π is a sequential composition Π1; Π2. Let assertion θ express
PostΠ1(ϕ). Then by definition of this strongest postcondition, ϕ Π1 θ is valid,
and the assumed validity of ϕ Π ψ means that θ Π2 ψ is also valid. By induction
hypothesis, both ϕ Π1 θ and θ Π2 ψ are deducible, and they yield ϕ Π ψ by the
composition rule.

Third, suppose Π is if guard then Π1 else Π2. Now if ϕ Π ψ is valid, then so
are (ϕ∧ guard) Π1 ψ and (ϕ∧ ¬guard) Π2 ψ. (Here we use hypothesis (3) on our
logic.) By induction hypothesis, these asserted programs are deducible, and they
yield the required ϕ Π ψ by the conditional rule.

Finally, suppose Π is while guard do Π1. Of course, we intend to deduce ϕ Π ψ
by means of the iteration rule, but in order to do this we must first produce a
suitable loop-invariant (the ϕ in the statement of the iteration rule).

Let x̄ be a list of all the variables free in ϕ Π ψ, and let x̄′ be an equally long list
of fresh variables. Let Π′ be the program

while guard ∧ ∨
i

xi 	= x′
i do Π1.

This program works almost like Π on the x variables, leaving the values of the x′

variables unchanged; the only difference is that Π′ may stop earlier than Π. It
may stop before guard becomes false if it reaches a state where x̄ = x̄′, i.e., where
Π has brought the x variables into agreement with the (original, never altered) x′

variables. (Hypothesis (1) on L is used to ensure that Π′ is a program, i.e., that
its guard is a legitimate one.)
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Let θ(x̄, x̄′) be a formula expressing PostΠ′(ϕ) over K. It holds if and only if either
x̄ = x̄′ and the state x̄ is reached at some stage during the execution of Π starting
in some state satisfying ϕ or else x̄ is the final state of a run of Π, starting in some
state satisfying ϕ, such that state x̄′ never occurred during the run.

Accordingly ∃x̄′ θ(x̄, x̄′) holds if and only if x̄ is a state reached at some stage
during a run of Π starting at some state satisfying ϕ. This implies that

(
(∃x̄′ θ(x̄, x̄′)) ∧ guard

)
Π1 ∃x̄′ θ(x̄, x̄′)

is valid. Indeed, if a state is reachable from one satisfying ϕ and if the guard is still
true, then one more step of the iteration will, if it yields any state at all, yield one
reachable from (the same) one satisfying ϕ. (Hypotheses (4) and (3) on L ensure
that the assertions used here are legitimate ones.) So, by induction hypothesis,
this asserted program is deducible. By the iteration rule, we can deduce

(∃x̄′ θ(x̄, x̄′)) Π
(
∃x̄′ (θ(x̄, x̄′)) ∧ ¬guard

)
.

The sequent ϕ → ∃x̄′ θ(x̄, x̄′) is valid because, by definition of θ, the sequent
ϕ → θ(x̄, x̄) is valid. Also,

(
(∃x̄′ θ(x̄, x̄′)) ∧ ¬guard

)
→ ψ is valid because ϕ Π ψ

is. So the consequence rule allows us to infer ϕ Π ψ, as required. ✷

Corollary 4 The theorem holds if the strongest postcondition is replaced with the
profile in the definition of expressivity, provided all conjunctions of assertions are
assertions.

Proof Recall that PostΠ is the global relation

(∃x̄)[ϕ(x̄) ∧ Profile Π(x̄, v̄)].

and take into account that conjunctions and existential quantifications of assertions
are assertions. ✷

Q: It is strange that you fixed vocabularies Υ1 ⊆ Υ2 first and considered logics
second. As a result the logics are somehow bound by the fixed vocabularies.

A: This is easy to generalize. Let Υ2 be the vocabulary of all function and relation
symbols. Some of these relation symbols (or predicates) may be used in assertions,
but not in programs. Call such predicates auxiliary. Let Υ1 be Υ2 minus the
auxiliary symbols.

Q: These global Υ1,Υ2 are not restrictive, but Υ2 structures are ugly.

A: LetK be a class of structures of any vocabulary Υ ⊆ Υ2 and consider all programs
in the vocabulary Υ ∩ Υ1. The generalized Cook’s theorem remains true.

In the rest of the conversation, let us restrict attention to the case of global Υ1 ⊆
Υ2.
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7 Weak Profile Expressive Logics

Q: I began this conversation by asking about your claim, in [BG 1987], to remove
the need for expressivity hypotheses in Cook’s theorem. But the general version
of the theorem that you just showed me still assumes expressivity. Are you going
to claim that some logics make this hypothesis unnecessary?

A: Exactly. Some logics are expressive for all structures. Let’s introduce a name for
this property of logics.

Definition 5 L is profile-expressive if, for every program Π in the vocabulary Υ1,
the global relation Profile Π is expressible as an L assertion.

With this definition, the following proposition is immediate from the last corollary.
Assume that L satisfies our general requirements (1) through (5) and (in order to
reduce postconditions to profiles) that the conjunction of any two assertions is an
assertion.

Proposition 6 If L is profile-expressive then, for every vocabulary Υ and every
class K of Υ structures, the proof system HL(K) is complete for K validity.

Q: Show me one profile-expressive logic.

A: OK. We will consider the case when Υ1 = Υ2. Let EL be the existential fragment
of first-order logic. Universal quantification is forbidden in EL. To avoid sneaking
in universal quantification by means of negation and existential quantification, we
assume that the only propositional connectives of EL are negation, conjunction
and disjunction, and that negation can be applied only to atomic formulas.

Q: I do not believe that EL is profile-expressive.

A: Right. We extend EL with the transitive closure operator TC [Immerman 1998].
The resulting logic is EL+TC.

Q: How does TC work?

A: Semantically, given a binary global relation ρ(x, y) of vocabulary Υ, TC pro-
duces a new binary global relation ρ∗(x, y) of vocabulary Υ such that, on every Υ
structure A, ρ∗ is the transitive closure of ρ. (Here and in what follows, “transi-
tive closure” means what is often called the reflexive transitive closure. That is,
ρ∗(x, x) holds for all x.) Actually, TC is more general: x and y could be tuples of
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variables of the same length k, so that ρ and ρ∗ are 2k-ary (or binary on k-tuples
of elements rather than on single elements).

Syntactically, TC produces predicate expressions from formulas. By a predicate
expression we mean an expression that can be used syntactically as though it were
a predicate symbol; semantically it should therefore be interpreted as a predicate
(with possibly some built-in free variables). Let ϕ(x̄, ȳ) be a formula where, for
some k, x̄ and ȳ are k-tuples of free variables of ϕ. It is supposed that these 2k
variables are all distinct. ϕ may have additional free variables z1, . . . , zl.

TCx̄,ȳϕ(x̄, ȳ)

is a predicate expression where x̄, ȳ are bound while z1, . . . , zl are free. If s̄, t̄ are
k tuples of terms, then

[TCx̄,ȳϕ(x̄, ȳ)](s̄, t̄)

is a formula. Semantically, if ϕ (with fixed values for z1, . . . , zl) defines a binary
relation ρ on k-tuples, then TCx̄,ȳϕ(x̄, ȳ) denotes the transitive closure ρ∗ of that
relation.

EL+TC can serve as the logic L of the generalized Cook’s theorem.

Q: What are the guards and assertions in EL+TC?

A: Guards are arbitrary quantifier-free formulas, and assertions are arbitrary formu-
las. In fact, for all the logics we consider here, assertions are the same as formulas.
Sequents are, of course, arbitrary implications between assertions.

EL+TC is profile-expressive. In other words, for every while program Π(v̄), there
is an EL+TC formula π(x̄, ȳ) such that, for every Υ structure A and all states x̄, ȳ
of Π over A, we have

(x̄, ȳ) ∈ Profile A
Π ⇐⇒ A |= π(x̄, ȳ)

The proof proceeds by induction on Π. The only case where we need TC is the case
when Π is while guard(v̄) do Π1(v̄). We assume, without loss of generality, that
the variables of Π are exactly the variables of guard. By the induction hypothesis,
Profile Π1 is expressible by an EL+TC formula π1(x̄, ȳ). The Profile Π is expressible
by the formula

[
TCx̄,ȳ(π1(x̄, ȳ) ∧ guard(x̄))

]
(x̄, ȳ) ∧ ¬guard(ȳ)

Q: I guess any logic which is richer that EL+TC is also profile expressive.

A: One should be a little careful. A richer logic may have more assertions to serve
as profiles, but it may also have more guards and thus more programs in need of
profiles.
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Proposition 7 Assume that every assertion of a profile-expressive logic L1 is also
an assertion of logic L2, with the same meaning. Assume further that every L2

guard is also an L1 guard. Then L2 is profile expressive.

For example, the extension FO+TC of first-order logic with the transitive closure
operator is profile expressive, provided of course that we still take the quantifier-
free formulas as the guards.

Q: Since profile-expressivity is inherited by richer logics, one may be interested in
minimal profile-expressible logics. I guess you can get one such logic by extending
EL with the profiles of all while programs. This is ugly of course. Is there a nicer
proper sublogic of EL+TC?

A: Instead of the transitive closure operator TC, we can use a more restrictive
deterministic transitive closure operator DTC [Immerman 1998]. Given a relation
R(x, y) consider an auxiliary relation

R0(x, y) ⇀↽ R(x, y) ∧ ¬(∃z)[R(x, z) ∧ z 	= y]

The deterministic transitive closure of R is the transitive closure of R0. Here x, y
could be tuples of variables of the same length. It is easy to see that EL+DTC is
profile expressive. The point is that DTC works just like TC as long as the relation
to which it is applied is single-valued.

In fact, one can put additional restrictions on EL+TC and preserve its profile-
expressiveness. If you write out the EL+TC formulas expressing profiles of assign-
ments, compositions, and conditional statements (or if you look them up in [BG
1987, page 26]), you’ll find that existential quantification is used only in contexts
∃xϕ(x) where there is at most one x satisfying ϕ(x). So you can restrict the logic
by allowing ∃ only when it coincides with ∃!, the unique existential quantifier. (Un-
like the restriction from TC to DTC, this restriction on existential quantification
is not very familiar, but it is not entirely unheard of; see for example [Kock and
Reyes, 1977, page 292].)

Q: This is confusing. It seems that, before using an existential quantifier, you have
to somehow determine that there cannot be more than one witness. And that
could depend on the structure in which the formula is being interpreted.

A: This sort of logic is indeed unusual. One can define the notions of formula
and proof by a simultaneous induction, requiring a proof of uniqueness before an
existential quantifier can be used.

In a similar vein, the expressions for profiles use disjunction only in contexts where
at most one of the disjuncts could be true, i.e., where inclusive and exclusive
“or” coincide. Here one can get along without any complicated notion of proving
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exclusivity, because in fact disjunction is used only in contexts of the form (α ∧
guard)∨(β∧¬guard), where the syntactic form makes it obvious that the disjuncts
are mutually exclusive.

8 Existential Fixed-Point Logic

Q: Coming back again to the beginning of our conversation, I guess that existential
fixed-point logic is also profile-expressive. But please remind me what existential
fixed-point logic is.

A: Let us start at the beginning. Consider a transformation Γ sending arbitrary
subsets X of a given set S to subsets Γ(X) of S. Assume that Γ is monotone, that
is Γ(X) ⊆ Γ(Y ) whenever X ⊆ Y . Define the (transfinite) iteration of Γ by

Γ0 = ∅,
Γα+1 = Γ(Γα),
Γα =

⋃
β<α

Γβ if α is a limit ordinal

Continue the induction up to the first ordinal α with Γα = Γα+1; such an α exists
because this possibly transfinite sequence is increasing but bounded by S. The set
Γ∞ ⇀↽ Γα(X) is the least fixed point of Γ, so that Γ(Γ∞) = Γ∞ and Γ∞ ⊆ X for
every X with Γ(X) = X. (See [Moschovakis 1974, Section 1A].)

Q: What has this to do with logic?

A: Let ρ(v) be a global relation of vocabulary Υ∪ {X} where X is a unary relation.
For every Υ structure A, we have a transformation

ΓA(X) ⇀↽ {v : 〈A,X〉 |= ρA(v)}

Suppose that this transformation is monotone for every A and let FP(ρ) be the
unary global relation such that, for every Υ structure A, (FP(ρ))A is the least fixed
point of ΓA. This generalizes to the case when v is a k-tuple of variables and X is
a k-ary relation.

Q: How can you ensure that ΓA is monotone for every A?

A: There are syntactical means to guarantee monotonicity. For example, ρ can be
given by an EL or FO formula where X has only positive occurrences.

But this was a good question. Let Υ1 be the total vocabulary of the current EL
formulas. Predicates in Υ1 will be called negatable. In addition, we introduce
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auxiliary positive predicates. Let Υ2 be the extension of Υ1 with the positive pred-
icates. We modify the definition of existential logic EL. In the new EL, negation
may be applied only to atomic formulas whose predicate symbol is negatable.

Q: I am happy to see a case where Υ1 	= Υ2. But what is the point of introducing
positive predicates? To ensure monotonicity?

A: There are two points, a technical one and an intuitive one. The technical point
is to ensure monotonicity by syntactic means; you will see how it works exactly.

The intuitive point is to model the idea of incomplete information in databases.
Suppose, for example, that we have a database containing records of the form
(person, book), intended to mean that this person owns (a copy of) this book.
This database might be (intended to be) complete in the sense that it lists all
the books owned by these people. In that case, if a particular pair, say (Quisani,
Bible), is absent from the database, we would conclude that you don’t own a
Bible. On the other hand, the database might be only partial, listing some but
not necessarily all of the books the people own. In that case, it could not be used
to infer non-ownership. We would model the first situation by making ownership
a negatable predicate and the second by making it a positive predicate. In the
second case, this would exclude from our language the unverifiable statements of
non-ownership.

By the way, the definition of a homomorphism between structures in [BG 1987] also
distinguishes between negatable and positive predicates. For a negatable predicate
P , homomorphisms h : A → B must satisfy PA(a) ⇐⇒ PB(h(a)), but for a
positive predicate one requires only the forward implication. In database example,
this means that if B is obtained by adding some new records (like (Quisani, Bible))
to a database A, then the identity function from A to B is a homomorphism in
the positive situation, where the new record is additional information entirely
compatible with what was in A, but it is not a homomorphism in the negatable
situation, where the new information contradicts what was there before.

This database view of positivity and negatability will not be essential for our
present discussion; let us return to the definition of existential fixed-point logic.

Syntactically, FP produces predicate expressions from formulas. Let ϕ(X, x̄) be a
formula where X is a k-ary positive predicate and x̄ is a k-tuple of variables. ϕ
may have additional variables y1, y2, . . . , yl.

FPX,x̄ϕ(X, x̄)

is a predicate expression where the variables x̄ are bound and the predicate X
(essentially, a second-order variable) is bound as well. Variables y1, y2, . . . , yl are
free in the predicate expression. If t̄ is a k-tuple of terms, then

[FPX,x̄ϕ(X, x̄)](t̄)
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is a formula.

This gives rise to the extension EL+FP of existential logic with the least fixed-point
operator.

Q: I think I understand the syntax and semantics of EL+FP. Coming back to the
generalized Cook’s theorem, what are the guards and assertions in EL+FP.

A: Assertions are arbitrary EL+FP formulas. Guards are arbitrary quantifier-free
EL+FP formulas which do not use positive predicates. Sequents are, as always,
arbitrary implications between assertions.

Q: I suppose you’ll claim that EL+FP is profile-expressive.

A: Yes, and this will follow immediately from Proposition 7 once we know that
EL+FP includes EF+TC. And this inclusion is just a matter of expressing transi-
tive closures by means of least fixed points. This is easy; the predicate expression
TCx̄,ȳϕ(x̄, ȳ) is synonymous with FPX,x̄,ȳψ(X, x̄, ȳ) where ψ is the formula

x̄ = ȳ ∨ ∃w̄(ϕ(x̄, w̄) ∧ X(w̄, ȳ)).

In fact, EL+FP remains profile-expressive even if we enlarge the programming
language to allow parameterless procedures (going from Section 2 to Section 3 of
[Apt 1981]). This is what we showed in Section 2 of [BG 1987]. It can be deduced
that Cook’s theorem holds for this class of programs and for EL+FP assertions,
with no need for any expressivity hypothesis. And this is probably what we had
in mind when we wrote the introduction to [BG 1987].

By Proposition 7, FO+FP is also profile-expressive for the programming language
of while programs plus parameterless procedures. That result could also be in-
ferred from the information in [Harel and Peleg 1984].

Q: What’s involved in proving Cook’s theorem for EL+FP assertions and for pro-
grams in the language of while programs plus parameterless procedures?

A: Start with the proof for the case of FO assertions, under the hypothesis of ex-
pressivity, as presented for example in [Apt 1981, Section 3.8]. Look at all the
constructions of assertions used in that proof; for example, one forms the con-
junction of an assertion with some equations. Check that all these constructions
are also available in EL+FP. So the proof works for EL+FP, under the same ex-
pressivity hypothesis. Finally, eliminate the expressivity hypothesis by using the
profile-expressivity of EL+FP plus the expression, from the proof of Corollary 4,
of strongest postconditions in terms of profiles.
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A Some Decision Problems Related to
the Existential Fixed Point Logic

We discuss here several decision problems connected with existential fixed-point
logic. Two of these problems concern existential fixed-point sequents; these were
defined above as implications of the form ϕ → ψ, where ϕ and ψ are EL+FP
formulas. Recall that sequents are always interpreted as if they were preceded
by universal quantifiers on all their free variables. Thus sequents can contain, in
addition to all the constructs of EL+FP, implication and (implicitly) universal
quantification, but only at the outermost level and not nested.

Notice that EL+FP sequents are the sentences whose validity is relevant to
HEL+FP (all structures) via the Consequence Rule.

We shall consider the following three decision problems:

EL+FP formula validity Given a formula of EL+FP, decide whether it is log-
ically valid.

EL+FP sequent validity Given an EL+FP sequent, decide whether it is logi-
cally valid.

EL+FP sequent consequence Given an EL+FP sequent C and a finite set P
of EL+FP sequents, decide whether the conclusion C is a logical consequence
of the premises P .

Here logical validity and logical consequence refer to a semantics allowing arbitrary
structures, finite or infinite.

As discussed above, it is the second of these problems, EL+FP sequent validity,
that is directly relevant to Hoare logic with EL+FP pre- and post-conditions and
with arbitrary structures under consideration. The third problem, EL+FP sequent
consequence, becomes relevant if, instead of considering arbitrary structures, we
wish to limit attention to the models of some set P of EL+FP sequents. This
includes, for example, the case where we are interested only in the standard model
of arithmetic, since this model can be specified up to isomorphism by such a set
P (which we shall explicitly exhibit in one of the proofs below).

The complexity of EL+FP formula validity was already worked out in [BG 1987,
Theorem 6]; it is a complete recursively enumerable (Σ0

1) set. The following two
theorems give the corresponding complexity results, Π0

2 and Π1
1, for the other two

decision problems. We treat consequence before validity because it is a bit easier.

Theorem 8 EL+FP sequent consequence is complete Π1
1.
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Proof It was shown in [BG 1987, Theorem 9] that the inductive definitions in-
volved in the semantics of EL+FP always terminate in at most ω steps. It follows
that every EL+FP formula is equivalent to a formula of the infinitary logic Lω1,ω

that allows countable conjunctions and disjunctions. This is proved by induction
on formulas, the only non-trivial case being FPP,x̄ϕ(P, x̄, ȳ). Once the formula
ϕ(P, x̄, ȳ) has been expressed in Lω1,ω, the finite stages of the inductive definition
Γ defined by ϕ can also be expressed in Lω1,ω:

x̄ ∈ Γ0 ⇐⇒ false, x̄ ∈ Γn+1 ⇐⇒ ϕ(Γn, x̄, ȳ),

And then stage ω is expressible by an infinite disjunction

x̄ ∈ Γω ⇐⇒ ∨
n∈ω

x̄ ∈ Γn.

Once we have translated all EL+FP formulas into Lω1,ω, we can obviously do the
same for EL+FP sequents. Then we can apply the downward Löwenheim-Skolem
theorem for Lω1,ω, given in [Keisler 1971, Chapter 5, Problem 1], to conclude
that the decision problem EL+FP sequent consequence is unchanged if, instead of
considering arbitrary structures, we consider only countable ones.

Therefore, we may confine our attention to structures whose domain is either the
set N of natural numbers or a finite initial segment of N . For such structures, the
satisfaction relation for EL+FP formulas is clearly (uniformly) recursively enu-
merable relative to the basic functions and relations of the structure. (This means
that there is a single algorithm for enumerating the pairs (formula, values for vari-
ables) that are satisfied; the algorithm uses the basic functions and relations of
the structure as oracles. The construction of such an algorithm is by induction on
formulas.) That C is a logical consequence of P is expressible as “for all relations
and functions on N (to interpret the symbols of the vocabulary of C and P), if
all the sentences in P are satisfied (by the empty assignment), then so is C,” and
this is clearly Π1

1. (This argument would have worked even if, instead of knowing
that satisfaction is recursively enumerable, we merely knew that it is arithmetical,
or even just hyperarithmetical.)

It remains to show that the decision problem EL+FP sequent consequence is Π1
1-

hard. The main ingredient in this proof is the observation that the standard model
of arithmetic, together with any finitely many primitive recursive functions, can
be characterized up to isomorphism by a finite set of EL+FP sequents. The fol-
lowing sequents characterize (N, 0, S) up to isomorphism, where S is the successor
operation S(x) = x+ 1.

0 = S(x) → false

S(x) = S(y) → x = y

true → [FPP,y y = 0 ∨ ∃z (P (z) ∧ y = S(z))](x).
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To include finitely many primitive recursive functions in the characterization, sim-
ply add the defining equations of the desired functions as well as any auxiliary
functions used in defining them. (Officially, these equations should be written as
sequents by prefixing “true →.”)

Now any Π1
1 predicate Q of natural numbers can be expressed in the form

Q(m) ⇐⇒ (∀f : N → N)(∃n)X(m, f |(n))
where f |(n) codes 〈f(0), . . . , f(n− 1)〉 in some standard, primitive recursive, cod-
ing scheme, and where X is primitive recursive. Let P consist of the sequents
characterizing the standard model of arithmetic with X and the coding scheme.
Then Q(m) holds if and only if the following sequent is a logical consequence of
P ; it uses a new function symbol g intended to be f |.

true → ∃nX(m̄, g(n)) ∨ ∃n g(S(n)) 	= g(n)�(g(S(n)))n ∨ g(0) 	= 〈〉.
Here m̄ means the standard numeral for m, obtained by applying S to 0 m times.
The � and (−)n refer to the concatenation and component extraction operations of
the coding scheme, and 〈〉 means the code for the empty sequence. (We ordinarily
take equality to be a negatable predicate, so the 	=’s in the sequent above are
legitimate. But the argument would work even if equality were positive, since we
could include in P the defining equations for the primitive recursive characteristic
function of 	=.) In the sequent exhibited above, the second and third disjuncts
simply say that g is not of the form f | for any f ; thus, the sequent is a consequence
of P if and only if, in every isomorphic copy of N with the appropriate primitive
recursive functions, and for every g of the form f |, some n satisfies X(m̄, f |(n)).
But this is precisely what Q(m) means.

Thus, an arbitrary Π1
1 predicate Q is Turing reducible (in fact, one-one reducible)

to EL+FP sequent consequence. ✷

Theorem 9 EL+FP sequent validity is complete Π0
2.

Proof We begin by proving that the decision problem EL+FP sequent validity
is Π0

2-hard. It will be convenient to abbreviate as Num(x) the following EL+FP
formula:

[FPP,y y = 0 ∨ ∃z (P (z) ∧ y = S(z))](x).

The idea is that, in any structure for a vocabulary containing 0 and S, if the
interpretation of S is a one-to-one function whose range doesn’t contain the inter-
pretation of 0, then Num defines a copy of (N, 0, S) within that structure.

Consider now an arbitrary Π0
2 predicate Q of natural numbers. It can be written

as
Q(m) ⇐⇒ ∀p ∃q X(m, p, q)
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for some primitive recursive X. Then, for any m, Q(m) holds if and only if the
following EL+FP sequent is logically valid.

∀p [Num(p) → ∃q (Num(q) ∧ X(m̄, p, q)) ∨
∃x (Num(x) ∧ 0 = S(x)) ∨
∃x∃y (Num(x) ∧ Num(y) ∧ S(x) = S(y) ∧ x 	= y) ∨
. . .].

Here as before m̄ is the standard numeral for m. The final . . . in the sequent
represents a list of disjuncts saying that the defining equation of some primitive
recursive function is violated by some element satisfying Num; we include one such
disjunct for every step in the construction of (the characteristic function of) X as a
primitive recursive function. Thus, all the disjuncts except the first serve to make
the sequent true in all “bad” models, those where Num is not a copy of N or where
a primitive recursive function is interpreted incorrectly. It follows that the sequent
is valid if and only if

∀p [Num(p) → ∃q (Num(q) ∧ X(m̄, p, q))]

holds in all good structures, i.e., if and only if ∀p∃q X(m, p, q) holds in N .

We thus have a Turing reduction (in fact a one-one reduction) from the predicate
Q to EL+FP sequent validity. This completes the proof that EL+FP sequent
validity is Π0

2-hard; it remains to prove that it is in Π0
2.

Consider an arbitrary EL+FP sequent, ϕ → ψ. As far as validity of this sequent
is concerned, nothing changes if we replace all free variables by new, distinct con-
stants throughout ϕ → ψ. So, without loss of generality, neither ϕ nor ψ has any
free variables.

Also, by [BG 1987, Theorem 5], we can put ψ in strict ∀1
1 form, i.e., a block

of universal second-order quantifiers on relations (not functions) followed by an
existential first-order formula. Then, without affecting validity, we can delete the
universal second-order quantifiers. So, without loss of generality, ψ is an existential
first-order formula.

Now consider what it would mean for our sequent ϕ → ψ not to be valid. We would
have a model A satisfying ϕ ∧ ¬ψ. Temporarily concentrate on the fact that A
satisfies ϕ. Proceeding as in the proof of [BG 1987, Theorem 7], we obtain finitely
many quantifier-free formulas, called ¬θ(bi) in that proof, such that these formulas
are not simultaneously satisfiable in the propositional sense. These ¬θ(bi) were
obtained using certain facts from the quantifier-free diagram of A (to eliminate
atomic subformulas of θ that start with predicate symbols from the vocabulary of
A, leaving only predicate symbols quantified in the strict ∀1

1 form of ϕ). The truth
of these finitely many facts in A thus ensures the truth of ϕ. (In [BG 1987], this
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led to a finite substructure of A in which all these facts were already present; for
the present discussion we need the facts themselves, not the substructure.)

Whether a particular finite set of quantifier-free sentences ensures (in the sense
above) the truth of ϕ is easily seen to be recursively verifiable, i.e., “ensures” is
a recursively enumerable relation. (The verification consists of trying all possible
bi.)

So far, we have seen that, if ϕ → ψ isn’t valid, then there is a finite set Φ of facts,
ensuring ϕ, such that some A satisfies Φ but not the existential sentence ψ.

Starting with the names mentioned in Φ (or with one constant symbol if there are
no such names), try to build an Herbrand model for Φ and ¬ψ. This amounts to
assigning truth values, consistent with Φ, to all atomic formulas built from those
names. There is a model of Φ and ¬ψ if and only if (there is an Herbrand model
if and only if) Φ and all instances of the universal sentence ¬ψ are propositionally
consistent. By compactness, this consistency amounts to consistency of every finite
subset. Thus, ϕ → ψ is not valid if and only if there exists a finite set Φ that ensures
ϕ, such that every finite set of instances of ¬ψ is propositionally consistent with
Φ.

This criterion for non-validity is Σ0
2. It begins with an unbounded existential

quantifier “there exists Φ” which is essentially over numbers since finite sets Φ
of formulas can be replaced by their Gödel numbers. It continues with another
existential number quantifier in “ensures,” which we saw is recursively enumerable.
Then there is a universal number quantifier “every finite set of instances of ¬ψ,”
and everything else is recursive.

Finally, taking negations, we find that validity of ϕ → ψ is Π0
2, as required. ✷

References

Apt 1981 Krzysztof R. Apt, “Ten years of Hoare’s logic: A survey — Part 1”,
ACM Transactions on Programming Languages and Systems 3:4 (October
1981), 431–483.

BG 1987 Andreas Blass and Yuri Gurevich, “Existential fixed-point logic”, In
“Logic and Complexity” (ed. E. Börger), Springer Lecture Notes in Com-
puter Science 270 (1987), 20–36.

Cook 1978 S. A. Cook, “Soundness and completeness of an axiom system for
program verification”, SIAM Journal of Computing 7:1 (1978), 70–90.

Ebbinghaus and Flum 1995 Heinz-Dieter Ebbinghaus and Jörg Flum, “Finite
Model Theory”, Springer-Verlag 1995.

28



Enderton 1977 Herbert B. Enderton, “Elements of recursion theory,” in J. Bar-
wise, editor, “Handbook of Mathematical Logic,” Studies in Logic and Foun-
dations of Mathematics 90, North-Holland (1977), 527–566.

Gurevich 1984 Yuri Gurevich, “Toward logic tailored for computational com-
plexity”, in M. Richter et al., editors, “Computation and Proof Theory”
(Logic Colloquium 1983), Springer Lecture Notes in Math. 1104 (1984),
175–216.

Harel and Peleg 1984 David Harel and David Peleg, “On static logics, dynamic
logics, and complexity classes”, Information and Control 60 (1987), no. 1–3,
pp. 86–102.

Hoare 1969 C. A. R. Hoare, “An axiomatic basis for computer programming”,
Communications of ACM 12:10 (October 1969), 576–580, 583.

Immerman 1998 Neil Immerman, “ Descriptive Complexity” (Graduate Texts
in Computer Science), Springer-Verlag, 1998.

Keisler 1971 H. Jerome Keisler, “Model Theory for Infinitary Logic,” Studies in
Logic and the Foundations of Mathematics, vol. 62, North-Holland, 1971.

Kock and Reyes 1977 Anders Kock and Gonzalo Reyes, “Doctrines in categor-
ical logic,” in J. Barwise, editor, “Handbook of Mathematical Logic,” Studies
in Logic and Foundations of Mathematics 90, North-Holland (1977), 283–313.

Moschovakis 1974 Yiannis Moschovakis, “Elementary Induction on Abstract
Structures,” Studies in Logic and the Foundations of Mathematics 77, North-
Holland 1974.

Rogers 1967 Hartley Rogers, “Theory of Recursive Functions and Effective Com-
putability”, McGraw-Hill, New York, 1967.

29


