
Partially Ordered Runs: a Case Study

Yuri Gurevich1 and Dean Rosenzweig2

Microsoft Research, USA
gurevich@microsoft.com and University of Zagreb, Croatia

dean@math.hr

Abstract. We look at some sources of insecurity and difficulty in rea-
soning about partially ordered runs of distributed ASMs, and propose
some techniques to facilitate such reasoning. As a case study, we prove
in detail correctness and deadlock–freedom for general partially ordered
runs of distributed ASM models of Lamport’s Bakery Algorithm.

Introduction

Distributed ASMs [Gur95] is a general concurrent model of multi–agent compu-
tation. It was intended, in generalization of its more limited precursors [GM90,GR93],
to allow as much concurrency as logically possible. Although the definition has
been in print for several years, its notion of partially ordered runs has remained
largely unexploited in its generality—most of its uses in the literature have re-
coursed to some kind of specialization to linear time, discrete or continuous.
The general partially ordered runs seem to be somehow difficult to handle and
to reason about 1.

Apart from deeply engrained intuitions of linear time, we feel that some
rather technical sources of this difficulty can be detected.

Sequential runs [Gur95] have two properties which greatly facilitate reason-
ing.

1. Every move is executed in a well–defined state.
2. ‘External’ (or ‘monitored’, cf. below) changes can be located in time, and

thought of as actions by the environment. The environment thus becomes
just another (typically implicit) agent, whose behaviour can be specified in
declarative terms. The judicious splitting of dynamics to a part given by the
program and a part that can be specified declaratively is a natural way to
separate concerns and to abstract in ASMs.

In a partially ordered run neither of the above properties hold in general—a
(global) state in which a move is executed is in general not uniquely defined,
and it is not at all clear how to locate external changes in a partial order. These
1 This remark is not limited to the ASM context—most formal methods modelling
concurrency tend to fall back, one way or another, to some kind of interleaving,
sequential semantics



seem to be important sources of insecurity and difficulty in reasoning about
partially ordered runs.

We address both issues here, by developing some techniques to salvage as
much of properties 1. and 2. as needed for partially ordered runs. In order to
convince the reader that, with such means, nontrivial reasoning about partially
ordered runs is feasible, we do it: as a case study, we apply the techniques to a
nontrivial correctness proof. The case study also demonstrates that the proper
setting for analysis of concurrent algorithms involves truly concurrent runs—
mapping to linear time may well miss some important points.

In section 2 we deduce some simple consequences of the coherence condition
of [Gur95], providing sufficient conditions for moves in a distributed run to have
at least a significant portion of state well–defined when they execute. This largely
reconstructs property 1. for partially ordered runs of many distributed programs.

In the same section we introduce ‘external change’ in form of ‘monitored’
moves, by unknown agents with unknown programs, located exactly in the par-
tial order. This is an extension of the standard practice (of having ‘the envi-
ronment’ as a single, typically implicit, unknown agent) reconstructing largely
property 2. for partially ordered runs.

In the rest of the paper we explain a nontrivial correctness proof for partially
ordered runs: we prove in detail correctness and deadlock–freedom of (distributed
ASM models of) Lamport’s Bakery Algorithm [Lam74]. We proceed on three
different abstraction levels there. The abstraction level of our primary model,
B1, corresponds precisely to that of Lamport’s algorithm—the part specified
declaratively is exactly what Lamport’s algorithm doesn’t define. A higher level
description, of the model B2, allows us to deduce correctness and deadlock–
freedom from abstract properties, shown to hold of B1. A lower level description,
of the model B0, is an ASM shown to implement programatically exactly all
behaviours allowed by B1.

Egon Börger and we wrote about the Bakery Algoirithm earlier; see [BGR95]
where a correctness proof was given for ASM models of the Bakery Algorithm
with runs embedded in continuous linear time. Our new models and proofs are
similar to those of [BGR95], but they are also different. The proofs of [BGR95]
rely essentially on continuous linear time. As we will see later (see section 7),
certain information about partially ordered runs is obfuscated in linear runs.
Here we remove the linear time crutches and work directly with partially ordered
runs. As in [BGR95], we borrow ideas from [Lam74] and [Abr93]. In order for
the paper to be reasonably self–contained we spell the entire construction out in
full.

1 Preliminaries

We presume that the reader is familiar with [Gur95]. Consider a one-agent pro-
gram π and let f be a basic function of π which is dynamic so that the values of
f can change in runs of π. Egon Börger suggested to use for ASMs the following
terminology borrowed from Parnas. f is controlled if only π can change it. f is



monitored if only the environment can change it. f is shared if both π and the
environment can change it. (In [Gur95], controlled functions were called internal,
and monitored functions were called external.)

The terminology extends naturally to a multi-agent program Π. Let X be
a set of agents of Π. A dynamic basic function f is controlled by X if only
agents in X can change it. f is monitored by X if none of the agents in X can
change it. The terminology also extends to particular locations rather than whole
functions.

2 Partially Ordered Runs

We rely on the notion of partially ordered run of [Gur95].
This means that we shall consider partially ordered sets of moves with the

‘finite history’ property: {y : y < x} is finite for all x (we shall refer to the
ordering relation by <, using also ≤, >,≥). Each move is performed by an agent
and, since agents are sequential, moves by one agent form a sequence; since there
are finitely many agents, all antichains are finite.

A (global) state σ(I) is associated with every finite initial segment I (a
downwards closed finite subset) of a run, resulting from performing all moves in
I so that if s < t then s is executed earlier than t. In particular, if I is the empty
segment then σ(I) is the initial state of the run.

Using a partial order implies that moves s, t may be concurrent, i.e. incom-
parable: neither s ≤ t nor t ≤ s holds. The global state ‘resulting’ from a move
is then in general not uniquely determined. It depends on what global state we
see as the one in which the move is performed. Thus states are subject to a
coherence condition [Gur95], which allows us to give the following definitions.

Let Post(t) be the set of all finite initial segments in which a move t is
maximal, and let a be the agent performing t. For each I ∈ Post(t), the state
σ(I) is the state obtained when a executes its program in the state σ(I \ {t})

‘The global state’ in which a move is performed is also not in general uniquely
defined. Let Pre(t) = {I \ {t} : I ∈ Post(t)}. Several different states are thus in
general associated with Pre(t), which makes reasoning about partially ordered
runs somewhat difficult. The coherence condition may however, as we shall see
below, impose that some term has a unique value at all states I ∈ Pre(t).

In order to express such requirements succinctly, we extend term valuation
from states to some statesets, saying that

ValPre(t)(u) =
{
c if ∀I ∈ Pre(t) (c = Valσ(I)(u))
undef if no such value exists

where t is a move in a distributed run, ValS(u) is the value of term u in state S,
[Gur95]. We shall often shorten ValPre(t)(u) to uPre(t). When the value of uPre(t)
is given by the first clause, i.e. when there is a c such that ∀I ∈ Pre(t) (c =
Valσ(I)(u)), we shall say that uPre(t) is indisputable (or that its value is indis-
putable). Notice that an indisputable value may also be undef, but whenever
uPre(t) 	= undef then its value is indisputable.

For future reference, let us note some immediate properties of Pre(t).



Fact 1. Let t be a move in a partially ordered run. The set Pre(t) has the fol-
lowing properties.

1. Pre(t) has a minimal element minPre(t) = {s : s < t} and a maximal
element maxPre(t) = {s : s 	≥ t}.

2. Pre(t) is the set of all initial segments I such that minPre(t) ⊆ I ⊆ maxPre(t),
and is hence closed under unions and intersections.

3. Let s be another move. The following are equivalent:
(a) s is concurrent with t.
(b) minPre(s) ∪ minPre(t) is an initial segment that belongs to Pre(s) ∩

Pre(t).
(c) Pre(s) ∩ Pre(t) 	= ∅.
(d) There exist I, J ∈ Pre(t) with s ∈ I \ J .
Statement 3 may need an argument. We prove that (a) implies (b) implies

(c) implies (d) implies (a).
(a) implies (b). Assume that s is concurrent with t and let I = minPre(s) ∪

minPre(t). Clearly I is an initial segment. Check that minPre(t) ⊆ I ⊆ maxPre(t),
so that I ∈ Pre(t). By symmetry, I ∈ Pre(s).

(b) implies (c). Trivial.
(c) implies (d). Assume that Pre(s) ∩ Pre(t) 	= ∅ and let J be any member

of Pre(s) ∩ Pre(t). Set I = J ∪ {s}. Clearly, I ∈ Pre(t).
(d) implies (a). Suppose that I, J ∈ Pre(t) and s ∈ I \ J . If s < t then

s ∈ minPre(t) ⊆ J so that s ∈ J which is impossible. The dual argument shows
that s > t is impossible as well.

We shall say that a move t (in a given partially ordered run) may change
the value of term u if, for some I ∈ Pre(t), we have Valσ(I)(u) 	= Valσ(I∪{t})(u)
(equivalently, if t changes the value of u in some linearization of the run). If the
above holds for all I ∈ Pre(t) (equivalently, if t changes the value of u in all
linearizations), we shall say that t must change the value of u.

Recall that a linearization of a partially ordered run is a run with the same
moves, and a linear order extending the given partial order. It was noted in
[Gur95] that, in view of the coherence condition, all linearizations of a finite run
have the same final state.

Example 1. Take for instance two agents a, b, such that a executes the program

x := 1

and b executes the program

if mode = first then
mode := second
y := 1

endif
if mode = second then

y := max(x,y)+1
mode := final

endif



Now assume that x = y = 0, mode = first initially and consider a run with a
move s of a, concurrent with two consecutive moves t1, t2 of b. Then both s and
t1 may but not must change the value of max(x, y), while t2 must change it.

In these terms, we have

Lemma 1. If uPre(t) is not indisputable, then there is a move s concurrent with
t which may change u.

Proof. Assume the conclusion is false, that no move concurent with t may
change u. To go from σ(minPre(t)) to σ(I), by Fact 1, we have to execute only
some moves concurrent to t, none of which may change u. Thus Valσ(I)(u) =
Valσ(minPre(t))(u) for all I ∈ Pre(t), and uPre(t) is indisputable, in contradiction
to the premise. ��
Lemma 2. If there is move s concurrent with t which must change u, then
uPre(t) is not indisputable.

Proof. Since s, t are concurrent, by Fact 1 there is an initial segment I ∈ Pre(s)∩
Pre(t). Then both I and I ∪ {s} are in Pre(t), and, since s must change u, they
have different values of u. ��

We shall say that a term u is focused (in a given run) if any move which may
change its value, also must change it. For a focused term u it is unambiguous
to say that a move changes the value of u. In many cases the property of being
focused will be obvious from the programs. Here we will also use the following
lemma.

Lemma 3. If the value of a term may only be changed by a single agent, then
the term is focused.

Proof. Suppose that u may be changed only by agent a and that t is a move
by a. It suffices to show that uPre(t) is indisputable, since then uPost(t) is also
indisputable, and is different from uPre(t) iff t changes u. To see that uPre(t)
is indisputable, note that the agents involved in all moves concurrent to t are
different from a, and by the premise none of them may change u. Then by lemma
1 uPre(t) is indisputable. ��
Putting the above lemmata together, we have

Fact 2. If term u is focused, then uPre(t) is indisputable iff t compares, in the
given partial order, with all moves changing the value of u.

The above example shows that the assumption of focus cannot be dropped for
one direction of fact 2: max(x, y)Pre(t2) is indisputably 1, and t2 is concurrent to
s, which may change the value. The nice property that every location is changed
by one agent only does not help with the term max(x, y). Note also that fact 2
is useful for ‘counter’ updates like c := c+ 1; if c is changed only in such a way,
even concurrently, then it is focused.



Fact 3. If the values of uPre(t) and uPre(s) are both indisputable but different,
then s < t or t < s.

Proof. Assume uPre(t) and uPre(s) are both indisputable, and s and t are con-
current. Then there is an initial segment I ∈ Pre(s) ∩ Pre(t), and uPre(s) =
Valσ(I)(u) = uPre(t). ��

A novelty of this paper is in allowing a run of a multi-agent program Π
to have ‘monitored moves’, that is moves of unknown agents. We have some
known agents with known programs. The moves of these agents are by definition
controlled.

In addition, there may be some number of unknown agents whose programs
are unknown as well. Their moves are by definition monitored.

A dynamic function of Π, or a location, will be called controlled if it is
controlled by the known agents.

It will be called monitored if it is monitored by the known agents.
The presence of unknown agents is consistent with [Gur95], even though the

standard practice has been so far to assume that all explicit moves belong to
known agents with known programs, though the active environment could make
some implicit moves.

The moves by the environment now become explicit, and the unique moni-
tored agent of standard practice, ‘the environment’, is now allowed to split to a
number of possibly different, unknown agents.

The total number of agents involved in any given state is still finite. The
coherence condition applies to all moves, controlled or monitored (even though
we may have no direct way to verify instances of the coherence condition that
involve monitored moves). Therefore facts 2 and 3 remain valid.

The presence of monitored moves allows us to separate concerns and to ab-
stract. Parts of the algorithm can be formulated in form of more or less declar-
ative statements about monitored moves in runs (which blurs to an extent the
distinction between the algorithm and its environment).

3 Lamport’s Algorithm

For arbitrary but fixed N let P1, . . . , PN be processes (we shall also talk about
‘customers’) that may want from time to time to access a ‘critical section’ CS
of code. Any mutual exclusion protocol—which each Pi is supposed to execute
in order to enter the critical section—has to prevent two processes from being
in the critical section simultaneously. The Bakery Algorithm provides each Pi

with a (shared) register Ri and a (private) array n[1], . . . , n[N ] holding natural
numbers. Only Pi is allowed to write to Ri but every process can read the
register. We assume each register to be initialized with value 0.

The algorithm was presented by Lamport with the following piece of pseu-
docode.



Start

n[i] := 1
write(Ri,n[i])

Doorway

for all j 	=i, read(Rj,n[j])

Ticket

n[i] := 1 + maxjn[j]
write(Ri,n[i])

Wait

for all j 	=i, repeat
read(Rj,n[j]) until
n[j]=0 or n[j]>n[i] or (n[j]=n[i] and j>i)

Critical Section
Finale

Ri := 0

The Bakery Algorithm is divided into six consecutive phases: start , doorway ,
ticket assignment, wait section, critical section and finale.

To declare its interest in accessing the critical session, a process Pi writes 1
into array variable ni and then posts the written value in its register.

In the doorway section, Pi copies all the other registers into its array. It
then computes a ticket , which is the least integer greater than all integers in its
private array, writes the ticket into ni and posts the written value in its register.

During the subsequent wait section, process Pi keeps reading, into its array,
the registers of each other process Pj , until the resulting array value n[j] = 0 or
n[j] > n[i] or n[j] = n[i] ∧ j > i.

The meaning of the condition is the following: if n[j] = 0, then Pj is not
interested in entering the critical section, and it has no right to block Pi. If
n[j] > n[i] > 0, then Pi has a smaller ‘ticket’ and has the right to go before Pj .
The last clause resolves the case of two customers obtaining the same ‘ticket’:
then one with smaller identifier goes first. Note that by ordering pairs of positive
integers lexicographically:

(i, j) < (k, l)←→ [i < k or (i = k and j < l)]

one can write the until condition as follows: n[j]=0 or (n[j],j)>(n[i],i).
Once permitted to go, Pi enters the critical section. Upon leaving CS, as

finale, Pi sets its register to 0.
Note also that the for-all commands in the doorway and the wait section may

be executed in many ways, in various sequences, all at once, concurrently etc.
It may be worth mentioning the following. The process first writes into n[i]

and then posts the written value at Ri. Obviously it could do the two actions in
the reverse order. Intuitively, the order between the two actions is immaterial,
but the sequential character of the pseudo-code imposes one.



4 The Primary Model: ASM B1

The doorway section in Lamport’s program does not give us any indication how
customer i is supposed to perform reading. Should it read the registers Rj in
the order given by the indices, in the reversed order? Should it get help and use
vassal agents, one per each Rj ? There are many other possibilities. To reflect the
situation in proper generality, our primary ASM model B1 includes no reading
instructions whatsoever. Instead, we will require that runs of B1 satisfy certain
provisos that guarantee that reading is performed.

4.1 The Program of B1

The ASM has only one program, used by all customers, which has five rules. The
array A(X,Y ) represents the array n[Y ] of the program, private to customer X.
We assume that initially all registers have value 0, all customers are in mode
satisfied, and all elements of the array A(X,Y ) are undef. We assume that the
identifiers of the N customers are distinct natural numbers < N . Variables X,Y
will range over customers.

Start
if mode(me) = satisfied then

A(me,me) := 1, R(me) := 1, mode(me) := doorway

Ticket

if mode(me) = doorway and ∀Y 	= me (A(me,Y) 	= undef) then
A(me,me) := 1 + maxY A(me,Y), R(me) := 1 + maxY A(me,Y)
mode(me) := wait

Entry

if mode(me) = wait and
∀ Y 	= me (A(me,Y)=0 or (A(me,Y),id(Y)) > (A(me,me),id(me))) then

mode(me) := CS

Exit

if mode(me) = CS then
mode(me) := done

Finale

if mode(me) = done then
R(me) := 0, mode(me) := satisfied
∀ Y 	= me A(me,Y) := undef



4.2 Semantics of B1

We would like to assume that, in any mode different from Satisfied, no customer
stalls forever; eventually it makes a move (provided a move is continuously en-
abled from some time on).

Since in ASMs we have no explicit notion of a move (or program) being
enabled, and in partially ordered runs we have no explicit notion of time, both
‘enabled’ and ‘continuously from some time on’ need definitions.

There are two obvious candidates for the notion of a program being enabled
in a state. One is based on the intuition that a program is enabled if it ‘gets
down to updates’, i.e. if in the given state it generates a nonempty set of updates.
The other possibility is that it really changes the state, i.e. that the updateset is
nonempty and also nontrivial. We are happy to sidestep the issue here, since for
all programs of this paper the two notions will coincide—whenever a nonemtpy
set of updates is generated, it will also be nontrivial. Thus we can say that a
program is enabled in state σ if it produces a nonempty set of updates in σ.

We say that an agent X stalls forever in a run if (a) X has a last move, say
t, and (b) after t a move by X (the program of X) is eventually always enabled
(in all σ(J) for J ⊇ I, for some initial segment I � t).

We thus assume

Progress Proviso. No customer, in mode other than Satisfied, stalls forever.

We consider the runs of B1 containing enabled moves by customers executing
their programs, subject to the Progress Proviso, and also some monitored moves.
Our entire knowledge about monitored moves will be encapsulated in explicit
requirements D, W1, W2 below.

We now define intervals characterized by the successive executions, by a
process X, of its rules Start, Ticket, Entry, Exit, Finale (also in a partial order we
refer to open intervals (a, b) = {x : a < x < b}).

Definition 1. Suppose a is the move of X executing Start rule, and b is the
next move by X (which has to execute the Ticket rule).

Then the interval x = (a, b) is a doorway of X, and a = Start(x), b =
Ticket(x). If b is the last execution of X then the wait interval W (x) = {t : t > b}
is incomplete and the CS interval CS(x) is undefined. Suppose that c is the next
move of X after b (necessarily executing Entry rule), d is the next move of X after
c (necessarily executing Exit rule), and e is the next move of X after d (necessar-
ily executing Finale rule). Then W (x) = (b, c) and CS(x) = (c, d), c = Entry(x),
d = Exit(x), e = Finale(x).

By Progress Proviso and requirement D below, every doorway is complete,
i.e. each execution of Start is followed by execution of Ticket. So is every crit-
ical section, i.e. each execution of Entry is followed by executions of Exit (and
subsequently Finale).



The program of customer X writes to locations mode(X), R(X), A(X,Y )2,
where locations A(X,Y ) with Y 	= X are only cleaned up (that is set to undef)
by X (in Finale) and somebody else writes more meaningful information into
these locations.

Our program covers all but the reading actions. Since our definitions do not
allow ‘partially known programs’, i.e. a controlled agent can do no more than
what his program instructs him to do, more meaningful values have to be written
there by the environment, i.e. by somebody else.

We assume that locations mode(X), R(X), A(X,X) are also controlled by X,
i.e. that no other (known or unknown) agent may write there. This is justified
by Lamport’s algorithm: other customers, as well as the environment, have no
business writing to mode(X), R(X), A(X,X).

This assumption implies that R(Y ) is focused, for all customers Y , and, by
the program and fact 2, for all moves t in a run of B1,

Corollary 1. R(Y )Pre(t) is indisputable iff t compares to all Start,Ticket and
Finale moves of Y.

To avoid repetitive case distinctions for customers which (being satisfied)
have register 0, and of customers which happen to receive the same ticket, we
introduce the following notation. If f is a function from customers to natural
numbers, let

f ′(X) =
{
N · f(X) + id(X), if f(X) > 0;
∞, otherwise.

Let X,Y range over customers, and x, y over doorways of customers X,Y
respectively.

We abbreviate 1 + maxY A(X,Y )Pre(Ticket(x)) as T (x).
The declarative requirements, saying what reads need be done, are then (with

x being an arbitrary doorway of customer X)

D Each execution of Start by X completes to a doorway x. For each x, for each
Y 	= X there is a move b ∈ x, such that A(X,Y )Pre(Ticket(x)) = R(Y )Pre(b)
(thus T (x) > R(Y )Pre(b) 	= undef).

W1 If W (x) is complete, then for each Y 	= X there is a move b ∈ W (x), such
that R(Y )Pre(b) = A(X,Y )Pre(Entry(x)) (thus T ′(x) < R′(Y )Pre(b) 	= undef).

W2 If W (x) is incomplete, then for some Y 	= X there is an infinite chain
b1 < b2 < · · · of moves in W (x), such that, for each n, R′(Y )Pre(bn) < T ′(x)
(thus also R(Y )Pre(bn) 	= undef).

D tells us that the value of R(Y ), appearing in the array at Ticket(x), is
read in x. W1 says that a permission to go is obtained by executing, for each
Y , a successful read in W (x), while W2 tells us that X may be prevented from
2 by [Gur95] the official notation for these locations is (mode, X), (R, X), (A, (X, Y ));
since in the simple cases occurring in this paper, no ambiguity may arise, we shall
use the applicative term notation as above also for locations.



going only by executing, for some Y 	= X, an infinite sequence of unsuccessful
reads in W (x), where a read b ∈ W (x) from R(Y ) on behalf of X is successful
if R′(Y )Pre(b) > T ′(x). It turns out that D, W1 and W2 is all that we need to
know about reading actions in order to prove correctness and deadlock–freedom
of B1.

Requirements D and W1 say that, for each Y , there is a move b(Y ) in x,
respectively W (x), having some property. Remark that, without loss of general-
ity, we can assume that these moves b(Y ) are all distinct. Suppose namely that,
in D or W1, we have b = b(Y1) = · · · = b(Yk). Then we can replace b with k
distinct monitored moves which, in the partial order, follow and precede exactly
the same moves as b does. It is easy to see that this replacement leaves us with
a legitimate run, with exactly the same partial order of customers’ moves. A
remark of the same kind applies also to sequences of moves claimed by W3, but
we shall not need that case.

The reader familiar with [BGR95] might notice that, what in similar re-
quirements there were temporal conditions on some monitored locations, takes
here (and in the next section) the shape of conditions on behaviour of unknown
agents. The role of some time moments in proofs of [BGR95] thus turns out to
be that of place holders for monitored moves.

5 Correctness and Deadlock–Freedom: The ASM B2

We define an ASM expressing a ‘higher level’ view of the Bakery Algorithm,
similar to B1 but with the array abstracted away. The relevant datum to be
described abstractly is the ticket assigned to a customer X (and written into
its register R(X)) when X leaves the doorway and enters the wait section. We
introduce for this purpose two monitored functions, boolean valued Ready and
integer valued T , expressing, respectively, readiness of the ticket and its value.

The relevant moment to be analyzed is the moment at which a process with
a ticket is allowed to enter the critical section. This ‘permission to go’ will also
be represented by a monitored function, Go.

We will impose requirements on the environment and monitored moves, re-
sponsible for the values of Ready, T and Go, which will be shown to guarantee
the correctness and deadlock–freedom of the higher level ASM B2. We will then
show that these requirements are correctly implemented in B1.

5.1 The Program of B2

Start

if mode(me) = satisfied then
R(me) := 1, mode(me) := doorway



Ticket

if mode(me) = doorway and Ready(me) then
R(me) := T(me), mode(me) := wait

Entry

if mode(me) = wait and Go(me) then
mode(me) := CS

Exit

if mode(me) = CS then
mode(me) := done

Finale

if mode(me) = done then
mode(me) := satisfied, R(me) := 0

5.2 Semantics of B2

The ASM B2 is similar to that of B1 except for the fact that the array is gone.
In particular we assume the Progress Proviso (for known agents, i.e. customers).
The role of the array is taken over by three monitored functions, Ready, T
and Go. Looking at B1, Ready(X) and T (X) can be seen as standing for the
abbreviations used there, while Go(X) can be interpreted as the guard of the
Entry rule, ∀Y 	= X(A(X,Y ) = 0 or (A(X,Y ), id(Y )) > (A(X,X), id(X))).

The ASM B2 provides however no means to compute Ready, T and Go.
Our first requirement says that every interested customer eventually obtains

his ticket:

C0 Each execution of Start, by a customer X, completes to a doorway x. For
each x the value T (X)Pre(Ticket(x)) is indisputable.

The indisputable value of T (X)Pre(Ticket(x)) will be, like before, denoted by
T (x). In order to express the rest of our conditions on the array in terms of T
and Go, we need some additional notation and terminology.

For open intervals in a partial order we also use (a, b) < (c, d) if b ≤ c,
and say that the two intervals are concurrent if neither b ≤ c nor d ≤ a. Note
that concurrency does not necessarily imply overlap, i.e. existence of common
elements; it in general just allows it.3

Sometimes we shall also compare elements with intervals: c < (a, b) if c ≤ a,
likewise for >.

This ordering will help us to formalize the idea that tickets increase together
with doorways (see C2 below). This should also apply in a way to concurrent
3 Note however that, if intervals are interpreted as intervals on the partial order of
initial segments, with (a, b) containing all segments containing a but not b, then
concurrent intervals indeed overlap.



doorways; these are ordered by the following relation ≺, borrowed from its linear
order analog of [Abr93].

Let X 	= Y , and let x, y range over doorways of X,Y respectively.

Definition 2. x✁y if x and y are concurrent and T ′(x) < T ′(y). Further, x ≺ y
if x ✁ y or x < y.

Lemma 4. x ≺ y or y ≺ x.

Proof. Note that T ′(y) 	= T ′(x) for X 	= Y , while two doorways of the same
customer can never be concurrent. ��
Our other conditions are then

C1 T (x) is a positive integer > 1.
C2 If y < x then either Finale(y) < Ticket(x) or T ′(y) < T ′(x).
C3 If W (x) is complete, then, for every Y 	= X, there exists a move b ∈W (x),

such that T ′(x) < R′(Y )Pre(b) (thus R(Y )Pre(b) 	= undef).
C4 If W (x) is incomplete, then there is a y ≺ x with W (y) incomplete.

Intuitively, C2 says that tickets respect the temporal precedence of doorways
with concurrent wait periods, C4 is an induction principle, and C3 expresses
that permission to go is obtained by checking the ticket against competitors’
registers. C2 (together with C0) is easily seen to be an abstract version of D, C3
is an abstract version of W1, while the fact, to be proved below, that C4 follows
from W2 together with D,W1, is the essence of deadlock–freedom for the Bakery
algorithm.

An immediate consequence of C3 is finite concurrency of doorways:

Corollary 2. The set of doorways concurrent to any given doorway is finite.

Proof. Let x < x′ be two doorways of X both concurrent to y. By C3 applied
to x, there is a move b, with x < b < x′. Since R(Y )Pre(b) is indisputable, by
corollary 1 b compares to both ends of y; b ≤ Start(y) would imply x < y,
while b ≥ Ticket(y) would imply y < x′, both contradicting the assumption of
concurrency. Thus b ∈ y. But, by finite history, there can be only finitely many
such b’s. ��

5.3 Correctness and fairness of B2

Lemma 5. (First Comes, First Served) If y ≺ x and W (x) is complete,
then W (y) is complete and CS(y) < CS(x).

Proof. Assume the premise is satisfied and the conclusion is false, i.e. that there
is no move Finale(y) < Entry(x). Take b as given by C3.

Claim 1 : T ′(y) < T ′(x).

Claim 2 : Ticket(y) < b.



Given the claims, we have T ′(y) < T ′(x) < R′(Y )Pre(b) 	= undef, and thus Y
must be writing to R(Y ) by a move in (Ticket(y), b). But the first such write
after Ticket(y) must be a Finale move, which contradicts the assumption that
the conclusion of the lemma is false.

Claim 1 follows immediately from definition of ≺ in case of concurrency, and
from C2 otherwise.

To prove Claim 2, we first note that b is comparable to both ends of y, and,
in view of y ≺ x, b ≤ Start(y) is impossible. It also impossible that Start(y) <
b ≤ Ticket(y), since then R(Y )Pre(b) = 1, which contradicts the choice of b. ��

Lemma 6. ≺ is transitive.

Proof. by contradiction. Suppose x ≺ y ≺ z ≺ x. Count the number n of <’s
in the above sequence of ≺ signs. In case n = 0 the statement follows from the
fact that the order of integers (tickets) is transitive, and in cases n = 2, 3 the
statement follows the fact that the partial order < of open intervals in a partial
order is transitive. In case n = 1, by symmetry, we may assume x ✁ y ✁ z < x
and therefore T ′(x) < T ′(y) < T ′(z). Given the assumption x ≺ y ≺ z ≺ x,
by Lemma 5, if one of the waiting sections is complete then so are the other
two, and we have CS(x) < CS(y) < CS(z) < CS(x) which is impossible. So all
three waiting sections must be incomplete. Thus we can apply C2 to obtain also
T ′(z) < T ′(x), which is impossible. ��

Lemma 7. (Deadlock freedom) Every W (x) is complete.

Proof. By corollary 2 (and finite history) ≺ is well–founded. Then C4 is precisely
the induction principle required to establish the claim. ��

This section is summarized in the following

Theorem 1. Doorways are linearly ordered by ≺. All waiting sections are com-
plete, and x ≺ y implies CS(x) < CS(y).

5.4 B1 implements B2 correctly

We check that the requirements are satisfied in B1 (i.e. follow from D, W1, W2),
where Ready(X) = (∀Y 	= X(A(X,Y ) 	= undef)), T (X) = 1 + maxY A(X,Y ),
and Go(X) means that the condition of the rule Entry is satisfied.

C0 is enforced by requirement D and the Progress Proviso for B1.
C1 is satisfied since the maximum in the rule Ticket is taken over all Y ,

including X which at that moment has register value R(X) = 1.
C2. Take b as given by D. Since R(Y )Pre(b) is indisputable, the move b com-

pares to all Start, Ticket and Finale moves of Y . With Ticket(y) ≤ Start(x) < b,
it is meaningful to ask whether Y executes the Finale move in (Ticket(y), b). If
it does, we are done; if it doesn’t, R(Y )Pre(b) = T (y), and, by D, T ′(y) < T ′(x).

C3 follows immediately from W1.



C4. By contradiction, suppose that the premise is satisfied but the conclusion
is false, i.e. W (x) is incomplete but W (y) is complete for all y ≺ x. Let Y and
b1 < b2 < · · · be the customer and the sequence of moves as given by W2.

Claim: There is a move b ∈ W (x), with R(Y )Pre(b) 	= undef, such that the
following two properties hold for each y:

(i) b > Ticket(y) (ii) if y ≺ x then b > Finale(y).

First we derive the desired contradiction from the claim, and second we prove
the claim.

So suppose that the claim is true and let b be as in the claim. Then R(Y )Pre(b)
has an indisputable value, and b thus compares to all moves of Y that change
R(Y ). What is the value of R(Y ) in Pre(b)? We have two possible scenarios.
Scenario A: all y ≺ x; then b succeeds every Finale(y) and thus R(Y )Pre(b) = 0.
Scenario B: there is some y with Ticket(y) < b ≤ Finale(y); then R(Y )Pre(b) =
T (y). To summarize, if b is as in the claim, then R(Y )Pre(b) is either 0 or T (y),
so that R′(Y )Pre(b) ≥ T ′(y).

The values of R(Y )Pre(b) and of R(Y )Pre(bn) for every n are indisputable.
Moves b and bn thus all compare with every move of Y which changes R(Y ).
It is easy to see that any bn 	< b satisfies (i) and (ii) in the claim. But then, as
shown above, R′(Y )Pre(bn) ≥ T ′(y), which contradicts the property of bn in W2.
Thus every bn < b, which contradicts finite history.

It remains to prove the claim.

To prove the claim, note that, for y ≺ x, CS(y) is defined and complete, by
the assumption that W (y) is complete and the Progress Proviso. It suffices to
prove that there is at most one y > x. The sequence of doorways of Y is then
finite: by finite history, it has finitely many elements < x, by corollary 2 finitely
many elements concurrent to x. Thus Y has a last move, say eY . By Progress
Proviso, eY can only be a Ticket or a Finale move. Since all bn, by corollary 1,
compare to eY , by finite history, for sufficiently large n we have bn > eY . We
can then, for claimed b, take any bn > eY .

It remains to prove that Y has at most one doorway > x. Suppose x < y.
Then, by C2 (with x, y playing y, x respectively), T ′(x) < T ′(y) (since W (x)
is incomplete). If W (y) were complete, by C3 there would be a c ∈ W (y) such
that R′(X)Pre(c) > T ′(y). But since x < y < c, we also have c ∈ W (x) and
R(X)Pre(c) = T (x), so T ′(x) > T ′(y), which is impossible. Thus W (y) is incom-
plete, and y is the last doorway of Y .

We have thus verified that C0–C4 hold of arbitrary runs of B1. It follows that
the results of the previous subsection, summarized in Theorem 1, hold of B1 as
well.



6 Realizing the Model with Reading Agents: the ASM B0

6.1 The Program of B0

Until now the universe of known agents was populated by customers only. Now we
also have another kind of agents. They present one way of making the unknown
agents of B1 known.

Formally the universe of agents splits into two disjoint universes: Customer
and Reader. Customers and readers are related by several functions. If X and
Y are distinct customers, then in each state there is at most one reader–agent
r(X,Y ), and there are no other readers.

If r is the reader r(X,Y ), then Lord(r) = X and Subject(r) = Y . The
readers will be created on the fly, when needed (at Start and Ticket moves), and
will self–destruct when their task is completed.

Customer Start

if mode(me) = satisfied then
A(me,me) := 1, R(me) := 1, mode(me) := doorway
∀ Y 	= me create-reader(me, Y, doorway)

Ticket

if mode(me) = doorway and (∀Y 	=me) A(me,Y) 	= undef then
A(me,me) := 1 + maxY A(me,Y), R(me) := 1 + maxY A(me,Y)
mode(me) := wait
∀ Y 	= me create-reader(me, Y, wait)

Entry

if mode(me) = wait and
∀ Y 	= me (A(me,Y)=0 or (A(me,Y),id(Y)) > (A(me,me),id(me))) then

mode(me) := CS

Exit

if mode(me) = CS then
mode(me) := done

Finale

if mode(me) = done then
R(me) := 0, mode(me) := satisfied
(∀ Y 	= me) A(me,Y) := undef

where create-reader(X,Y,m) abbreviates the rule



create r
agent(r) := true, Reader(r) := true
program(r) := reader-program
Lord(r) := X, Subject(r) := Y
mode(r) := m

endcreate

Reader

A(Lord(me),Subject(me)) := R(Subject(me))
if mode(me) = doorway then

destroy-reader(me)
if mode(me) = wait then

if R(Subject(me)) = 0
or (R(Subject(me)),id(Subject(me)))

> (A(Lord(me),Lord(me)),id(Lord(me))) then
destroy-reader(me)

where destroy-reader(a) abbreviates the rule

agent(a) := false, Reader(a) := false
program(a) := undef, Lord(a) := undef, Subject(a) := undef

6.2 Semantics of B0

Semantics of B0 is like that of B1, but considerably simpler, since all locations
are controlled by the known agents, and there are no moves monitored by the
known agents, to put constraints on—it is all in the programs for B0. The reader
agents are one way to realize the requirement that those ‘for-all commands in
the doorway and the wait section of Lamport’s pseudocode may be executed in
many ways, in various sequences, all at once, concurrently etc.’ In fact the reader
agents capture all ways to realize that requirement, see below.

The only assumption we have to make, outside of the program, is the Progress
Proviso, applying here to all agents, both customers and readers:

Progress Proviso. No reader, and no customer in mode other than Satisfied,
stalls forever.

The reader–agents are created on the fly, and destroyed upon completion of
their task: the effect of destroy-reader(a), if a is a reader–agent, is returning a
to the reserve.

6.3 B0 realizes B1

The constraints D, W1, W2 can be read as a rather direct description of what the
reader–agents do for their customers in B0. The fact that every run of B0 satisfies



D, W1, W2 follows from the programs and the Progress Proviso (together with
the semantics described above or in [Gur95]).

D is satisfied in B0 since, for every move t of X executing Start, for every Y 	=
X, there is a reader r(X,Y ) at Post(Start(x)). By programs and the Progress
Proviso each of these readers makes a single self destructive move, which is the
b required by D; by programs and the Progress Proviso X eventually executes
Ticket.

By programs and Progress Proviso, for every Y 	= X there is a reader r(X,Y )
at Post(Entry(x)). That reader makes a move in W (x). For W1, W2 it then
suffices to note

Fact 4. A move t by r(X,Y ) in W (x) is the last such move iff it is successful,
i.e. T ′(x) < R′(Y )Pre(t).

W1 is namely satisfied in B0 since, for each Y 	= X, we can take the last
waiting section move of r(X,Y ) for the claimed b.

W2 is satisfied in B0 since, if all r(X,Y ) for Y 	= X have a last move in W (x),
by Progress Proviso X must eventually execute Entry. Thus for some Y 	= X
the reader r(X,Y ) keeps reading forever—take the sequence of his moves for
b1 < b2 < · · · as claimed.

We have thus established that every run ρ0 of B0 can be viewed as a run
of B1. Since B1, as far as reading is concerned, can be viewed as a declarative
description of algorithmic behaviour, rather then an algorithm proper, ρ0 can
also be seen as a realization of behaviour prescribed by B1.

To be more precise, let us introduce an appropriate implementation relation
between moves and runs of the two ASMs.

A move t0 by customer X in B0 implements a move t1 by the same customer
in B1 if the indisputable portions of states (values of mode(X), R(X), A(X,X))
at Pre(t0),Post(t0) coincide with those at Pre(t1),Post(t1) respectively.

A run ρ0 of B0 implements a run ρ1 of B1 if the partial order of customers’
moves in ρ0 is order–isomorphic to the partial order of customers’ moves in ρ1,
implementing it pointwise: whenever the isomorphism maps a move t0 in ρ0 to
a move t1 in ρ1, then t0 implements t1.

In these terms, we have established that B1 (more specifically, D, W1, W2)
provides a sound description of algorithmic behaviour: B0 is an algorithm be-
having like that. For the record,

Lemma 8. (Soundness of B1) Each run of B0 implements a run of B1.

We can actually claim more. The requirements D, W1, W2 allow many dif-
ferent behaviours. Is there a behaviour, allowed by B1, which is not captured by
the reader–agents of B0? Not really. This is the content of the following lemma,
expressing a kind of completeness property.

Lemma 9. (Completeness of B1) Each run ρ1 of B1 is implemented by a run
ρ0 of B0.



Proof. The idea is to transform ρ1 to ρ0 by implementing reading moves of ρ1
with appropriate moves of reader–agents, possibly ignoring some inconsequential
monitored moves of ρ1. The replacement process is done in the order of ρ1, that
is earlier read moves are replaced (or discarded) earlier. The following conditions
will be guaranteed by induction for every move b introduced by replacement, for
every customer X and every doorway x of X. At Pre(b) there is a reader agent
r = r(X,Y ) for some Y 	= X. If b is a move of r in x, then mode(r)Pre(b) =
doorway (so that r self–destructs at b), and if b is a move of r in W (x), then
mode(r)Pre(b) = wait (so that r self–destructs at its last move in W (x)).

Now let x = (a, b) be a doorway of X. By D, for each Y 	= X there is a
move b(Y ) ∈ x such that A(X,Y )Pre(Ticket(x)) = R(Y )Pre(b). Recall that we can
assume that b(Y ) are all distinct. Then implement each b(Y ) with a move of
r = r(X,Y ). By induction condition, r is in mode doorway before b(Y ), and
therefore self–destructs there.

The case of read moves in W (x) is similar. Since W (x) is complete, W1
guarantees that, for each Y 	= X there is a move b(Y ) ∈ W (x) such that
R(Y )Pre(b) = A(X,Y )Pre(Entry(x)). Without loss of generality, all moves b(Y ) are
distinct. Replace every b(Y ) with a move of r = r(X,Y ). By the induction con-
dition, r is in mode wait before b(Y ), and therefore self–destructs at the move. If
b ∈W (x) is a monitored move different from all b(Y ), we can discard it—also, if
there is a b(Y ) > b, we can implement b with an unsuccessful, nonselfdestructive
read of r(X,Y ).

Finally, remove all remaining monitored moves in ρ1. The result is the desired
run ρ0 of B0, implementing ρ1. ��

7 Concluding Remarks

Corrollary 2 implies the following cofiniteness property for the partial runs of the
Bakery algorithm: for each move t the set {s|s 	> t} is finite. This is a property
of the Bakery Algorithm, and not of the modelling framework: in spite of finite
history, it is easy to concoct legitimate partially ordered runs of some algorithm
which violate the cofiniteness property. In the case of the Bakery Algorithm, the
cofiniteness property implies that any two infinitely active customers have to
synchronize infinitely many times.

The cofiniteness property is an example of a property of partial runs that
is obfuscated in linear runs (since for linears runs it amounts to finite history).
This indicates that concurrent computations may have significant properties
which cannot be discovered by studying only their linearizations. Concurrent
computations should be analyzed directly.

Acknowledgements

We thank Ante Djerek, Robert Eschbach and Igor Urbiha, who have provided
very useful remarks on a draft version of this paper.



References

[Abr93] Uri Abraham. Bakery algorithms. Unpublished manuscript, pp. 35, 1993.
[BGR95] Egon Börger, Yuri Gurevich, and Dean Rosenzweig. The bakery algorithm:

Yet another specification and verification. In E. Börger, editor, Specification
and Validation Methods, pages 231–243. Oxford University Press, 1995.

[GM90] Yuri Gurevich and Larry Moss. Algebraic operational semantics and Oc-
cam. In E. Börger, H. Kleine Büning, and M. M. Richter, editors, CSL’89,
3rd Workshop on Computer Science Logic, number 440 in Lecture Notes in
Computer Science, pages 176–192. Springer, 1990.

[GR93] Paola Glavan and Dean Rosenzweig. Communicating evolving algebras. In
E. Börger, H. Kleine Büning, G. Jäger, S. Martini, and M. M. Richter, editors,
Computer Science Logic, number 702 in Lecture Notes in Computer Science,
pages 182–215. Springer, 1993.

[Gur95] Yuri Gurevich. Evolving algebra 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

[Lam74] Leslie Lamport. A new solution of Dijkstra concurrent programming problem.
Communications of the ACM, 17(8):453–455, 1974.


