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Abstract

We study the monadic case of a decision problem know as simul-

taneous rigid E-uni�cation. We show its equivalence to an extension

of word equations. We prove decidability and complexity results for

special cases of this problem.

1 Introduction

Simultaneous rigid E-uni�cation is a combinatorial problem in equational
logic which is closely connected with some formulations of the Herbrand
theorem and with automated theorem proving by the tableau method and
the connection (or mating) method. In this section we de�ne simultaneous
rigid E-uni�cation, discuss its connection with several decision problems in
logic and survey some known results.

We shall consider equational logic, i.e. logic whose only predicate is the
equality predicate ', but our results can easily be generalized to general
�rst-order logic with equality. Let s1; t1; : : : ; sn; tn; s; t be terms. All atomic
formulas in equational logic are equations, i.e. expressions of the form s ' t.
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We do not distinguish an equation s ' t from the equation t ' s. We write
s1 ' t1; : : : ; sn ' tn ` s ' t to denote that the formula 8(s1't1^: : :^sn'tn �
s't) is true, i.e. it is provable in �rst-order (classical or intuitionistic) logic.
Equivalently, we can say that s and t lie in the same class of the congruence
induced by fs1't1; : : : ; sn'tng.

A rigid equation is an expression E `8 s't, where E is a �nite set of equa-
tions. The set E is called the left side of this rigid equation, and the equation
s ' t | its right side. A solution to a rigid equation fs1't1; : : : ; sn'tng `8
s't is any substitution � such that s1� ' t1�; : : : ; sn� ' tn� ` s� ' t�. A
system of rigid equations is a �nite set of rigid equations. A solution to a
system of rigid equations R is any substitution that is a solution to every
rigid equation inR. The problem of solvability of rigid equations is known as
rigid E-uni�cation. The problem of solvability of systems of rigid equations
is known as simultaneous rigid E-uni�cation, in the sequel abbreviated as
SREU.

We shall denote sets of equations by E , systems of rigid equations by R
and rigid equations by R. We shall sometimes write the left side of a rigid
equation as a sequence of equations, for example x'a `8 g(x)'x instead of
fx'ag `8 g(x)'x.

In [2] it is shown that the decidability of SREU is equivalent to the de-
cidability of some other fundamental problems, for example the following
ones:

Problem 1 (Formula Instantiation) Given a quanti�er-free formula '(�x),
is there a term sequence �t such that the formula '(�t) is provable?

Problem 2 (Existential Intuitionistic) Is a given existential formula 9�x'(�x)
provable in intuitionistic logic?

Problem 3 (Prenex Intuitionistic) Is a given prenex formula provable in
intuitionistic logic?

For a suitable notion of a derivation skeleton, SREU is also equivalent to
the following problem.

Problem 4 (Skeleton Instantiation) Given a formula ' and a derivation
skeleton, is there a derivation of ' having this skeleton?
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Some known results on SREU are the following.

� SREU is undecidable (Degtyarev and Voronkov [5]). This result implies
that Problems 1{4 are undecidable.

� SREU with ground left sides is undecidable (Plaisted [11]).

� SREU with ground left sides and two variables is undecidable (Veanes
[14]).

� SREU with one variable is DEXPTIME-complete (Degtyarev, Gure-
vich, Narendran, Veanes, and Voronkov [3]).

The last two results imply a complete classi�cation of decidable prenex frag-
ments of intuitionistic predicate calculus with equality: the 99 fragment is
undecidable and the 8�98� fragment is decidable. All the above mentioned
undecidability results require that the signature contain a function symbol
of arity � 2.

When all function symbols have arity � 1, Problems 1{4 are equivalent
to monadic SREU, i.e. SREU in the signature where all function symbols
have arity � 1.

The decidability of monadic SREU is an open problem. The follow-
ing facts are known about monadic SREU (Degtyarev, Matiyasevich and
Voronkov [4]).

� The word equation problem is e�ectively reducible to monadic SREU.

� Monadic SREU with one function symbol is decidable (this fact has a
non-elementary proof).

� Monadic SREU is decidable if and only if it is decidable in the signature
with two function symbols.

This paper studies monadic SREU. Although the general case remains an
open problem, we prove its equivalence to a combinatorial problem on words
de�ned in Section 5. This problem is de�ned in terms of ideals on the set of
pairs of words and called the ideal membership problem. We prove

Theorem 4 Monadic SREU is decidable if and only if the ideal membership
problem is decidable.
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We also prove the decidability of some special cases of monadic SREU.
In Section 4 we prove a result similar to the result of [3]:

Theorem 3 Monadic SREU with one variable is PSPACE-complete.

As we already mentioned, Plaisted [11] proved that SREU with ground
left sides is undecidable. The corresponding monadic case is shown to be
decidable in Section 3:

Theorem 2 Monadic SREU with ground left sides is decidable.

The complexity of monadic SREU with ground left sides is not known.
We prove

Theorem 1 Monadic SREU with one variable and ground left sides is PSPACE-
hard.

2 Preliminaries

In this section we introduce basic de�nitions concerning terms, equations,
words, word equations, automata and rewrite rules. We have to de�ne so
many concepts since it is unreasonable to expect of a reader to know ev-
erything. We also assert some statements proved elsewhere and prove some
properties of the introduced notions which will be used in subsequent sec-
tions.

The symbol *) means \equal by de�nition".

2.1 Terms and equations

The set of all variables of a term t is denoted var(t). A term is ground
i� it has no variables, i.e. var(t) = ;. The symbol ` denotes provability
in �rst-order logic. When we write '1; : : : ; 'n ` ', where '1; : : : ; 'n; ' are
formulas, it means provability of the formula '1^ : : :^'n � '. Substitutions
of terms t1; : : : ; tn for variables x1; : : : ; xn are denoted ft1=x1; : : : ; tn=xng.
The application of such a substitution � to a term t, is the operation of
simultaneous replacement of all occurrences of xi by ti. The result of the
application is the term denoted t�. We shall also apply substitutions to

4



equations and sets of equations and use the same notation for the result of
the application.

The domain and the range of a substitution �, denoted by dom(�) and
ran(�), respectively, are de�ned as

dom(�) *) fx j x is a variable and x� 6= xg
ran(�) *) fx� j x 2 dom(�)g

For any expression E (for example, term, or a set of equations), we denote
by Et

c the expressions obtained from E by the replacement of all occurrences
of the constant c by a term t. We write s[t] to denote a particular occurrence
of a subterm t of a term s.

In this paper, we shall only consider monadic signatures consisting of a
�nite set F of unary function symbols and a �nite set C of constants. Such
signatures are denoted (F ; C). The set of ground terms of a signature (F ; C)
is denoted by T(F ;C). We always assume C 6= ; and hence T(F ;C) 6= ;. For
any set of equations E we denote by T (E) the set of all terms occurring in
E and their subterms. For example, if E = ff(x) ' g(c); c ' g(f(x))g, then
T (E) = fx; f(x); c; g(c); g(f(x))g.

We shall denote variables by x; y; z, constants by a; b; c; d, function sym-
bols by f; g; h, terms by r; s; t and substitutions by �.

We shall use the following statement

Lemma 2.1 (Derivability of equations is in PTIME) There is a poly-
nomial time algorithm checking, by a given �nite set of equations E and terms
s; t, whether E ` s ' t.

Proof. See [8] or [13]. (In fact, this problem is P-complete.) 2

We write E 0 ` E i� for any equation (s ' t) 2 E we have E 0 ` s ' t. We
call two sets of equations E and E 0 equivalent, denoted E � E 0, i� E ` E 0 and
E 0 ` E .

In the sequel we shall use the following two lemmas.

Lemma 2.2 (Lemma on constants) Let E and E 0 be sets of equations.
For any constant c and term t, if E ` E 0, then E t

c ` E
0t
c.

Proof. Standard. 2
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Lemma 2.3 Let E be a set of ground equations, E be a ground equation,
c be a constant and t be a ground term in which c does not occur. Then
E [ fc ' tg ` E if and only if E t

c ` Et
c.

Proof. Immediate by Lemma 2.2. 2

2.2 Words and �nite automata

This section de�nes words and �nite automata. We shall also introduce a
notation for monadic terms which allows us to easily come from terms to
words and back.

Let F be a �nite non-empty set, called the alphabet. Its elements are
called letters. Words are �nite sequences of letters. We denote words by a
juxtaposition of its letters, as

W = a1a2 : : : an:

The natural number n is called the length of the word W and denoted jW j.
We denote by " the empty word, which is the unique word of length zero.
The set of all words with letters in F is denoted by F�.

It will be convenient for us to use the alphabet F also as the set of unary
function symbols of a monadic signature (F ; C). Every term s in such a
signature has the form f1(f2(: : : fn(t) : : :)) where n � 0, f1; : : : ; fn are unary
function symbols and t is a constant or a variable. We shall denote such a
term s in the reversed Polish notation, i.e. as tfn : : : f2f1. Thus, every term
can be represented in the form tW , where t is a constant or a variable and
W is a word. Similarly, any term of the form f1(f2(: : : fn(t) : : :)), where t is
an arbitrary term, will be written as tfn : : : f2f1.

A �nite automaton A on the alphabet F is a quadruple (Q; I; T; E), where
Q is a �nite set, called the set of states, I and T are distinguished subsets
of Q, called the sets of initial and terminal states, respectively. The set
E � Q � F � Q is the set of edges of A. An edge (p; f; q) is also denoted

p
f
! q. The automaton is deterministic i� whenever (p; f; q1) 2 E and

(p; f; q2) 2 E, then q1 = q2.
A word f1 : : : fn is recognized by an automaton (Q; I; T; E) i� there is a

sequence of states q0 : : : qn such that q0 2 I, qn 2 T and qi�1
fi! qi for all
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i 2 f1; : : : ; ng. A set of words is regular i� it is the set of words recognized
by some automaton.

The DFA intersection nonemptiness problem is the following decision
problem. Given any �nite set fA1; : : : ;Ang of deterministic �nite automata,
is there a word recognized by each automaton in this set. The following
statement is proved in [8]:

Lemma 2.4 (DFA intersection nonemptiness problem) The DFA in-
tersection nonemptiness problem is PSPACE-complete.

2.3 Word equations

In addition to the alphabet F , we shall also consider a countable set V of
word variables, denoted u; v; w. A word equation is any expression of the
form V ' W , where V;W 2 (F [V)�. A word substitution is any expression
� = fV1=v1; : : : ; Vn=vng, where vi are word variables and Vi are words in F�.
Its domain, denoted dom(�) is the set fv1; : : : ; vng. The application of such a
word substitution � to a word W 2 (F[V)�, is the operation of simultaneous
replacement of all occurrences of vi by Vi. The result of the application is the
word denoted W�. A word substitution � is a solution to a word equation
U ' V i� all variables in U; V belong to dom(�) and we have U� = V �. A
system of word equations is any �nite set of word equations, its solution is
any substitution solving all equations in the system. Words will be denoted
by U; V;W and word substitutions by �. We say that a word substitution
�0 extends a word substitution � if (i) dom(�) � dom(�0), and (ii) for every
v 2 dom(�) we have v� = v�0.

Makanin [9] proved that word equations are decidable. Analyzing Makanin's
algorithm, Schultz [12] proves the following result.

Lemma 2.5 (Decidability of word equations with regular constraints)
The problem of solvability of word equations where every word variable ui
ranges over a regular set Si, is decidable.

It is known that the problem of solvability of word equations is NP-hard.
No good upper bound for the complexity of this problem has been obtained
so far, it is only known that the problem is in 3-NEXP (Ko�scielski and
Pacholski[6, 7]).
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2.4 Equational logic and rigid equations

Let R be a system of rigid equations. The signature of R is de�ned as the
signature consisting of all constants and function symbols occurring in R;
and in addition a �xed constant if R contains no constants. A solution � to
R is called grounding for R i� for every variable x occurring in R the term
x� is ground. A substitution � is called relevant for R i� all terms in ran(�)
are terms in the signature of R.

In the sequel, we shall need the following technical property of systems
of rigid equations. We omit the straightforward proof.

Lemma 2.6 (Existence of relevant grounding solutions) Let R be a
solvable system of rigid equations. Then there exists a solution � to R that
is grounding and relevant for R.

We shall introduce one particular kind of rigid equations that will be used
as a technical tool for proofs in this paper. For any monadic signature (F ; C),
any variable x and any constant c 2 C introduce the following rigid equation:

Gr(F ;C)(x) *) fd ' c j d 2 Cg [ fcf ' c j f 2 Fg `8 x ' c

We shall use the following obvious lemma:

Lemma 2.7 A substitution � is a solution to Gr(F ;C)(x) i� x� 2 T(F ;C).

As a consequence, we have

Lemma 2.8 For any system R of rigid equations there is a system R0 of
rigid equations such that for any substitution �, � is a solution to R0 if and
only if � is a grounding relevant solution to R. In addition, (i) R0 can be
found by R using a polynomial-time algorithm; and (ii) R0 has ground left
sides if R has ground left sides.

Proof. Let x1; : : : ; xn be all variables in R and (F ; C) be the signature of R.
De�ne R0 *) R[ fGr(F ;C)(xi) j i 2 f1; : : : ; ngg. Then apply Lemma 2.7. 2
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2.5 Rewrite rules

This section introduces a technique standard in the theory of ground systems
of rewrite rules. However, we shall use ordinary equations instead of rewrite
rules.

Introduce an ordering � on terms in T(F ;C) in the following way. Let >
be any total ordering on F [ C and s = cf1 : : : fm, t = dg1 : : : gn. Then s � t
i� one of the following conditions is true:

1. m > n;

2. m = n and the string cf1 : : : fm is greater than dg1 : : : gn in the lexico-
graphic ordering induced by >.

The ordering � is total, well-founded and can be extended to a simpli-
�cation ordering [1]. Some properties of the ordering formulated below are
simple consequence of standard statements in the theory of rewrite systems.
Their proofs may be found in e.g. [1]. Note that the ordering � depends on
the ordering >. In the de�nitions below we assume that we have chosen a
�xed ordering > on F [ C, and hence � is also �xed.

Let E ; E 0 be �nite sets of ground equations and E contains distinct equa-
tions s ' t and r[s] ' u. We say that E 0 is obtained from E by simpli�cation
from s ' t into r[s] ' u, denoted E ! E 0 i�

E 0 = (E n fr[s] ' ug) [ fr[t] ' ug

The reexive and transitive closure of the relation! on sets of ground equa-
tions is denoted by !�. A set of equations E is called irreducible i� there
exists no E 0 such that E ! E 0. We shall use the following statements which
are easy to prove.

Lemma 2.9 Let E be a �nite set of equations. Then there exists an irre-
ducible set of equations E 0 such that E !� E 0.

Lemma 2.10 Let E !� E 0. Then E � E 0.

Let E be an irreducible set of ground equations. We write t!E t
0 if there

exists an equation (r ' s) 2 E such that r � s, and t0 is obtained from t by
the replacement of one occurrence of the subterm r by s. The relation !�

E
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is the reexive and transitive closure of !E . A term t is called irreducible
with respect to E i� there is no term s such that t !E s. The normal form
of a term t w.r.t. E, denoted t #E , is the term s such that t !�

E s and s is
irreducible w.r.t. E . The normal form of any term exists and is unique. We
shall use the following statements which are easy to prove.

Lemma 2.11 Let E be an irreducible set of ground equations and s; t be
terms. Then E ` s ' t if and only if s #E= t #E .

Lemma 2.12 Let E be an irreducible set of ground equations and s #E= t.
Then for any subterm t0 of t there is a term r 2 T (E [ fs ' sg) such that
E ` t0 ' r.

Lemma 2.13 Let E !� E 0. Then for any term t0 2 T (E 0) there is a term
t 2 T (E) such that E ` t0 ' t.

2.6 Mixing words and rigid equations

We call a word term, or simply w-term, in the signature (F ; C) any expression
of the form cW such that c 2 C and W 2 (F [ V)�. A w-equation is any
expression cV ' dW , where cV and dW are w-terms. A rigid w-equation
is any expression of the form W `8 cV ' dW , where W is a �nite set of
w-equations, cV and dW are w-terms. A system of rigid w-equations is any
�nite set of rigid w-equations. The signature of a system of rigid w-equations
is de�ned similar to that of a system of rigid equations. Sets of w-equations
will be denoted by W, and sets of rigid w-equations by S.

A solution to a rigid w-equation W `8 cV ' dW is any word substitution
� whose domain contains all word variables in W; V;W such that W� `
cV � ' dW�. A solution to a system S of rigid w-equations is any word
substitution that is a solution to every rigid w-equation in S.

Note that a ground w-equation is also an ordinary equation.
Grounding word substitutions and relevant solutions to systems of rigid

w-equations are de�ned similar to those of systems of rigid equations. Similar
to Lemma 2.6, we have the following property:

Lemma 2.14 Let S be a solvable system of rigid w-equations. Then there
is a solution � to S that is relevant for S.
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In Lemma 2.16 below we show that one can consider systems of rigid
w-equations instead of systems of rigid equations. First, we shall prove a
technical lemma.

Lemma 2.15 There is a polynomial-time algorithm which, given any system
S of rigid w-equations, gives an equi-solvable system S 0 of rigid w-equations
such that for every rigid w-equation S 2 S 0 we have

1. each word variable has at most one occurrence in S;

2. one of the following conditions hold:

(a) S has the form `8 cu ' cvw, where u; v; w are pairwise distinct
word variables; or

(b) for every w-term cW occurring in S, we have jW j � 1.

Proof. First, we show how to transform S to make every word variable have
at most one occurrence in any rigid w-equation in S. Let a word variable
u has more then one occurrence in a rigid w-equation S 2 S. Replace one
occurrence of u by a fresh word variable v and add to S the rigid w-equation
`8 cu ' cv. Evidently, the resulting system and S are equi-solvable.

Then we show how to reduce the length of words occurring in S by adding
to S rigid w-equations `8 cu ' cvw. Let cV W be any word occurring in S.
Introduce three fresh word variables u; v; w and do the following. Replace
this occurrence of cV W by cu and add to S rigid w-equations `8 cv ' cV ,
`8 cw ' cW and `8 cu ' cvw. Evidently, the resulting system and S are
equi-solvable.

It is easy to prove that after several such transformations of S we obtain,
in polynomial time, a system S 0 satisfying the conditions. 2

Lemma 2.16 The problem of solvability of systems of rigid w-equations is
polynomial-time reducible to monadic SREU. There is a nondeterministic
polynomial time algorithm reducing monadic SREU to the problem of solv-
ability of systems of rigid w-equations.

Proof.
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1. Let S be a system of rigid w-equations and (F ; C) be its signature.
By Lemma 2.15 we can assume that all rigid w-equations in S satisfy
the conditions of that lemma. For every variable v occurring in S,
introduce a fresh constant cv. De�ne a system of rigid equations R in
the following way. First, we make a system of rigid equations R0 out of
S by the following transformations applied to every rigid w-equation S
in S.

(a) S has the form `8 cu ' cvw, where u; v; w are pairwise distinct
word variables. Then replace S by the rigid equation cu ' cv; cw '
v `8 w ' u.

(b) For every w-term cW occurring in S, we have jW j � 1. For every
w-term of the form cu occurring in S, replace it by u. Let the
resulting system of rigid equations have the form E `8 E. Then
add to E equations c ' cu for every w-term cu occurring in S.

Finally, add to R0 rigid equations Gr(F ;fcug)(u) for every word variable
u occurring in S. We prove that the resulting system of rigid equations
R and the system S are equi-solvable.

First, note that because of rigid equations Gr(F ;fcug)(u), every solu-
tion to R has the form fcuWu=u; : : : ; cvWv=vg, where u; : : : ; v are all
variables occurring in S and Wu; : : : ;Wv 2 F�.

By Lemmas 2.6 and 2.14, we can restrict ourselves to relevant solutions.
Now we shall prove that for any word substitution � = fWu=u; : : : ;Wv=vg
grounding and relevant for S, � is solution to S if and only if the sub-
stitution � = fcuWu=u; : : : ; cvWv=vg is a solution to R.

(a) First, consider rigid w-equations s 2 S of the form `8 cu ' cvw.
In this case R contains the equation r = (cu ' cv; cw ' v `8 w '
u). Obviously, � is a solution to s if and only if Wu =WvWw.

Consider now when � is a solution to cu ' cv; cw ' v `8 w ' u.
It is a solution if and only if cu ' cv; cw ' cvWv ` cwWw ' cuWu.
Applying Lemma 2.3 twice, we can show that this is equivalent to
` cvWvWw ' cvWu, i.e. to WvWw =Wu.
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(b) Consider now the case of rigid w-equations S 2 S such that for
every w-term cW occurring in S, we have jW j � 1. We demon-
strate this case on an example. For example, let S have the form
au ' cv; a ' aw `8 az ' cf . Then R contains the rigid equation
R = (a ' cu; c ' cv; a ' cw; a ' cz; u ' v; a ' w `8 z ' cf). The
word substitution � is a solution to S if and only if

aWu ' cWv; a ' aWw ` aWz ' cf

The substitution � is a solution to R if and only if

a ' cu; c ' cv; a ' cw; a ' cz; cuWu ' cvWv; a ' cwWw ` czWz ' cf

Applying Lemma 2.3, we see that these conditions are equivalent
(the key point in applying this lemma is that every word variable
occurs in S at most once).

The rest of the proof of the �rst part of the claim is obvious.

2. Let R be a system of rigid equations and (F ; C) be its signature. Let
X be the set of all variables of R. For any mapping � : X ! C, de�ne
the system S� of rigid w-equations in the following way: S� is obtained
from R by replacing each occurrence of any variable x by the w-term
�(x)x. Applying Lemmas 2.6 and 2.14 of the existence of relevant and
grounding solutions, we can show that R is solvable if and only if one
of S� is solvable.

The corresponding nondeterministic polynomial time algorithm nondeter-
ministically guesses � and then constructs S� . 2

3 Ground left sides

In this section we prove that monadic SREU with ground left sides is decid-
able and PSPACE-hard.
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3.1 SREU with ground left sides is PSPACE-hard

Lemma 3.1 Let A = (Q; I; T; E) be a deterministic �nite automaton over
F . There exists a system R of two monadic rigid equations of one variable
x with the following properties:

1. R has ground left sides;

2. for every solution � to R we have x� = cW , where W 2 F� and c is a
�xed constant;

3. for any word W 2 F , the substitution fcW=xg is a solution to R if and
only if W is recognized by A.

In addition, R can be e�ectively constructed from A using a polynomial-time
algorithm.

Proof. Without loss of generality we can assume that I consists of one state
(see e.g. [10]). By renaming states, we can assume that I = fcg. Let F be a
unary function symbol fresh for F and d be a constant fresh for Q. De�ne
R as fR1; R2g, where

R1 = fpf ' q j (p
f
! q) 2 Eg [ frF ' d j r 2 Tg `8 xF ' d

R2 = Gr(F ;fcg)(x)

Consider any substitution � = ft=xg. By Lemma 2.7, � is a solution to R2

if and only if t has the form cW such that W 2 F�. Consider when such
substitution fcW=xg is also a solution to R1. By de�nition, this means

fpf ' q j (p
f
! q) 2 Eg [ frF ' d j r 2 Tg ` cWF ' d (1)

Since the automaton is deterministic, the left side of (1) is irreducible. Using
Lemma 2.11, one can see that (1) holds if and only if W is recognizable by
A. Evidently, R is constructed by A in polynomial time. 2

Lemma 3.2 The DFA intersection nonemptiness problem is polynomial-time
reducible to monadic SREU with one variable and ground left sides.
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Proof. LetA1; : : : ;An be deterministic automata. LetRi, where i 2 f1; : : : ; ng
be the system of rigid equations constructed fromAi as in Lemma 3.1. De�ne
R =

Sn
i=1Ri. By Lemma 3.1, every solution to R has the form fcW=xg and

any substitution fcW=xg is a solution to R if and only if W is recognized by
each Ai. Hence, R is solvable if and only if there is a word recognizable by
all Ai. Evidently, R is constructed by A1; : : : ;An in polynomial time. 2

Combining Lemmas 2.4 and 3.2 we obtain

Theorem 1 Monadic SREU with one variable and ground left sides is PSPACE-
hard.

3.2 Monadic SREU with ground left sides is decid-

able

A �nite set E of equations is in automaton form i�

1. every equation in E has the form cf ' d;

2. for every two w-equations cf ' d1 and cf ' d2 in E we have d1 = d2;

Note that any set of equations in automaton form is irreducible.

Lemma 3.3 Given any rigid w-equation S with a ground left side, one can
e�ectively �nd in polynomial time a rigid w-equation S 0 with a ground left
side such that

1. S and S 0 have the same solutions;

2. the left side of S 0 is in automaton form;

3. the right side of S 0 does not contain subterms of the form cf .

Proof. We de�ne a series of equivalence-preserving transformations of the
current w-equation S which produces a w-equation whose left side is in the
automaton form. For the reader's convenience, we illustrate the process on
the example where the initial S is ahh ' a; ag ' b `8 bxg ' bhyg.

Let T be the set of all ground terms occurring in S and their subterms.
In our example T = fahh; ah; a; ag; b; bhg. Introduce a set of new constants
CT = fct j t 2 Tg.
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1. Replace each constant d occurring in S by cd. In our example S becomes

cahh ' ca; cag ' cb `8 cbxg ' cbhyg

Obviously, this transformation does not change the set of solutions.

2. Add to the left side of S the set of equations fctf ' ctf j tf 2 Tg. In
our example, S becomes

cahh ' cahh; cah ' cah; cag ' cag; cbh ' cbh; cahh ' ca; cag ' cb
`8 cbxg ' cbhyg

Applying Lemma 2.3, one can show that the set of solutions to S does
not change.

3. Get rid of all ground non-constant terms in the right side by repeatedly
replacing terms of the form ctf by ctf . In our example, S becomes

cahh ' cahh; cah ' cah; cag ' cag; cbh ' cbh; cahh ' ca; cag ' cb
`8 cbxg ' cbhyg

Obviously, the set of solutions does not change since the left side con-
tains the equations of the form ctf ' ctf .

4. Let E be the left side of S. Replace E by an irreducible set E 0 such that
E !� E 0. In our example, S becomes

cahh ' cahh; cah ' cah; cag ' cag; cbh ' cbh; cahh ' ca; cag ' cb
`8 cbxg ' cbhyg

It is easy to prove that the left side of E 0 consists of equations of the
form cf ' d or c ' d. By Lemma 2.10, E � E 0. Hence, the set of
solutions does not change.

5. Get rid of all equations of the form c ' d in the left side of S by
removing them and replacing c by d in S. In our example, S becomes
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cahh ' ca; cah ' cah; cag ' cb; cbh ' cbh;`8 cbxg ' cbhyg

By Lemma 2.2, the set of solutions does not change. Since the left side
of S is irreducible, it is in automaton form.

Evidently, S 0 is constructed by S in polynomial time. 2

Let E be a set of equations in automaton form and c; d be any constants.
Denote by A(E ; c; d) the following automaton (Q; I; T; E). Its alphabet is the
set of function symbols occurring in E . The set of states Q is the set of all
constants occurring in E ; c; d. The sets of initial states and terminal states
are de�ned by I *) fcg and T *) fdg. Finally, the set of edges is de�ned by

E *) fa
f
! b j (af ' b) 2 Eg:

Lemma 3.4 A wordW is recognized by A(E ; c; d) if and only if E ` cW ' d.

Proof. Immediate by Lemma 2.11. 2

Lemma 3.5 Let E be a set of equations in automaton form, W;W 0 2 F�

and c; c0 be constants. Then E ` cW ' c0W 0 if and only if there is a constant
d and words U; U 0; V such that W = UV , W 0 = U 0V , U is recognized by
A(E ; c; d) and U 0 is recognized by A(E ; c0; d).

Proof.

()) We have E ` cW ' c0W 0. By Lemma 2.11 we have cW #E= c0W 0 #E .
Choose d and V such that cW #E= dV . De�ne U and U 0 such that
W = UV and W 0 = U 0V . We have E ` cU ' d and E ` c0U 0 ' d. By
Lemma 3.4 words U and U 0 are recognized by A(E ; c; d) and A(E ; c0; d),
respectively.

(() We have W = UV , W 0 = U 0V , U is recognized by A(E ; c; d) and U 0

is recognized by A(E ; c0; d). By Lemma 3.4 we have E ` cU ' d and
E ` c0U 0 ' d. Hence, E ` cUV ' dV and E ` c0U 0V ' dV . Then
E ` cUV ' c0U 0V , i.e. E ` cW ' c0W 0. 2
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Let R0; R1; : : : be an enumeration of all regular sets of words on F . We
call a regular constraint any expression Ri(U) where U is a word on F [ V.
A solution to such regular constraint is any word substitution � such that
U� 2 Ri.

Lemma 3.6 The problem of solvability of systems of rigid w-equations with
ground left sides e�ectively reduces to word equations with regular constraints.

Proof. Let S = fS1; : : : ; Sng be such a system of rigid w-equations. By
Lemma 3.3 we can assume that the left sides of all Si are in automaton
form. Let Si = (Ei `8 ciWi ' c0iW

0
i ), for all i 2 f1; : : : ; ng. Let u1; : : : ; un,

v1; : : : ; vn and u01; : : : ; u
0
n be word variables fresh for S. By Lemma 3.5, the

system S is solvable if and only if there are constants di occurring in Si,
for all i 2 f1; : : : ; ng such that the following system of word equations and
regular constraints is solvable:

W1 ' u1v1 u1 is recognized by A(E1; c1; d1)
� � � � � �
Wn ' unvn un is recognized by A(En; cn; dn)
W 0

1 ' u01v1 u01 is recognized by A(E1; c01; d1)
� � � � � �
W 0

n ' u0nvn u0n is recognized by A(En; c0n; dn)

To conclude the proof we note that there is only a �nite number of choices
for di. 2

Theorem 2 Monadic SREU with ground left sides is decidable.

Proof. By Lemma 2.16 monadic SREU with ground left sides is e�ectively
reducible to the problem of solvability of systems of rigid w-equations. By
Lemma 3.6 the latter problem is e�ectively reducible to word equations with
regular constraints. Then apply Lemma 2.5. 2

4 One-variable case

In this section we consider rigid equations with one variable x. We shall write
E(x) to denote all occurrences of a variable x in E , and write E(t) to denote
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the set of equations obtained from E by replacement of all occurrences of x
by t. We shall use similar notation for terms, for example s(x). Using this
notation, we can write any rigid equation of one variable x as E(x) `8 s(x) '
t(x).

Lemma 4.1 Let E(x) be a �nite set of equations of one variable x and
s(x); t(x) be terms of one variable x such that E(x) 6` s(x) ' t(x). Let c
be a constant fresh for E(x); s(x); t(x) and r be a ground term such that c
does not occur in r. If E(r) ` s(r) ' t(r), then there exists a ground term
r0 2 T (E(c) [ fs(c) ' t(c)g) such that E(c) ` r ' r0.

Proof. Suppose E(r) ` s(r) ' t(r). Hence, r ' c; E(r) ` s(r) ' t(r). This
implies r ' c; E(c) ` s(c) ' t(c). Consider any ordering � in which c is the
least element. By Lemma 2.9 there exists an irreducible E 0 such that E(c)!�

E 0. Let s0 and t0 be the normal forms of s(c) and t(c), respectively, w.r.t. E 0.
Let us prove that s0 6= t0. Suppose, by contradiction, s0 = t0. By Lemma 2.11
we have E 0 ` s(c) ' t(c). By Lemma 2.10 we have E(c) ` s(c) ' t(c). By
Lemma 2.2 we have E(x) ` s(x) ' t(x). Contradiction.

Evidently, we have r ' c; E 0 ` s0 ' t0. Consider two cases:

1. The set of equations fr ' cg [ E 0 is reducible. Since E 0 is irreducible,
we have r 2 T (E 0). By Lemma 2.13, there is r0 2 T (E(c)) such that
E(c) ` r ' r0.

2. The set of equations fr ' cg[E 0 is irreducible. By Lemma 2.11, normal
forms of s0 and t0 w.r.t. fr ' cg [ E 0 coincide. Since s0 6= t0, one of
the terms s0; t0, for example s0, is di�erent from its normal form w.r.t.
fr ' cg[E 0. Since s0 is irreducible w.r.t. E 0, the term r is a subterm of
s0. By Lemma 2.12, there is a subterm r0 of s(c) such that E(c) ` r ' r0.
2

Lemma 4.2 Let E(x) `8 s(x) ' t(x) be a rigid equation of one variable x,
c be a constant fresh for this rigid equation, r be a ground term in which c
does not occur and E(x) 6` s(x) ' t(x). Then the substitution � = fr=xg
is a solution to this rigid equation if and only if there is a ground term
r0 2 T (E(c) [ fs(c) ' t(c)g) such that E(c); E(r0) ` s(r0) ' t(r0) and � is a
solution to E(c) `8 r0 ' x.
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Proof.

) We have that � is a solution to E(x) `8 s(x) ' t(x). Then E(r) `
s(r) ' t(r). By Lemma 4.1 there is a term r0 2 T (E(c)[fs(c) ' t(c)g)
such that E(c) ` r ' r0. Then E(r0); E(c) ` s(r0) ' t(r0).

( We have E(c); E(r0) ` s(r0) ' t(r0) and E(c) `8 r
0 ' r. Then E(c); E(r) `

s(r) ' t(r). By Lemma 2.2 we can substitute r for c obtaining E(r) `
s(r) ' t(r). 2

Lemmas 4.1 and 4.2 also hold for non-monadic signatures [3].

Lemma 4.3 Monadic SREU with one variable is in PSPACE.

Proof. We shall give a non-deterministic algorithm reducing monadic SREU
with one variable to the DFA intersection nonemptiness problem.

Let R be a system of rigid equations of one variable x whose signature is
(F ; C). It has the form

E1 `8 s1(x) ' t1(x)
� � �
En `8 sn(x) ' tn(x)

By Lemma 2.6 we can restrict ourselves to relevant grounding solutions � =
fr=xg only. Let c be a variable fresh for (F ; C). By Lemma 4.2 � is a solution
to R if and only if there are ground terms r0i 2 T (Ei(c) [ fsi(c) ' ti(c)g),
where i 2 f1; : : : ; ng such that E(c); E(r0) ` s(r0) ' t(r0) and � is a solution
to the system

E1(c) `8 r01 ' x
� � �
En(c) `8 r

0
n ' x

Nondeterministically select such r01; : : : ; r
0
n and verify the condition E(c); E(r

0) `
s(r0) ' t(r0) (it can be checked in polynomial time using Lemma 2.1).

Such � is a solution to this system of rigid equations if and only if there
is a constant d 2 C such that the following system of rigid w-equations is
solvable:
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E1(c) `8 r
0
1 ' dx

� � �
En(c) `8 r0n ' dx

Nondeterministically select such d. By Lemma 3.3 we can equivalently re-
place this system with a system

E 01 `8 c1 ' d1x
� � �
E 0n `8 cn ' dnx

where E 0i are in automaton form. By Lemma 3.4, this system is solvable
if and only if the intersection of automata A(E 01; d1; c1); : : : ;A(E

0
n; dn; cn) is

non-empty.
We have given a non-deterministic algorithm reducing monadic SREU

with one variable to the DFA intersection nonemptiness problem. On each
branch, the algorithm makes polynomially many steps. Applying Lemma 2.4
on the complexity of the DFA intersection nonemptiness problem we get that
monadic SREU with one variable is in NPSPACE, and hence in PSPACE.
2

Combining Theorem 1 and Lemma 4.3, we obtain

Theorem 3 Monadic SREU with one variable is PSPACE-complete.

5 General case

We call a word substitution � grounding for an expression E if for every word
variable u occurring in E, the word u� is a word on F .

Denote by W the set of pairs of words on F . Introduce on W a binary
function �, a unary function r and a binary relation � in the following way:

(U1; U2) � (V1; V2) *)

(
(U1; V2) if U2 = V1
(V1; V2) otherwise

(U1; U2)
r *) (U2; U1)

(U1; U2) � (V1; V2) *) there is a word W such that (V1; V2) = (U1W;U2W )
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An ideal on W is any set of pairs containing ("; "), closed under functions �
and r and upward closed under �. The ideal generated by a set of pairs S,
denoted ideal(S) is de�ned as the least ideal containing S.

An ideal membership equation is an expression

(U; V ) 2 ideal(f(U1; V1); : : : ; (Un; Vn)g);

where n � 0 and U; V; U1; : : : ; Un; V1; : : : ; Vn 2 (F [ V)�. A solution to such
ideal membership equation is any word substitution � such that

1. � is grounding for U; V; U1; : : : ; Un; V1; : : : ; Vn;

2. the word (U�; V �) belongs to the ideal generated by

f(U1�; V1�); : : : ; (Un�; Vn�)g:

A system of ideal membership equations is any �nite set of ideal member-
ship equations. A solution to a system of ideal membership equations is any
substitution that solves each equation in the system. The ideal membership
problem is the decision problem of solvability of systems of ideal membership
equations.

The aim of this section is to show that monadic SREU is equivalent to the
ideal membership problem. First, we shall prove several lemmas illustrating
the expressive power of ideal membership equations.

Lemma 5.1 Let U; V be words on F . Then for any substitution �, it is a
solution to U = V if and only if it is a solution to (U; V ) 2 ideal(;).

Proof. Note that ideal(;) is the set of all pairs (W;W ). 2

The following lemma means that ideal membership equations are at least
as expressive as word equations.

Lemma 5.2 Let U; V be words on F [ V. Then the word equation U ' V
has a solution if and only if the ideal membership equation (U; V ) 2 ideal(;)
has a solution.
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Proof. Immediate from Lemma 5.1. 2

Besides word equations, some other interesting relations on words are also
expressible by ideal membership equations. For example, for any words U; V
on F we have (U; ") 2 ideal((V; ")) if and only if U = V n for some natural
number n.

The following lemma is the main reason for introducing the notion of an
ideal.

Lemma 5.3 Let U1; : : : ; Un; V1; : : : ; Vn; U; V be words on F and a be any
constant. Then aU1 ' aV1; : : : ; aUn ' aVn ` aU ' aV if and only if (U; V ) 2
ideal(f(U1; V1); : : : ; (Un; Vn)g).

Proof. It is well-known that the set of all logical consequences of a set of
ground equations fs1 ' t1; : : : ; sn ' tng can be characterized as the smallest
set of equations E such that

1. E contains all equations of the form t ' t;

2. fs1 ' t1; : : : ; sn ' tng � E ;

3. if (s ' t) 2 E , then (t ' s) 2 E ;

4. if (r ' s) 2 E , and (s ' t) 2 E , then (r ' t) 2 E .

5. if (s ' t) 2 E then (r[s] ' r[t]) 2 E .

When all terms si and ti have the form aW , this characterization immediately
implies the statement. 2

Lemma 5.4 The ideal membership problem is e�ectively reducible to the
problem of solvability of systems of rigid w-equations. More precisely, for
any system I of ideal membership equations we can e�ectively �nd a system
of rigid w-equations S such that for any substitution � grounding for I;S, it
is a solution to I if and only if it is a solution to S.
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Proof. Consider any ideal membership equation

(U; V ) 2 ideal(f(U1; V1); : : : ; (Un; Vn)g):

By Lemma 5.3 it has the same solutions as the rigid w-equation

aU1 ' aV1; : : : ; aUn ' aVn `8 aU ' aV:

2

5.1 Another ordering on terms

In Subsection 2.5 we introduced an ordering � on T(F ;C). Here we shall
introduce another ordering on T(F ;C), also denoted �. The ordering � is
induced by some total ordering > on F[C. We assume that such an ordering
is �xed for the rest of this section. Let s = cg1 : : : gn and t = dh1 : : : hm. Then
s � t if and only if one of the following conditions holds

1. c > d; or

2. c = d and n > m; or

3. c = d, n = m and g1 : : : gn is greater than h1 : : : hm in the lexicographic
ordering induced by >.

The ordering � is also a reduction ordering. For this ordering �, we shall
use the same de�nitions as we have used in Subsection 2.5, for example, the
de�nition of an irreducible set of equations. Lemmas 2.9{2.13 hold for this
ordering.

For the rest of this section we assume that C = fc1; : : : ; ckg and the
ordering > is de�ned by ck > ck�1 > : : : > c1. Note that cjV � ciW ,
whenever j > i.

Using Lemmas 2.9{2.11, we shall give a constructive characterization of
provability in equational logic which will later be used in the reduction of
monadic SREU to the ideal membership problem.

Let Ei be systems of ground equations and si; ti be ground terms, where
i 2 f1; : : : ; ng. Evidently, the system of rigid equations
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R = fEi `8 si ' ti j 1 � i � ng

has a solution if and only if Ei ` si ' ti, for every i.
We introduce four types of transformations on systems of rigid equations

R = fEi `8 si ' ti j 1 � i � ng:

These transformations will be needed for reducing monadic SREU to the
ideal membership problem in the following way. First, we shall show that the
transformations are enough to reduce any solvable system of rigid equations
to the empty system. Second, we shall bound the number of transformations
needed. Third, we shall show that this transformations can be expressed by
systems of ideal membership equations.

0 Suppose that Ei contains an equation aV ' aW such that aV � aW
and the rigid equation Ei `8 si ' ti contains an equation aV U ' r.
Then the transformation of type 0 replaces this occurrence of aV U ' r
in Ei `8 si ' ti by aWU ' r.

1 A transformation of type 1 is any �nite sequence of transformations of
type 0.

2 Suppose that Ei contains an equation ckV ' cjW such that k > j and
the rigid equation Ei `8 si ' ti contains an equation ckV U ' r. Then
the transformation of type 2 replaces this occurrence of ckV U ' r in
Ei `8 si ' ti by cjWU ' r.

3 Suppose that si = ti. Then the transformation of type 3 removes
Ei `8 si ' ti from R.

Lemma 5.5 Suppose that the ground system of rigid equations R has a so-
lution. Then after a �nite number of transformations of types 1{3 one can
obtain from R the empty system.

Proof. Follows from Lemmas 2.9, 2.10 and 2.11 using the following consider-
ations. First, a reduction of any system E to an irreducible system E 0 such
that E !� E 0 can be considered a sequence of transformations of types 1 and
2. Thus, we can assume that all Ei are irreducible. A reduction of terms
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si; ti to their normal forms w.r.t. Ei can also be considered as a sequence of
transformations of types 1 and 2. Finally, when the normal forms coincide,
we can get rid of solved equations using transformations of type 3. 2

We would like to restrict the number of transformations to be done with
a system. To this end, we introduce a notion of a rank.

We de�ne the rank of a system of rigid w-equations R as a natural number
calculated as follows. The rank of a rigid w-equation ciU ' cjV is the
number i + j. The rank of a system of w-equations E is the sum of ranks
of w-equations in E . The rank a rigid w-equation E `8 s ' t is the sum
of the ranks of E and s ' t. The rank of a system of rigid w-equations
fR1; : : : ; Rng is the sum of ranks of R1; : : : ; Rn. For example, the rank of
the system consisting of two equations c1 ' c2g; c2 ' c5h `8 c1u ' c4 and
`8 c2 ' c3v is 1 + 2 + 2 + 5 + 1 + 4 + 2 + 3 = 20.

Since any ground system of rigid equations can be regarded as a system
of rigid w-equations, the notion of a rank can be applied to ground systems
of rigid equations. Evidently, transformations of types 2 and 3 decrease the
rank of such systems.

Lemma 5.6 Suppose that a ground system R of rigid equations of rank r
has a solution. Then after � 2r transformations of types 1{3 one can obtain
from R the empty system.

Proof. Follows from Lemma 5.5 by the following considerations. First, any
sequence of transformations of type 1 can be considered as one transformation
of type 1. Thus, we can assume that any transformation of type 1 is followed
by a transformation of types 2 or 3. Second, any transformation of types
2 or 3 decreases the rank of the system. Hence, there can be at most � r
transformations of types 2 or 3. 2

5.2 Equivalence theorem

We call a mixed system any �nite set of rigid w-equations and ideal mem-
bership equations. We shall denote mixed systems as S [ I, where S is
the set of all rigid w-equations in the system and I is the set of all ideal
membership equations in the system. A solution to a mixed system is
any word substitution that solves every rigid w-equation and every ideal

26



membership equation in the system. Similar to transformations of types
1{3 of ground systems of rigid equations, we shall de�ne three types of w-
transformations of mixed systems. We assume that the mixed system is S[I,
where S = fEi `8 si ' ti j 1 � i � ng.

For any constant a and set of w-equations E , denote by Ea the set of all
w-equations in E having the form aU ' aV .

1 The w-transformation of type 1 simultaneously makes all replacements
of the following form. Suppose that aW occurs in a w-equation aW ' t
in Ei `8 si ' ti and

Ea
i = faU1 ' aV1; : : : ; aUm ' aVmg:

Then this occurrence of aW is replaced by aw, where w is a new word
variable, and we add to I the ideal membership equation (w;W ) 2
ideal(f(U1; V1); : : : ; (Um; Vm)g). This transformation is simultaneously
made for all constants a and all occurrences of aW .

2 Suppose that Ei contains a w-equation ckV ' cjW such that k > j and
the rigid w-equation Ei `8 si ' ti contains a w-equation ckU ' r. Then
the w-transformation of type 2 replaces this occurrence of ckU ' r in
Ei `8 si ' ti by cjWu ' r, where u is a new word variable, and adds
to I the ideal membership equation (U; V u) 2 ideal(;).

3 Suppose that si and ti have the forms aV and aW , respectively. Then
the w-transformation of type 3 removes Ei `8 si ' ti from S and adds
to I the ideal membership equation (V;W ) 2 ideal(;).

We give an example of a w-transformation of type 1. Suppose that S
consists of one rigid w-equation

aU1 ' aV1; aU2 ' bV2; bU3 ' bV3 `8 cU4 ' aV4

where U1; : : : ; U4 and V1; : : : ; V4 are arbitrary words. Denote the left side of
this rigid w-equation by E . Then

Ea = faU1 ' aV1g
Eb = fbU3 ' bV3g
Ec = ;

27



Let u1; : : : ; u4 and v1; : : : ; v4 be new word variables. Then this rigid w-
equation will be replaced by

au1 ' av1; au2 ' bv2; bu3 ' bv3 `8 cu4 ' av4

and the following ideal membership equations will be added to I:

(u1; U1) 2 ideal(f(U1; V1)g); (v2; V2) 2 ideal(f(U3; V3)g); (u4; U4) 2 ideal(;)
(v1; V1) 2 ideal(f(U1; V1)g); (u3; U3) 2 ideal(f(U3; V3)g);
(u2; U2) 2 ideal(f(U1; V1)g); (v3; V3) 2 ideal(f(U3; V3)g);
(v4; V4) 2 ideal(f(U1; V1)g);

Lemma 5.7 Let a mixed system S 0 [ I 0 be obtained by a w-transformation
of type 1, 2 or 3 from a mixed system S [ I and � be a word substitution
grounding for S;S 0; I; I 0. If a substitution � is a solution to S 0 [ I 0 then �
is also a solution to S [ I.

Proof. As usual, we assume that S consists of rigid w-equations Ei ` si ' ti.
Since I � I 0, it is enough to prove that � is a solution to S. Consider the
tree cases corresponding to the three kinds of transformations.

1 Suppose that a w-transformation of type 1 replaces some rigid w-
equation E `8 s ' t by E 0 `8 s0 ' t0. We have E 0� ` s0� ' t0�.
We have to prove E� ` s� ' t�.

From Lemma 5.3 it follows that E� ` E 0�, E� ` s� ' s0� and E� `
t� ' t0�. Evidently, these and E 0� ` s0� ' t0� implies E� ` s� ' t�.

2 Suppose that Ei contains a w-equation ckV ' cjW such that k > j
and the rigid w-equation Ei `8 si ' ti contains a w-equation ckU ' r.
We denote this rigid w-equation by R[ckU ' r]. The w-transformation
of type 2 replaces R[ckU ' r] by R[cjWu ' r] and I 0 contains the
ideal membership equation (U; V u) 2 ideal(;). By Lemma 5.1 we have
U� = (V u)�. Hence (R[ckU ' r])� = (R[ckV u ' r])�. Since � is a
solution to R[cjWu ' r], then � is also a solution to R[ckU ' r].

3 The w-transformation of type 3 removes Ei `8 aV ' aW from S
and I 0 contains the ideal membership equation (V;W ) 2 ideal(;). By
Lemma 5.1 we have V � = W�. Hence, � is a solution to Ei `8 aV '
aW . 2
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Let S[I be a mixed system andR be a system of ground rigid equations.
We call R a �-instance of S [ I if

1. � is a solution to I;

2. S� coincides with R.

Lemma 5.8 Let S [ I be a mixed system and R be its �-instance. Let R0

be obtained from R by a transformation of type 1,2 or 3. Then there exists
a word substitution �0 extending � and a mixed system S 0 [ I 0 obtained from
S [ I by a w-transformation of the same type such that R0 is a �0-instance
of S 0 [ I 0.

Proof. Consider the three cases corresponding to the type of the transfor-
mation.

1. Let S have the form

E1 `8 s1 ' t1
: : :
En `8 sn ' tn

Apply the w-transformation of type 1 to S that only introduces new
word variables not occurring in dom(�). First, we de�ne the substitu-
tion �0. Let aV be any w-term so that a w-equation aV ' t occurs in
Ei `8 si ' ti. Since R is an instance of S [ I, the term aV � occurs in
R. As a result of transformation of type 1, the term aV � is replaced
by a term aV 0 occurring in R0. Consider the w-term av0 such that
aV is replaced by av0 in the w-transformation from S to S 0. We shall
say that the word V 0 is associated with the word variable v0. Since the
transformation of type 1 replaces the term aV � by a term equal to it
w.r.t. Ea

i �, we have

Ea
i � ` aV � ' aV 0: (2)

We de�ne �0 as follows. The domain of �0 is dom(�) plus the set of
all new word variables introduced by the w-transformation. On any
such new word variable v we de�ne v0�0 *) V 0, where V 0 is the word
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associated with v0. We prove that �0 satis�es the conditions. The
property S 0�0 = R0 is straightforward by the construction of �0. It
remains to show that �0 is a solution to I 0. Since �0 extends �, we have
that �0 is a solution to I. Hence, we have to only prove that �0 is a
solution to any ideal membership equation in I 0 n I.

We consider now the form of ideal membership equations in I 0 nI. Let
aV be any w-term so that a w-equation aV ' t occurs in Ei `8 si ' ti
and v0; V 0 be de�ned as above. Suppose that

Ea
i = faU1 ' aV1; : : : ; aUm ' aVmg:

Then I 0 n I contains the ideal membership equation

(V; v0) 2 ideal((U1; V1); : : : ; (Um; Vm)):

By Lemma 5.3, the substitution �0 is a solution to this ideal membership
equation if and only if

aU1�
0 ' aV1�

0; : : : ; aUm�
0 ' aVm�

0 ` aV �0 ' av0�0: (3)

Using that �0 extends � and using v0�0 = V 0, it is easy to see that (3)
is the same as (2).

We note that this proof works for all ideal membership equations in
I 0 n I.

2. Suppose that Ei contains a w-equation ckV ' cjW such that k > j and
the rigid w-equation Ei `8 si ' ti contains a w-equation ckU ' r. Then
the word U� has the form V �U 0 such that the transformation of type
2 replaces ckV �U

0 ' r� by cjW�U 0 ' r�. Consider the corresponding
w-transformation of type 2 replacing ckU ' r by cjWu ' r and adding
the ideal membership equation (U; V u) 2 ideal(;), where u is any new
variable not belonging to dom(�). First, we de�ne �0 as follows. The
domain of �0 is dom(�) [ fug and u�0 *) U 0.

By the construction of � it is easy to see that R�0 = R0. As before,
we have to show that �0 is a solution to I 0 n I, i.e. �0 is a solution to
(U; V u) 2 ideal(;). By the construction we have U�0 = V �0U 0 and
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u�0 = U 0. Hence, U�0 = (V u)�0. By Lemma 5.1 �0 is a solution to
(U; V u) 2 ideal(;).

3. The case of transformations of type 3 is similar. In this case �0 = �. 2

Lemma 5.9 Let S [I be a mixed system and R be its �-instance. Let R0 be
obtained from R by a sequence of k transformations of type 1,2 or 3. Then
there exist a substitution �0 extending � and a mixed system S 0 [I 0 obtained
from S [ I by a sequence of k w-transformations of the same type such that
R0 is a �0-instance of S 0 [ I 0.

Proof. Immediate from Lemma 5.8. 2

Lemma 5.10 The problem of solvability of systems of mixed equations is
e�ectively reducible to the ideal membership problem. More precisely, for
every system S[I of mixed equations one can e�ectively construct a �nite set
I of systems of ideal membership equations such that for any word substitution
� with dom(�) = var(S [ I), it is a solution to S [ I if and only if some
extension of � is a solution to some I 0 2 I.

Proof. Let r be the rank of S. Consider all systems of ideal membership
equations I 0 such that ; [ I 0 is obtained from S [ I by a sequence of � 2r
w-transformations. It is enough to prove that � is a solution to S if and only
if some �0 extending � is a solution to some such I 0.

( Immediate by Lemma 5.7.

) By Lemma 5.6 by a sequence of transformations of types 1,2,3 we can
obtain from S�0 = S� the empty system:

S�0 = R0 ! : : :!Rk = ;;

where k � 2r. Since S�0 is obviously a �0-instance of S [ I, by
Lemma 5.9 we can construct a sequence of w-transformations

S [ I = S0 [ I0 ! : : :Sk [ Ik

such that Rk is a �
0-instance of Sk[Ik. By the de�nition of �0-instance

we have that Sk = ; and �0 is a solution to Ik. 2
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Lemma 5.11 The problem of solvability of systems of rigid w-equations is
decidable if and only if the problem of solvability of mixed systems is decidable,
if and only if the ideal membership problem is decidable.

Proof. Immediate by Lemmas 5.4 and 5.10. 2

Theorem 4 Monadic SREU is decidable if and only if the ideal membership
problem is decidable.

Proof. By Lemmas 2.16 we can consider systems of rigid w-equations instead
of monadic SREU. Then apply Lemma 5.11. 2

This theorem implies the following.

Theorem 5 The ideal membership problem is decidable if and only if any of
the Problems 1{4 is decidable in the case of monadic signatures.

5.3 More about the ideal membership problem

In this section we consider the ideal membership problem in more detail. We
show that the (un)decidability of this problem does not change if we add
regular constraints (every word variable vi range over a regular set Ri) and
the inequality relation.

The proofs is this section will be presented less formally than in the
previous sections.

Lemma 5.12 The ideal membership problem is decidable if and only if the
ideal membership problem augmented with regular constraints is decidable.

Proof. Similar to Lemma 3.1, for any deterministic �nite automaton rep-
resenting a regular set R, we can e�ectively �nd a rigid w-equation W of
one word variable v whose solutions are word substitutions fV=vg such that
V 2 R. Hence, regular constrains can be expressed by mixed equations. By
Lemma 5.11, the decidability of systems of mixed equations is equivalent to
the ideal membership problem. 2
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Lemma 5.13 The ideal membership problem is decidable if and only if the
ideal membership problem augmented with regular constraints and the in-
equality constraints U 6' V is decidable.

Proof. It is enough to note that for any inequality constraint U 6' V we can
e�ectively �nd a �nite set S of systems of rigid w-equations such that for
any substitution �, we have U� 6= V � if and only if � is a solution to some
member of S.

Let F = ff1; : : : ; fkg. We de�ne the following systems of rigid w-equations:

1. Systems Si, where 1 � i � k:

`8 aU ' aV fiu

where u is a new word variable.

2. Systems Si, where 1 � i � k:

`8 aUfiv ' aV

where v is a new word variable.

3. Systems Si
j, where 1 � i; j � k and i 6= j:

`8 aU ' awfiu
`8 aV ' awfjv

where u; v; w are new word variables.

It is easy to see that the set

S = fSi j 1 � i � ng [ fSi j 1 � i � ng [ fSi
j j 1 � i; j � n and i 6= jg

satis�es the statement. 2

Note that the solutions to inequality constraints are searched among
words on the original alphabet F .
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