Steering of a 3D Bipedal Robot with an Underactuated Ankle
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Abstract— This paper focuses on steering a 3D robot while decouples the biped’s sagittal-plane motion from the yagv an
walking on a flat surface. A hybrid feedback controller desiged  |ean modes [7]. Steering is achieved by adjusting the yaw
in [1] for stable walking along a straight line is modified so hat gt hoint of the within-stride passivity-based controller
it is capable of adjusting the net yaw rotation of the robot oer a We studv h ¢ 3D bined robots with . Kl
step in order to steer the robot along paths with mild curvatue. € study . ere. WO_ Iped robots with passive ankies,
The controller is designed on the basis of a single pre-defide and seek a time-invariant feedback controller that creates
trajectory for periodic walking along a straight line. In or der  exponentially stable, periodic walking motion, along with
to illustrate the role of internal/external (i.e., mediallateral)  the ability to steer the yaw orientation of the robot with
rotation at the hip in achieving curved walking motions, the  yagpact to an inertial frame, that is, the robot's directisn
performance of two robots, one with internal/external rotation t | The t bot ' h o d with a 2 d
and one without, is compared. ravel. The two robots are each equipped with a egree

of freedom (DOF) passive ankle, a 1 DOF knee, and differ
at the hip, which in one case is a 2 DOF joint and in the
|. INTRODUCTION other, a 3 DOF joint: one robot’s hip allows internal/extrn

In a previous paper, we addressed the control of a 3fye., medial/lateral) rotation, the other one does note Th
bipedal robot with an unactuated ankle, where the grourRfrformance of the two robots is compared in a task that
contact inhibited yaw motion, but pitch and roll of the stanc "€duires steering. o
leg were unconstrained and unactuated [1]. The first objecti 1 1€ control approach presented in this paper allows us to

of the present paper is to present an event-based controfff}ange the direction of motion of the robot through the net

that steers the robot along paths of mild curvature. A nov&f2W motion about the stance foot over a step. An event-based

feature of the solution is that steering is achieved on th@" Stride-to-stride) feedback controller distributes geint
basis of a single, predefined, periodic motion correspcgwdir?omma”ds to t_he actuated joints in ordertq achieve a de§|red
to walking along a straight line. The second objective ofMount of tuming, as opposed to the continuous corrections
the paper is to compare the turning ability of robots with &'S€d in [6].

2 degree of freedom (DOF) hip joint versus a 3 DOF hip_Section Il presents the dynamic model of the biped.
joint. Section Il summarizes the principle of the within-stride

The ability to turn is an essential feature for steppin ontrol design used to obtain periodic motion along a sitrtaig

around obstacles on a given surface. Honda’s ASIMO hd&'€: @ simulation for the robot with 3 DOF at the hip are
demonstrated the important ability to walk forward, backShown and it is noted that the yaw motion about the stance
ward, right, left, up and down stairs, and on uneven teIf_oot is unstable under the within-stride controller. In G&t
rain [2]. Very few other works have addressed the issulY: & Supplemental event-based control law to regulate the
of a turning motion for bipedal robots, and all addressedirection of motion of the robot is presented. Simulation
models with actuated feet (in particular, full actuationswa'eSults are presented for a path following task in Section
assumed). Previous techniques on bipedal turning motioh Section VI concludes the paper.

include change of the duty ratios of the two legs, allowing

the feet to slip when rotating with respect to the ground, Il. MODEL

reduction and decoupling, and trial-and-error methods [3] A simplified model of a spatial bipedal robot is given here.
[4], [S]. The authors of [6] have developed an elegant antthe legs are considered in detail, while the upper body (head
rigorous setting for stable walking and steering of fullytorso and arms) is represented by a single link articulated
actuated 3D robots on the basis of geometric reduction amghly at the hip. The feet are massless and unactuated.
passivity-based control. The controlled geometric reidact
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a third actuated DOF corresponding to external/internal-ro B. Dynamic model

tion. This supplementary rotation could also be added at the The Eyler-Lagrange equations yield the dynamic model

ankle instead of the hip, but most humanoid robots includgy the robot in the single support phase as

a 3 DOF hip and a 2 DOF ankle. In total, the bipeds in the

single support phase have six or eight actuated DOF, and  D(q)j + H(q,q) = Bu = [ ?QX("”) } u, (1)

there are two degrees of underactuation in the stance ankle (n=2)x(n=2)

(see Figure 1). where D(q) is the positive-definite(n x n) mass-inertia
The ankle is composed of two single DOF joints, ondnatrix, H(q, ¢) is the(n x 1) vector of Coriolis and gravity

in the sagittal plane and the other in the frontal plane. Wigrms, B is an (n x (n —2)) full-rank, constant matrix

consider flat-footed walking, and in order to ensure that thi@dicating whether a joint is actuated or not, ands the

ZMP condition is met, namely the ground reaction force§(n —2) x 1) vector of input torques. The double support

remain with the convex hull of the foot [8], [9], we imposephase is assumed to be instantaneous. However, it actually

that the torque in the stance ankle be 2eRecause the foot consists of two distinct subphases: the impact, during whic

is assumed to be massless, during the swing phase, the fo@t'sigid impact takes place between the swing foot and the

orientation can be freely chosen and therefore the swirgfound, and coordinate relabeling. Analogously to [1], the

ankle joint is not included in the model, which simplifiesoverall impact model can be written as

the model. . | wh=At(r) and ¢t =2yad) (2
The gait considered in this study consists of two alter-
nating phases of motion: single support and double support. [1l. PERIODIC WALKING

Walking takes place on a flat surface. The double Suppost virtual constraints
phase is instantaneous and occurs when the swing leg im-
pacts the ground on a flat foot. The swing and stance Ie%l
exchange their roles at each impact.

How to define a stable walking gait along a straight line is
mmarized in this section. The method of virtual constsain
has been applied in [1] to stabilize the motion of the 3D
robot presented in Figure 1 (a). The virtual constraintshzan
understood as a parametrization of the desired configaratio
of the robot throughout a step; in particular, they define the
joint path in the configuration space of the robot, but not a
joint trajectory. The temporal evolution of the robot isdre
and determined via the evolution of the zero dynamics.

The method of virtual constraints can also be applied to
the robot presented in Figure 1 (b). We assume that a periodic
solution of the model, corresponding to walking in a straigh
line, has been determined, for example, using the method
presented in [1]. The objective of the control law is that the
robot’s trajectories converge to this nominal periodic it
One holonomic constraint per actuator is proposed in the

Fig. 1. Two 3D bipeds with massless feet, shown in supporegril The form of an output that, when zeroed by a feedback controller,

massless swing foot is not included in the model. The stankdorques  enforces the constraint. The outputs are
are zero. The robot on the right includes an extra degreeceflim at the

hip corresponding to internal/external (i.e., mediadftat) rotation. Y=qc— hg(@), (3)
: where
The robot is represented as a tree structure. The stance . = Cq 4)
foot, which is fixed on the ground, is the base of the tree. ¢ _ _
A set of generalized coordinates= [q1, ..., ¢,]’ is shown C'is a constant(n — 2) x n) matrix that defines the — 2

in Figure 1 withn = 8 or n = 10. The coordinatesq; , ¢-) linear combinations of the joint variables that are cotdabl
are unactuated (due to the assumption of zero torque in tH&iNg then — 2 actuators, the quantit§ = 6(q) is strictly

stance ankle), whilégs, . . ., ¢,) are independently actuated. monotonic (i.e., strictly increasing or decreasing) alang
The position of the robot with respect to an inertialtypical walking gait , andh{(#) parametrizes the desired
frame is defined by adding the four variables = evolution of the controlled variables as a function @f

[, Zots Ysts Zsts Go.st)» Wherez,, yo andz,, are the Carte- Assuming that a _reference periodidc motigh(#) is known
sian coordinates of the stance foot, apg,; defines the for the configuration vectog, thenh(6) = Cq* (6).

rotation along the z-axis of the stance leg. These variablestet ¢. = [q1,0]" denote the unactuated joints, and
are constant during each single support phase. denote the controlled joints. A linear relation exists begw
qes qu @Ndg,
1This is equivalent to passive, point foot walking, with thenstraint of q= T Qu (5)
no yaw motion, as in [1]. The robot requires yaw torque to enethe yaw ge |’

motion at the supporting foot. For practical implementatithe foot must . .
have finite area to generate this yaw torque by friction. Tbigue is not where we assume that the controlled variables, chose@'via

explicitly controlled but is indispensable for steeringntrol in (4), are such thaf is an(n x n) invertible matrix.



B. The control law Next, the expression fay. when the constraint is satisfied,

For a given vector of constraints (3), a feedback controllélc = he(0) +hum (63, Yi» 9i), is used. Substituting this relation
in the single support phase that drives or maintains tH8%© (9), the dynamic model of the single support phase
state of the robot on the constraint surface correspondifiyy "W reduced to a 2-DOF, autonomous system, which is
to q. = h’(6) can be determined [10]. The control law isCalled the zero dynamics [10].
such that, on the periodic orbit, the virtual constrainty (3 i )
are identically satisfied and the state of the robot belongs D11(qu) { i ] + Hi(qu, qu)+
to Z = {(q,9)|y(q) = 0, y(¢) = 0}. However, off the A Y L T L Y A
periodic é&bit, (LvEerz if the viriuzell con};traints are satisf  012(%) (( a0 T a¢7)0  (Ggr + e )92) - 02X(11’0)

the end of given step, they will not in general be satisfied . _ o
at the beginning of the next step, and hence the surface The stability of a fixed-pointz* can now be tested

is not invariant under the hybrid dynamic model (1) andwumeric_ally Ejsing a restricted Poincaré map dgfined_with
(2). Consequently, the simulation of the complete model {@"Y Poincaré section ftransversal to the periodic orbit. In
required in order to predict the evolution of the robot. ~ 1NS Study, the Poincaré section will be defined By=

. _ 040y ) ) o
Following [1], the virtual constraints are modified stride{(q’Q) | 0 = =5}, whered; and ¢, are the initial and

to stride so that they are compatible with the initial stafte 0flnal values of9 on the periodic orbit, respectlve!y. Nz,
e state of the robot can be represented using only three

the robot at the beginning of each step, thereby recoveriﬁ | q iableg et
invariance and creating a hybrid zero dynamics. The neljd€pendent variables;” = [q1,41,0]".
The restricted Poincaré map® : SNZ — SN Z

output for the feedback control design is , . X
induces a discrete-time systery, ; = P*(x}). From [11],
Ye = h(q,Yi,9i) = qe — h4(0) — hn (0, i, 5:).  (6)  the linearization of P* about a fixed-point:>* determines
, , , the exponential stability of the full-order closed-loophat
This output consists of the previous output (3), and ?nodel.Defineda:g = xj —**. The Poincaré map linearized

correction termh,, that depends on (3) evaluated at the b : . w(0iH0F\ o 0id0s\ Hx/0it0
o o t a fixed-point** = ! 23,0 !
beginning of the step, specifically; = q., — h%(6;) and aJout a fixed-pol (i ) i(C5) 07 (55)

2
one(6) ; : gives rise to a linearized system,
Ui = Gei — —5g—0i, Where the subscripti® denotes the

initial value for the current step. The values gf §; are 0xjqq = A%0xy, (11)
updated at the beginning of each step. The functignis
taken as:

where the § x 3) square matrixA® is the Jacobian of the
Poincaré map. A fixed-point of the restricted Poincaré map

hin (0, yis 9:) = Yi is locally exponentially stable, if, and only if, the eigatwes
Ohm (9;) = L (7) of A% have magnitude strictly less than one [10, Chap. 4].
i (0,y,9:) = 0, 2L <0 <0y

With h,, designed in this way, the output and its derivativeD' An example of stable walking

are smoothly joined to the original virtual constraint bgth ~ For the model presented in Figure 1 (a), a stable walking
middle of the step. In particular, for any initial error, thegait is presented in [1]. For the model presented in Figure
initial virtual constrainth¢ is exactly satisfied fo6 > %t% 1 (b), a periodic reference motiogr is presented in the
(see Figure 4). stick diagram of Figure 2. The outputs are chosenyas
Give — i1 2(0) + ai(qn — ¢7(9)) for i=1,8, with a; = as =
B as = a5 = ay = ag = 0, a3 = 1.7 andag = 1.2. A
C. Stability test stable gait is obtained, with the eigenvalues 4 being
The next objective is to determine the behavior of the; = 0.5950, A2 3 = 0.2921 4 0.62591.
robot under the virtual constraints. This task is simplifogd
noting that enforcing the virtual constraintg,= 0, results
in g. = h%(0) + hy (65, ys,v;) and reduces the dimension of
the dynamics.
Using (5), the dynamic model in single support (1) can be
rewritten as

. o
T'DQT | ™ | +7T'H(q, _[ 2x(n~2) ] . (8
(9) { i ] @)= I s | ®

The first two rows of the right hand side of this equation are

zero, yielding
Fig. 2. The _stick dia_gram for robot presented in 1 (b) and tegogic
D11(q)Gu + D12(q)de + Hi(g, 4) = 02x1, (9)  reference motion studied.

where D, is the (2 x 2) upper left sub-matrix o7 ' D(q) 7, - To illustrate the orbit’s local exponential stability,eth
Dy, is the(2 x (n —2)) upper right sub-matrix of'D(q)7 3D biped’s model in closed-loop is simulated with the iditia
and H; (¢, ¢) consists of the first two rows of ' H(q, §). state perturbed from the fixed-point. An initial error of



—0.5° is introduced on each joint and a velocity error ofis shown that the impact surfaces are invariant under the
+2°s~ ! is introduced on each joint velocity. All the variablesrotation around the:z-axis of the absolute frame, and the

q converge to their desired cyclic motion. impact maps are equivariant under this rotation
Figure 3 shows the evolution of values of the three n A€ (o 13
independent variables describing the evolution of the robo e + oo = Ag(wg + do,steo), (13)

on the restricted Poincaré secti¢hn Z. These variables \heree, = [0,...,0,1]’ is the unity vector corresponding

clearly converge to the periodic motion. The lower-righto the configuration variable, ;. As a consequence, the

figure shows the evolution ofy ., which represents the |inearized extended restricted Poincaré map has the same
orientation of the stance foot in an absolute frame, anddengoperty

the direction of motion of the robot. For a walking motion

along thez-axis, the nominal value ofy .; on the periodic dxf 1 + qo,steo = A°(0x], + qo,st€o), (14)
orbit is £4.e—5 rad. It can be seen that due to the transient‘slvhere(j0 is defined here as = [0,0,0, 1]’

induced by the initial errors, even if the initial value @f s Thus the fourth column ofAe’is’ [’O 0'0 17, and the
is the nominal value, the direction of motion of the robot AN

will be different from zero. From a practical point of view, additional eigenvalue i8q = 1. This is a property of the
o ' P cal p . model of the robot and is independent of the choice of the
it is important to be able to control the direction of motion

. o controlled output. It follows that the direction of motion

of the robot; the stability of the gait is not enough. cannot be conE[)roIIed by the strategy proposed in Sec. Ill.

A second conclusion of (14) is that an infinite number of
= fixed points exist: ifz* is a fixed point (for usg®* denotes
R the fixed point corresponding to a robot motion aligned the

pe axis x), ¢ + qo,steo IS also a fixed point. Thus an infinite
"0%°Pa emRERRRARIARAEND number of periodic walking gaits exist, one for each dir@tti
0 ° 0 Hep RumBer * of motion. If a control strategy can be devised such that the
robot converges to a motion with a desired direction of thave
2% + gdeg, then the direction of the robot can be steered by
X P — changinggg.
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B. Control of the robot’s direction
’ ° * §1ep3r%um48er *

Step FumbBer An event-based controller [13] is integrated with the

Fig. 3. The evolution of the three independent variablescriting the ~ CONtinUOUS, stance phase controller to regulate the drect

evolution of the robot on the restricted Poincaré section Z, with the  of travelqg s;. Let 3 be a vector of parameters that affect the

initial condition perturbed fronz™. The fourth graphic shows the evolution qagired reference trajectory. The parameters will be nemtlifi

of go,st, which represents the yaw orientation of the stance footnn a 0,40 " .

absolute frame. at = =5, where they will be updated on the basis of
the state of the extended hybrid zero dynamics in order to
achieve convergence to a desired fixed paifit + gdeo.

IV. CONTROL OF THE DIRECTION OF MOTION Here our main ObjeCtive is to Contrqust, which evolves
at impact only. Thus a natural modification of the periodic
o reference trajectory is to change the impact configuration.
In order to be able to control the direction of the robotorder to provide more degrees of freedom and to accelerate
we will consider an extended set of configuration variableshe convergence, a modification of the desired velocity @t th

ge = [¢', q0,5¢]', Obtained by appending the robot's directionend of the single support phase is also considered.
of motion to the previous model. The control of this extended The output in (6) is augmented with an additional term

system can be studied as in Sec. Ill. The extended restrictgd9. 3) depending ons = [8*, 3%, yielding

Poincaré map is studied using the four independent vari-

ablesz¢ = [q1,41,0,qo.«). The corresponding linearized Y =qc—h3(0) — hm(0,y5,5:) — hs(6,5),  (15)
extended restricted Poincaré map is written as

A. Preliminaries

. hi05.0) = B
(Sxe :A66me’ (12) s f’ =
. o * Ohs(05,8) = B (16)
where A¢ is a (4 x 4) matrix. he(6,8) = 0, 0< 911‘W2'ef.

The equations of motion of the robot during single support o
are independent ofy i;; moreover,qo s iS constartt as In spite of the ter,, the control law of Sec. Il will stil
it evolves only during the impact phase {2)n [12], it f:reateahybrld zero dynamics. Thl; is because the par.esneter
in h,, are updated at the beginning of the step, while the
2This is because we have assumed no yaw rotation at the staoce f Updates to5 in h, are done atl = @ and becausé

SAfter impact, the parametrization of the robot is modifiedoirder to modifies the reference trajectory 0n|y betwetn= 0i+0y
take into account that the first joint of the robot correspotalthe stance 2

leg. In this relabeling, the variables. undergo a jump. Thus the jump of ?nd the in_wpagt. The modification of the reference path is
qo,st is a direct function of the impact configuration. illustrated in Figure 4.
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The Poincaré map can now be viewed as a nonline
control system with inputsy, zf,,, = P(zf, Bx), where;
is the value of3 during the second part of stép Linearizing
this nonlinear system about any fixed point* + gle,
(since this model does not depend @) and the nominal
parameter valug* = 0(2,,_4)x1 leads to

oy = A°Sxy + FOpy, a7)

whereéz§ = x§ — (2% + gleo), 08, = Bx — 3%, and F is
the Jacobian of with respect tog. Designing a feedback
law

6B = —Kéx§ (18)

such that the eigenvalues ¢\ — F'K) have magnitude
strictly less than one will exponentially stabilize the fixe
point z¢* + gde.

When the((2n — 4) x 4) gain matrix K is calculated via
a DLQR technique, the eigenvalues become= 0.6421,
A2,3 = —0.2491 + 0.07324, and A\, = 0.0371.

To illustrate the effect of this modification of the control

strategy on the robot’s behavior, the 3D biped’s model in

closed-loop is simulated with the initial state perturbeatrf
the fixed-pointz©*. An initial error of —0.5° is introduced
on each joint and a velocity error ef2°s~! is introduced
on each joint velocity. The initial yaw angle of the stanc
foot is 3° with a desired average direction of motion @f.

Figure 5 shows the center of mass and the position of tf AR
feet on the ground. The direction of the walking motion i2veid slipping,

V. CONTROL OF THE ROBOTS PATH
A. Method

A common objective of a walking robot is to reach a given
location from an initial point. For example, in a home, the
robot may need to move from one room to another by passing
through a door. This requires more precise control than just
orientation, as the robot's path must pass through the door.
Figure 6 introduces parameters that will be used to describe
the desired motion of the robot in order to regulate its path:
the initial pose of the robot id;, qo; and the desired pose
isd =0, qo = 0, the distance along is not prescribed.

door

ar

Fig. 6. The robot begins its motion at a pose definedlfygo;. d; is the
distance along theg-axis of the middle of the two ankles at impact. The
robot’s task is to asymptotically join the path defineddy 0, go = 0 as

x increases.

In human walking, it has been observed that, in the major-
ity of turning methods, a person behaves like a nonholonomic
vehicle: when the goal is far, a lateral step is not used to
achieve lateral displacement, rather continuous modificat
of walking direction (i.e., orientation) is used to produce
smooth lateral displacement [14]. Thus it is natural to bse t
orientation of the robot in order to control its motion along
a desired path. A high-level supervisory controller can be
integrated into the overall controller to resolve this peoi.
From one step to the next, the evolution of the pose of the
robot will be modeled as

dy. + sin(qox)
qox + 0qo,

A1

qok+1

which assumes that the step lendttand step width are

é:onstant.

The change of orientationig, will be implemented
rough a change of the desired fixed paitit + qdeo. To
collision with the ground, or other physica

controlled, and the robot evolves along a path parallel ¢o gFonstraintsjgo must not be too large. Hence, at stepthe

x-axis, but an offset of the robot’s motion with respect to it
initial position can be seen in thgdirection.
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Fig. 5. The evolution of the projection the robot’s centernmdss of the
robot on the ground is shown by the red line, and the positioth® feet
on the ground is shown by the green circles.

Hesired fixed point is chosen a$* + (qox + dq0)eo, where

_Qsat (_qu - fidk) < _Qsat
6q0 = Qsat (_QOk - ’idk) > Qsat 5 (19)
—qor — kdy,  otherwise.

k is a control gain, and),,; is a saturation that must be
chosen appropriately.

B. Example of the robot with 3 DOF at the hip

For the previous control law and reference trajectory, with
k = 0.6, Qsar = 6°, and for an initial posep; = 0° and
d; = —0.275m, the behavior of the robot is illustrated by
the following figures. Figure 7(a) shows the evolutiory@f;



on the extended restricted Poincaré section. These Vesiab VI. CONCLUSIONS

clea_rly converge to th_e desired value and the direction of Steering has been studied for two 3D bipedal robots with
motion is controlled. Figure 8 (a) shows the center of massassive ankles. One robot included internal/external, (i.e
position and the position of the feet on the ground. The robgfiedial/lateral) rotation at the hip, while the other did .not
rejoins smoothly the desired path. The method of virtual constraints was used to design a time-
invariant, within-stride feedback controller that stést
all but the yaw motion of each robot. A supplemental
C. Example of the robot with 2 DOF at the hip event-based (or stride-to-stride) feedback controlles than

Now the results are shown for the same task for the robdteSIgneOI that stabilized the yaw motion. By adjusting the se

presented in Figure 1 (a). Even though the model does n%?int of the event-based controller, it was possible torstee
include externalfinternal rotation at the hip, couplin n the direction of the robot, and even to direct the motion of

. . : . its center of mass along a given path. This was achieved
the rotations in the sagittal and frontal planes can yieléta n_ . A g a gvenp
) . . ¥V|th0ut designing a specific solution of the model for turn-
rotation about the vertical axis from one step to the nexf; o
L S . Ihg. Instead, the event-based controller modified on-livee t
thus control of the direction of the robot is still possible

though the achieved rate of turning is reduced. For thTeIznaI impact configuration and velocity of a path for walking

eriodic reference trajectory described in [1] andsos 0.2 In a straight line. The importance of the internal/external
22 C— 5 we obtair: the )t;ehavior of the robot iIIusfra'ltedrOtation of the hip for turning motions was illustrated vieet
sa - ’

in Figure 7 (b) and Figure 8 (b). The robot rejoins smoothl comparison of the performance of the same control strategy
) . o n both robots. The results presented here can be extended
the desired path, but the achievable rate of turning is ve

[ .
limited, resulting in a considerably longer distance altimg t the case of a robot with an actuated ankle.
z-axis in order to complete the turn. Clearly, the robot isles
maneuverable than the robot with a 3 DOF hip. Since the net
yaw rotation is obtained through a large modification of thelll C. Chevallereau, J. Grizzle, and C. Shih, *Asymptoticatable walk-
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