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Abstract— This paper presents a feedback controller that
allows MABEL, a kneed, planar bipedal robot, with 1 m-long
legs, to accommodate an abrupt 20cm decrease in ground
height. The robot is provided information on neither where the
step down occurs, nor by how much. After the robot has stepped
off a raised platform, however, the height of the platform can
be estimated from the lengths of the legs and the angles of
the robot’s joints. A real-time control strategy is implemented
that uses this on-line estimate of step-down height to switch
from a baseline controller, that is designed for flat-ground
walking, to a second controller, that is designed to attenuate
torso oscillation resulting from the step-down disturbance. After
one step, the baseline controller is re-applied. The control
strategy is developed on a simplified model of the robot and
then verified on a more realistic model before being evaluated
experimentally. The paper concludes with experimental results
showing MABEL (blindly) stepping off a 20 cm high platform.

I. I NTRODUCTION

Bipedal locomotion has attracted attention for its potential
ability, superior when compared to wheeled locomotion, to
overcome rough terrain or environments with discontinuous
supports. Existing bipedal robots, however, can only deal
with small unknown variations in ground height. Ground
height variations exceeding a few centimeters must be known
a priori and require carefully planned maneuvers to over-
come them.

Two major avenues of research are being pursued to
quantify and improve the ability of a bipedal machine to
walk over uneven terrain. A stochastic model of ground
variation is being investigated in [1] for low-dimensional
dynamical systems such as the rimless wheel and the com-
pass bipedal walker. The mean first-passage time to the
fallen absorbing state is used to assess the robustness of
a gait. This metric captures the expected time that a robot
can walk before falling down, measured in units of number
of steps. Numerical dynamic programming is applied to a
discretized representation of the dynamics to maximize the
mean first-passage time. In [2], [3], [4], the gait sensitivity
norm, defined as theH2 norm of the system’s state when the
input is ground-height variation, is introduced to quantify the
ability of a bipedal robot to handle changes in ground height.
Particular attention is given to a “step-down test”, where
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the ground profile consists of a flat section, followed by an
abrupt decrease in height, followed again by a flat section
of ground. These references use the gait sensitivity norm to
assess the improvement in disturbance rejection when swing-
leg retraction speed at the end of the step is varied [3]. A
neural network is tuned to accommodate irregular surfaces in
[5]. The algorithm was tested on the robot Rabbit, whose legs
are 80 cm long, resulting in 1.5 cm ground-height variations
being accommodated.

While important progress is being made on walking
over uneven ground, significant restrictions still remain.The
experimental work in [2], [3], [4] and [5] accommodates
obstacles that are less than 5% of leg length, a value that is
unrealistically small when compared to common obstacles
in everyday life, such as the height of steps in a building or
the curb height of a sidewalk on a city street.

In this research, we propose a new control policy for the
planar bipedal robot MABEL [6], which is 1 m at the hip
and weights 65 kg. The control policy allows MABEL to
step off platforms that are at 20 cm high, without falling.
The robot is provided information on neither where the step
down occurs, nor by how much.

The remainder of the paper is organized as follows.
Section II describes the general features of MABEL’s mor-
phology, and Section III summarizes a hybrid model for a
walking gait. Section IV provides the design of a baseline
controller reported in [7] and an initial step-down experiment
reported in [8]. A switching controller is designed in Sec-
tion V and the proposed controller is verified on a detailed
simulation model in Section VI. Experimental result of the
new controller are provided in Section VII. Conclusions and
future directions are given in Section VIII.

II. D ESCRIPTION OFMABEL

MABEL is a planar bipedal robot comprised of five rigid
links assembled to form a torso and two legs with knees. As
shown in Figure 1, the legs are terminated in point feet. All
actuators are located in the torso, so that the legs are kept
as light as possible. Unlike most bipedal robots, the actuated
degrees of freedom of each leg do not correspond to the knee
and hip angles. Instead, for each leg, a collection of cable-
differentials is used to connect two motors to the hip and
knee joints in such a way that one motor controls the angle
of the virtual leg consisting of the line connecting the hip to
the toe, and the second motor is connected in series with a
spring in order to control the length or shape of the virtual
leg; see Figure 2. The reader is referred to [9], [6], [8] for
more details on the transmission.
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Fig. 1: (a) MABEL, an experimental testbed for bipedal
locomotion. The robot is planar, with a boom providing
stabilization in the frontal plane. The robot weighs65 kg
and is1 m at the hip. (b) Thevirtual compliant legcreated
by the drivetrain through a set of differentials.

The springs in MABEL serve to isolate the reflected rotor
inertia of the leg-shape motors (see Figure 2) from the
impact forces at leg touchdown and to store energy in the
compression phase of a walking gait, when the support leg
must decelerate the downward motion of the robot’s center
of mass. The energy stored in the spring can then be used
to redirect the center of mass upwards for the subsequent
phase. These properties (shock isolation and energy storage)
enhance the energy efficiency of walking and reduce the
overall actuator power requirements [7].

III. S IMPLIFIED-DESIGN MODEL

Two models of MABEL have been developed and iden-
tified in [8]. This section briefly summarizes asimplified
model that is appropriate for control design. In Section VI,
a moredetailed model appropriate for controller verification
will be considered; that model includes a compliant ground
contact model with a nontrivial double support phase, instead
of an inelastic contact with an instantaneous double support;
in addition, it accounts for the stretching that occurs in the
cables used in the differentials. The simplified model will
be used in Sect. V for controller design because it can be
simulated twenty times faster than the detailed model.

The hybrid model consists of a continuous-time stance
phase and an instantaneous double support phase. The
overall dynamic model is derived with the method of La-
grange [10]. The generalized coordinates are taken asq :=
(qLAst

; qmLSst
; qBspst

; qLAsw
; qmLSsw

; qT) ∈ Q, where, as in
Figure 1 and Figure 2,qLAst

, qmLSst
, and qBspst

are the
leg angle, leg-shape motor position, and angle of the pulley
Bspring (a pulley which is connected to the free end of the
spring as shown in Figure 2, and therefore corresponds to
spring deflection) of the stance leg, respectively;qLAsw

and
qmLSsw

are the leg angle and leg-shape motor position of the
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Fig. 2: MABEL’s powertrain (same for each leg), all housed
in the torso. Two motors and a spring are connected to the
traditional hip and knee joints via three differentials, which
are connected such that the actuated variables are leg angle
and leg shape, see Figure 1, and so that the spring is in series
with the leg-shape motor. The differentials are realized with
pulleys and cables; for details, see [8].

swing leg, respectively;qT is the angle of torso with respect
to the vertical.

The state-variable form of the stance-phase dynamics, with
state vectorx := (q; q̇) ∈ TQ, can be expressed as,

ẋ :=

[

q̇
−D−1H

]

+

[

0
D−1B

]

(1)

:= f(x) + g(x)u, (2)

where,f, g are the drift and input vector fields, andH :=
C(q, q̇)q̇ +G(q)−Bfricτfric(q, q̇)−Bspτsp(q, q̇). Here,D
is the mass-inertia matrix,C is the matrix of centripetal and
Coriolis terms,G is the gravity vector; and the matricesB,
Bfric, and Bsp, which are derived from the principle of
virtual work, define how the actuator torquesτ , the joint
friction torquesτfric, and the spring torquesτsp, enter the
model, respectively.

An impact occurs when the swing leg touches the ground,
modeled here as an inelastic contact between two rigid
bodies. It is assumed that there is neither rebound nor slip at
impact. Mathematically, the impact occurs when the solution
ϕ of (1) intersects the switching surface

S :=
{

x ∈ TQ
∣

∣pvtoesw(q) = 0
}

, (3)

wherepvtoesw(q) is vertical position of the swing toe. When
impact occurs, the method of [11] provides a (static) map that
takes the state variables just before impact to their valuesjust
after impact,

x+ = ∆(x−). (4)



Together, the stance-phase dynamics (1) and reset map (4)
form a nonlinear system with impulse effects

{

ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x ∈ S.

(5)

More details about the development of the impact map and
the hybrid model for MABEL are presented in [7]. Control
design on the basis of this hybrid model is presented next.

IV. BASELINE CONTROLLER

A. Feedback design

MABEL’s baseline feedback controller is designed using
method of virtual constraints [12]. The particular controller
used here has been reported in [7]. The method of virtual
constraints begins with the choice of outputs which depend
on only configuration variables and take the form

y = h(q) = h0(q)− hd (s(q), α) . (6)

In the baseline controller, thecontrolled variablesare

h0(q) =









qmLSst

qLAsw

qmLSsw

qT









(7)

andhd (s(q), α) is a vector representing thedesired evolution
of the controlled variables as a function ofs(q), a scalar
function of the configuration variables that replaces time in a
standard tracking controller. The functions(q) is designed to
be strictly monotonically increasing over the course of a step.
If a feedback can be found such that the outputy is driven
asymptotically to zero, then the solutions of the closed-loop
system asymptotically satisfyh(q) = 0, which has the form
of a holonomic constraint on a mechanical system (for more
information about virtual constraints, see [13]).

In the baseline controller, the desired evolution of the
controlled variables in (7) is specified by the functions
hd
mLSst

, hd
LAsw

, hd
mLSsw

, andhd
T, respectively, and assembled

as

hd (s, α) =









hd
mLSst

(s, α)
hd
LAsw

(s, α)
hd
mLSsw

(s, α)
hd
T (s, α)









, (8)

where α is a vector of real numbers parameterizing the
virtual constraints. Furthermore,s is selected as

s(q) =







θ(q)−θ+

θ−−θ+ , θ+ < θ(q) < θ−

1, θ(q) ≥ θ−

0, θ(q) ≤ θ+
(9)

whereθ is the absolute angle formed by the virtual compliant
leg relative to the ground, that is,

θ(q) = π − qLAst
− qT, (10)

andθ+ andθ− are the values ofθ (q) at the beginning and
end of a step, respectively.

How to construct the functions inhd (s, α) from Bézier
polynomials and how to choose the parameters to create a

170

180

190

200

210

0

200

400

600

−6

−5

−4

−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
450

500

550

time (s)

q
L
A
sw

(d
eg

)
q
m
L
S
sw

(d
eg

)
q
m
L
S
sw

(d
eg

)
q
T

(d
eg

)

Fig. 3: Virtual constraints of the baseline controller.

periodic walking gait in the closed-loop system are explained
in [12] and [7]. The main idea is to selectα to minimize a
cost function representing energy supplied by the actuators,
normalized by step length, with the minimization subject to
boundary conditions that specify a periodic solution, actuator
magnitude and power limitations, friction limits in the ground
contact model, swing-leg clearance, and desired walking
speed.

In principle, the virtual constraints can be implemented on
the robot by any feedback capable of drivingy to zero. In
the experiments described below, we use the feedforward-
plus-PD-controller,

uF−PD(x) = u∗ (s(q), α) −KP y −KDẏ, (11)

whereu∗ (s(q), α) is the nominal torque along the periodic
orbit determined from the parameter-optimization problem
when designing the virtual constraints, andy is defined in
(6). The asymptotic stability of the periodic orbit under this
feedback law is verified on the model with a Poincaré map,
as explained in [12] and [7].

The above process results in the virtual constraints de-
picted in Figure 3. These constraints correspond to the nomi-
nal walking gait presented in [7], with average walking speed
of approximately 1.0 m/s. Here, we modify the nominal
virtual constraints so that the end of the swing leg at mid-
stance can clear a 2 cm obstacle, allowing the robot to step
onto a platform before stepping off it. Henceforth, we call
this thebaseline controller.

B. Baseline step-down performance

As reported in [8], using the control law (11) and the
virtual constraints of Figure 3, MABEL can accommodate a
2.0 inch (5.08 cm) step-down disturbance. The experiment
was conducted as follows. MABEL was put in motion,
walking on an initially flat floor. At the end of each lap,
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Fig. 4: Experimental and data of the torso angle when step-
ping down from the 2.5 inch platform. The forward direction
is counterclockwise, and hence corresponds to decreasing
angles. The blue circles show when the swing leg impacts
the ground. The torso undergoes a large oscillation as a result
of the disturbance at step-down.

MABEL walked up a stair-stepped ramp1, and then stepped
off the platform. The height of the platform was increased
by 0.5 inches each lap until the robot fell when the platform
height was increased to 2.5 inch (6.35 cm). MABEL fell after
stepping off the 2.5 inch platform because the leg broke on
the ensuing step; the video is available at [14].

Figure 4 shows the torso angle data; it can be seen that
the feedback system overreacts when correcting the forward-
pitching motion of the torso, causing a second, very rapid,
forward-pitching motion of the torso. Because the angle of
the swing leg was controlled relative to the torso, the swing
leg rotated forward rapidly as well and impacted the ground
with sufficient force to break the leg. Though not reported
in [8], the experiment was repeated several times, with the
same result, namely, a broken leg following a 2.5 inch step-
down.

Further analysis of experimental data was carried out in [8]
to study the impact forces that caused the leg to break. Using
the impact model of [11], the contact intensityIF at the leg
end was estimated from the experimental data.IF has units
of N · s and represents, roughly speaking, the integral of the
contact force over the duration of the contact event. Figure5
shows the estimated contact intensity when walking on flat
ground and when stepping off several raised platforms. The
data indicate that, upon stepping off the 2.5 inch platform,
the impact intensity of the second step 47 ((N · s)) was more
than three times as intense as the impact intensity 13 ((N · s))
of walking on flat ground.

Work presented in [8] went on to show how to design
a switching controller that resulted in MABEL stepping off
a 3.5 inch 8.89-cm platform without falling. The controller

1The ramp and platform are constructed from sheets of plywoodthat are
0.5 inch and 1.0 inch thick. This explains the use of non-SI units.
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Fig. 5: Impact intensity calculated from the baseline step-
down experiments. Only the vertical component is displayed.
The green bar shows the average impact intensity when walk-
ing on flat ground; the bars show± one standard deviation.
The blue bar shows the impact intensity upon step-down,
while the red bar shows impact intensity for the ensuing step.
The larger impact intensity on the step following the 2.5 inch
(6.35 cm) step-down leads to a mechanical fuse activating in
the shin, which separates the leg into two pieces.

reported there used the same form of the virtual constraints
shown in (6) and (8), with the virtual constraints of Figure
3 specially designed to reduce torso pitching. In the next
section, a switching controller is proposed that will result in
a dramatic increase in performance: MABEL stepping off an
8.0 inch 20.32 cm platform without falling.

V. A SWITCHING CONTROLLER BASED ON V IRTUAL

COMPLIANCE

A. Overview of basic controller

The baseline step-down experiments showed that MABEL
falls on the second step of a large step-down, and not at the
moment of step-down itself. The cause of the fall is the torso
pitching forward too rapidly after leg impact with the ground.
To attenuate the amount of torso pitching following a large
step-down, we adopt the idea of a switching controller from
[15].

The height of the platform, or equivalently, the depth of
the step down, can be immediately computed at impact from
the lengths of the robot’s legs and the angles of its joints. If
the calculated height of the platform is greater than 3 cm, the
baseline controller is replaced for one step with a controller
whose purpose is to attenuate pitching of the torso from the
step-down disturbance. Then, at the beginning of the very
next step, the baseline controller is re-applied.

B. Shock absorbing controller

The new controller, called ‘shock absorbing controller’,
imposes virtual holonomic constraints on only three vari-
ables,qLAsw

, qmLSsw
, and qT, instead of four variables, as



in the baseline controller. In particular, the system input
corresponding to the stance motor leg shape is left free and
not used for imposing a virtual constraint. Recall that this
motor is in series with a physical spring in the drivetrain, as
shown in Figure 2. Following an idea developed in [16] for
bipedal running on MABEL, we use the torque input of this
motor to create an additionalvirtual compliant elementby
defining the feedback,

umLSst
(x) = −kvc (qmLSst

− qmLSvr
)− kvd (q̇mLSst

) .
(12)

This feedback essentially turns the stance leg into ashock
absorberwith stiffnesskvc, dampingkvd, and rest position
qmLSvr

. As will be seen, this method of creating a virtual
compliant element serves to maintain good ground contact
forces (friction cone is respected and normal component is
positive) during large step-down experiments.

In principle, each of the virtual constraints for the three
controlled variablesqLAsw

, qmLSsw
, andqT can be redesigned

in the shock absorbing controller. We found that the baseline
virtual constraints of Figure 3 could be retained for the swing
leg angle and shape; it was only necessary to redesign the
virtual constraint for the torso. When redesigning the virtual
constraint for the torso, the first and last coefficients of the
Bézier polynomials from the baseline controller are retained;
the coefficients between them, denoted hereafter byαT, will
be selected through optimization.

The design parameters that are to be chosen through
optimization are grouped into a vector denoted

Θ := [αT, kvc, kvd, qmLSvr
]
T
. (13)

In general, as in [17], a suite of parameters could be pre-
computed for a discrete set of platform heights, such as
{ 5 cm, 10 cm, 15 cm, 20 cm}, and the controller would
then select an appropriate parameter vector, or the baseline
controller, based on the estimate of platform height made
at step-down. We found, however, that when the virtual
compliant element in (12) is used, a step-down controller
designed for 20 cm can accommodate step-downs of 3 cm
to 20 cm, and the baseline controller can accommodate
variations in ground height from a 2 cm rise to a 3 cm
step-down, without the controller being provideda priori
information on the amount of ground height variation. This
finding obviously leads to a very simple switching policy.

We next describe how the parameter vector in (13) is
selected via optimization. Further details will be given in
a forthcoming journal submission.

C. Optimization process

The optimization process is based on the simplified
(control-design) model introduced in Sect. IV, with the
switching surface in (3), modified to account for a change
in ground height at impact,

SH :=
{

x
∣

∣pvtoesw = H,H ∈ R
}

, (14)

whereH is the height of the platform. With this definition,
the original switching surface with a platform height of zero
is denoted byS0.

t0 t1 t2
Fig. 6: Time t0 corresponds to the end of the last step on
the platform;t1 is the end of the step-down; andt2 is the
end of the ensuing step.

Assume the robot is on the periodic orbit corresponding to
the baseline controller, and hence is walking on flat ground.
As in Figure 6, lett0 be time that step-down is initiated, let
t1 be the time the swing leg impacts the ground, and lett2
be the end of the next step, assuming it occurs. The robot
is operating under the baseline controller over the interval
[t0, t1), and under the shock absorbing controller over the
interval [t1, t2]. Once the step-down heightH is specified,
x(t1), the state of the robot at timet1, is known. A numerical
optimization problem is posed so that the trajectory under the
shock absorbing controller can be continued in such a way
that the robot will not fall. In principle, the optimization
could consider several steps, but only one step is considered
here.
Objective: SelectΘ in (13) to minimize peak-to-peak am-
plitude of torso oscillation as defined by,

JΘ := max
t∈[t1,t2]

{qT(t)} − min
t∈[t1,t2]

{qT(t)}, (15)

whereqT(t) is trajectory of the torso angle. The cost function
JΘ is optimized subject to the following constraints:

1) positive horizontal swing toe position at the end of the
step,

ph2 (t2) > 0; (16)

2) maximum ratio of tangential to normal ground reaction
forces experienced by the stance leg end,

max
t∈[t1,t2]

{

FT
1 (t)

FN
1 (t)

}

< µs; (17)

3) minimum normal ground reaction force experienced by
the stance leg end,

min
t∈[t1,t2]

{FN
1 (t)} > C, for some C > 0; (18)

4) avoid premature impact,

s(t2) > 1− δ (19)

where0 < δ � 1;
5) upper bound on torso angular velocity

max
t

{q̇T(t)} < γq̇T for some γq̇T > 0. (20)
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controller.

The optimization is conducted over a transient phase of
the gait, and thus constraints are not required to impose
periodicity of an orbit. We have observed that solutions to
the above optimization problem tend to steer the robot so that
the configuration variables at timet2 are near their values on
the periodic orbit. We conjecture that this is because the two
virtual constraints for the swing leg, as well as the ending
value for the torso virtual constraint, are inherited from the
baseline periodic orbit.

MATLAB’s constrained optimization routinefmincon is
used to perform the numerical search outlined above. Setting
H = −0.2m, corresponding to a 20 cm step-down,δ = 0.05,
γq̇T = 250 deg/sec, C = 200 N, andµs = 0.5, yields the
parameter vector

Θ =[0.1417, − 0.2338, − 0.7765, − 0.0529, 2.1088,

0.1297, 2.7028]T .

Figure 7 shows the torso virtual constraint resulting from the
optimization.

The resulting switching controller is then applied to the
simplified model with a 20 cm step-down. The torso trajec-
tory is shown in Figure 8. It is observed that the torso
oscillates approximately 11°during the step following the
step-down (red solid line) and then quickly converges to
its nominal trajectory. On the hand, under the the baseline
controller (red dashed line), the torso noticeably overshoots
when returning to the nominal lean angle. Figure 9 shows
the normal ground reaction force and pulleyBspring angle,
which are important indicators of ground contact condition.

Before implementing the controller on the robot, it is
evaluated on a controller validation model developed in [8].
As mentioned in Section III, the validation model takes into
account more aspects of the physical robot, but it is too
unwieldy for controller design when optimization is involved.

VI. CONTROLLER VERIFICATION ON DETAILED MODEL

The model used for control design does not fully reflect
experimental reality due to the following reasons: cable
stretch in the robot’s drivetrain; asymmetry due to the boom
radius not being large enough; the simplified impact model
assumes an instantaneous double support phase, whereas, in
experiments, the double support phase lasts approximately
20 ms. More details are provided in [6], [7] and [8]. By
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Fig. 8: Simulated torso trajectory with optimal parameter
vectorΘ from the simplified model for a step-down height
of 20 cm. The switching controller is shown with a solid
line, while a dashed line represents the baseline controller.
Red line indicates the step following step-down.
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Fig. 9: Simulation data with optimal parameter vectorΘ
from the simplified model for a step-down height of 20 cm.
The switching controller is shown with a solid line, while
a dashed line represents the baseline controller. Red line
indicates the step following step-down.

representing cable stretch as a spring-damper, the boom dy-
namics to account for asymmetry side-to-side, and a ground
model comprised of compliant ground and LuGre friction
model [18], [19] into the mathematical model, the accuracy
of the model is significantly improved. However, because
of the complexity of this model, simulations of thedetailed
modeltake 20 times longer than thesimple modeldeveloped
in [7]. Hence, this model is not appropriate for optimization
processes which may require thousands of simulations.

Therefore, to take only advantage of each model’s
strengths, low computational effort for simple model and
high accuracy for detailed model, iterative controller design
is conducted on the simple model first, and then the designed
controller is tested on the detailed model, before implement-
ing it on the robot.

As part of implementing the proposed controller on the
detailed model, two modifications are made to account for
the cable stretch which is the most critical reason for model
discrepancy: (A) the coefficients of the virtual compliancein
(12) are modified so that the series connection of the com-
pliance due to the cable stretch and the virtual compliance
has the effective compliance specified by the optimization
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Fig. 10: Simulation data from the detailed model. Solid
red line represents step following step-off. Note that ground
reaction force is in log scale.

process [16]; (B) the swing leg height is increased according
to the platform height calculated at impact to prevent foot
scuffing; (C) in addition, a transition phase2 is added between
the shock absorbing and baseline controller. With these mod-
ifications to the proposed controller, the simulation results in
MABEL successfully stepping off a 20 cm platform.

Figure 10 showsqT, qBspst
, and the ground reaction force

on the stance toe. Despite the significant torso oscillation
after step-down, the calculated impact intensity 20.1N · s
from the simulation data is less than half of the impact
intensity 46.5N · s observed in the 2.5 inch step-down under
the baseline controller (see Figure 5). Furthermore, it is
observed that the torso oscillation damps out rapidly over
the ensuing steps and the vertical ground reaction force is
positive.

VII. E XPERIMENT

The switching controller is now evaluated on the robot. In
the experiment, MABEL starts walking of a flat floor, walks
up a ramp to a 7 inch (17.78 cm) platform and steps off, and
completes a second lap before being stopped by a researcher.
With the robot stopped, the platform is increased to 8 inch
(20.32 cm). The robot was then given a push to put back in
motion and stepped off the platform without falling.

Experimental data from the 8 inch step-down are shown in
Figures 11 and 12. Following the step-down, the amplitude

2This will be more fully explained in an upcoming journal publication.
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Fig. 11: Experimental data. The step-down occurs at 0.2 (s).
The following step is marked as a red line.

of torso oscillation is approximately 15°, while the detailed
model predicted a value of 13.5°. Remarkably, with the
switching controller, the torso oscillates less after the 8inch
step-down than it does after the amplitude of 2.5 inch step-
down test when using the baseline controller, even though the
platform is more than three times as high. In addition, the
calculated impact intensity at the second step is 23.8N · s,
which is also smaller than the value of the 2.0 inch step-down
test.

The spring deflection peaks at slightly over 40° just after
step-down and reaches zero for a short interval of time at
the end of the step, as shown in Figure 11. Two steps after
the step-down event, the torso and and spring deflection are
indistinguishable from steady-state walking on flat ground,
showing that the gait induced by the switching controller is
smoothly steered to the gait of the baseline controller.

Snapshots from video capture and a stick figure illustration
of the experiment are shown in Figure 12. This data also
demonstrate that the walking gait converges quickly to its
steady-state characteristics following the step-down event.
The video is available at [20].

VIII. C ONCLUSION

A switching controller has been designed to handle blind
step-downs of considerable height. Experimentation with this
controller showed MABEL stepping off a 20 cm platform.
Our next work will focus on stepping onto a platform which
is higher than 5 cm. It is conjectured that proper combination
of these two step-up and step-down controllers will provide
considerable robustness to uneven terrain.
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